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Variational principles are derived for multilayered orthotropic graphene
sheets undergoing transverse vibrations based on the nonlocal elastic the-
ory of orthotropic plates which provide a continuum model for graphene
sheets. The variational formulation allows the derivation of natural bo-
undary conditions which are expressed in the form of a set of coupled
equations for multilayered sheets as opposed to uncoupled boundary con-
ditions applicable to simply supported and clamped boundaries and also
in the case of a formulation based on the local (classical) elasticity the-
ory. For the free vibrations case, the Rayleigh quotient is derived. The
methods for the variational formulation use techniques of calculus of va-
riations and the semi-inverse method for deriving variational integrals.
Variational formulations provide the basis for a number of approximate
and numerical methods of solutions and improve the understanding of
the physical phenomena.
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1. Introduction

Graphene is a two-dimensional carbon nanostructure with many applications
in several fields. The covalent bond of carbon atoms makes a graphene sheet
one of the stiffest and strongest materials with a Young’s modulus in the range
of 1 TPa and higher as supported by the results given by Poot and van der Zant
(2008), Sakhaee-Pour (2009), Gao and Hao (2009) and Shokrieh and Rafiee
(2010) on the mechanical properties of graphene sheets. Its superior properties
have already been put into use in a number of applications which include their



622 S. Adali

use as sensing devices (Arsat et al., 2009; Wu et al., 2010), in lithium-ion
batteries (Lian, 2010), for desalination of sea water (Mishra and Ramaprabhu,
2011), in electrochemical capacitors (Yuan et al., 2011) for electrooxidation
(Choi et al., 2011) as well as for sensors for the detection of cancer cells (Yang et
al., 2010; Feng et al., 2011). They are also used as reinforcements in composites,
and a review of the graphene based polymer composites is given by Kuilla et
al. (2010). Further applications and potential applications of graphene in the
information technology and in other fields are discussed in the review articles
by Soldano et al. (2010) and Terrones et al. (2010).

Experimental study of nano-scale structures has been a difficult field due
to the size of the phenomenon. Similarly, molecular dynamics approach has
its drawbacks in the form of extensive computer time and memory required
to investigate even relatively small nano structures using nano time scales.
This situation led to the development of continuum models for nano-sized
components, e.g., carbon nanotubes, and in particular, graphene sheets to
investigate their mechanical behaviour (He et al., 2004; Kitipornchai et al.,
2005; Hemmasizadeh et al., 2008), and these models were used extensively to
investigate the mechanical behaviour of graphene sheets. However, the nano-
scale thickness of the sheets leads to inaccurate results when the models are
based on classical elastic constitutive relations. Classical elasticity is a scale
free theory and as such neglects the size effects which become prominent at
atomistic scale. Size effects have been observed in experimental and molecular
dynamic simulations of carbon nanotubes due to the influences of interatomic
and intermolecular interaction forces (Chang and Gao, 2003; Sun Zhang, 2003,
Ni et al., 2010).

The most often used continuum theory to analyze nano-scale structures
is nonlocal elasticity developed in 70s to take small scale effects into account
by formulating a constitutive relation with the stress at a point expressed as
a function of the strains at all points of the domain instead of the strain at
the same point as in the case with the classical elasticity theory (Edelen and
Laws, 1971; Eringen, 1972, 1983). The recent book by Eringen (2002) provi-
des a detailed account of the nonlocal theory. Continuum models were also
implemented to study the mechanical behaviour of grahene sheets, and in par-
ticular, the buckling of single-layered graphene sheets by Pradhan and Murmu
(2009), Sakhaee-Pour (2009) and Pradhan (2009) where nonlocal theories we-
re employed. Vibrational behaviour of graphene sheets has been the subject
of several studies due to its importance in many applications. Vibrations of
single-layered graphene sheets using nonlocal models were studied by Murmu
and Pradhan (2009), Shen et al. (2010) and Narendar and Gopalakrishnan
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(2010). Vibrations of multilayered graphene sheets were investigated by He et
al. (2005), Behfar and Naghdabadi (2005), Liew et al. (2006) and Jomehza-
deh and Saidi (2011) based on the classical elasticity theory. More recently
nonlocal continuum models were used in the study of vibrations of multilay-
ered graphene sheets by Pradhan and Phadikar (2009), Pradhan and Kumar
(2010), Ansari et al. (2010), and Pradhan and Kumar (2011).

The objective of the present study is to derive the variational principles
and the applicable boundary conditions involving the transverse vibrations
of multilayered orthotropic graphene sheets using the nonlocal theory of ela-
sticity discussed above. Previous studies on variational principles involving
nano-structures include multi-walled nanotubes under buckling loads (Adali,
2008), and undergoing linear and nonlinear vibrations (Adali, 2009a,b) which
are based on nonlocal theory of Euler-Bernoulli beams. The corresponding
results based on nonlocal Timoshenko theory are given in Adali (2011) for
nanotubes under buckling loads and in Kucuk et al. (2010) for nanotubes un-
dergoing vibrations. In the present study, these results are extended to the
case of multilayered graphene sheets undergoing transverse vibrations, and
natural boundary conditions are derived which are fairly involved due to co-
upling between the sheets and small size effects. Moreover Rayleigh quotient
for freely vibrating graphene sheets is obtained. The governing equations of
the vibrating multilayered graphene sheets constitute a system of partial dif-
ferential equations and the variational formulation for this system is obtained
by the semi-inverse method developed by He (1997, 2004). This method was
applied to several problems of mathematical physics governed by a system of
differential equations some examples of which can be found in He (2005, 2006,
2007), Liu (2005), Zhou (2006). The variational formulations given in Adali
(2008, 2009a,b, 2011) and in Kucuk et al. (2010) were also obtained by the
semi-inverse method.

2. Governing equations

A continuum model of multilayered graphene sheets is shown in Fig. 1a with
the van der Waals interaction between the adjacent layers depicted as elastic
springs. For an n-layered graphene, the top layer is numbered as i = 1 and
the bottom layer as i = n. Top view of a graphene sheet is shown in Fig. 1b
where a and b are the dimensions of the sheets in the x and y directions,
respectively. Bending stiffnesses of the orthotropic sheets are given by D11,
D12, D22 and D66 which are defined as (Pradhan and Phadikar, 2009)
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Fig. 1. Multileyered graphene sheets, (a) side view, (b) top view
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3

12

(2.1)

where h is the thickness of the graphene sheet, E1 and E2 are Young’s modu-
li in the x and y directions, respectively, G12 is the shear modulus, and ν12
and ν21 are Poisson’s ratios. Let wi(x, y, t) indicate the transverse deflection
of the i-th layer and η the small scale parameter of the nonlocal elastic the-
ory as defined in Pradhan and Phadikar (2009), Pradhan and Kumar (2010,
2011). Then the differential equations governing the transverse vibrations of
multilayered graphene sheets in the time interval t1 ¬ t ¬ t2 and based on
the nonlocal theory of elasticity (Pradhan and Phadikar, 2009) are given as

D1(w1, w2) = L(w1)− η
2N(w1)− c12∆w1 + η

2c12∇
2(∆w1)

= f(x, y, t)− η2∇2f(x, y, t)
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Di(wi−1, wi, wi+1) = L(wi)− η
2N(wi) + c(i−1)i∆wi−1 − ci(i+1)∆wi (2.2)

−η2c(i−1)i∇
2(∆wi−1) + η

2ci(i+1)∇
2(∆wi) = 0 for i = 2, 3, . . . , n − 1

Dn(wn−1, wn) = L(wn)− η
2N(wn) + c(n−1)n∆wn−1

−η2c(n−1)n∇
2(∆wn−1) = 0

where f(x, y, t) is a transverse load acting on the topmost layer (i = 1) which
can also be taken as acting at the bottommost layer (i = n) due to the
symmetry of the structure, the symbol ∆wi is defined as

∆wi ≡ wi+1 − wi (2.3)

and L(wi) and N(wi) are differential operators given by

L(wi) = D11
∂4wi
∂x4
+ 2(D12 + 2D66)

∂4wi
∂x2∂y2

+D22
∂4wi
∂y4

+m0
∂2wi
∂t2
−m2

( ∂4wi
∂x2∂t2

+
∂4wi
∂y2∂t2

)

(2.4)

N(wi) = ∇
2
[

m0
∂2wi
∂t2
−m2

( ∂4wi
∂x2∂t2

+
∂4wi
∂y2∂t2

)]

with ∇2 = ∂2

∂x2
+ ∂2

∂y2
. In Eqs. (2.4), m0 = ρh and m2 = ρh

3/12. The coeffi-
cient c(i−1)i is the interaction coefficient of van der Waals forces between the
(i−1)-th and i-th layers with i = 2, . . . , n. The constant η = e0α is a material
parameter defining the small scale effect in the nonlocal elastic theory where
e0 is an experimentally determined constant and has to be determined for each
material independently (Eringen, 1983). α is an internal characteristic length
such as lattice parameter, size of grain, granular distance, etc. (Narendar and
Gopalakrishnan, 2010).

3. Variational functional

In the present section, the semi-inverse method (He, 1997, 2004) will be em-
ployed in order to derive the variational formulation of the problem. For this
purpose, we first define a trial variational functional V (w1, w2, . . . , wn) given
by

V (w1, w2, . . . , wn) = V1(w1, w2) + V2(w1, w2, w3) + . . .
(3.1)

+Vn−1(wn−2, wn−1, wn) + Vn(wn−1, wn)
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where

V1(w1, w2) = U(w1)− Ta(w1)− Tb(w1)

+

t2
∫

t1

b
∫

0

a
∫

0

[(−f + η2∇2f)w1 + F1(w1, w2)] dx dy dt

Vi(wi−1, wi, wi+1) = U(wi)− Ta(wi)− Tb(wi)
(3.2)

+

t2
∫

t1

b
∫

0

a
∫

0

Fi(wi−1, wi, wi+1) dx dy dt for i = 2, 3, . . . , n− 1

Vn(wn−1, wn) = U(wn)− Ta(wn)− Tb(wn) +

t2
∫

t1

b
∫

0

a
∫

0

Fn(wn−1, wn) dx dy dt

with the functionals U(wi), Ta(wi) and Tb(wi) defined as

U(wi) =
1

2

t2
∫

t1

b
∫

0

a
∫

0

[

D11
(∂2wi
∂x2

)2
+ 2D12

∂2wi
∂x2
∂2wi
∂y2
+D22

(∂2wi
∂y2

)2

+4D66
( ∂2wi
∂x∂y

)2]

dx dy dt

Ta(wi) =
1

2

t2
∫

t1

b
∫

0

a
∫

0

{

m0
(∂wi
∂t

)2
+m2

[(∂2wi
∂x∂t

)2
+
(∂2wi
∂y∂t

)2]}

dx dy dt

(3.3)

Tb(wi) =
η2

2

t2
∫

t1

b
∫

0

a
∫

0

{

2m0
(∂2wi
∂x2
∂2wi
∂t2
+
∂2wi
∂y2
∂2wi
∂t2

)

+m2
[( ∂3wi
∂x2∂t

)2
+ 2

( ∂3wi
∂x∂y∂t

)2
+
( ∂3wi
∂y2∂t

)2]}

dx dy dt

where i = 1, 2, . . . , n. It is observed that U(wi) represents the strain energy
and Ta(wi) the kinetic energy of the i-th layer of the multilayered graphene
sheet. The functional Tb(wi) arises due to small scale effects, i.e. the nonlo-
cal theory used in modeling of the graphene sheet. Similarly, the expression
∫ t2
t1

∫ b
0

∫ a
0 Fi(wi−1, wi, wi+1)dx dy dt in equation (3.2)1 represents the potential

energy due to van der Waals forces between the layers. Similarly the term
∫ t2
t1

∫ b
0

∫ a
0 [(−f +η

2∇2f)w1]dx dy dt represents the work done by external forces
where the second term arises due to small scale effects. In equations (3.2),
Fi(wi−1, wi, wi+1) denotes the unknown functions of wi−1, wi and wi+1, and
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their derivatives and should be determined such that the Euler-Lagrange equ-
ations of variational functional (3.2)1 correspond to differential equations (2.2).
These equations are given by

L(w1)− η
2N(w1) +

2
∑

j=1

δFj
δw1
= L(w1)− η

2N(w1)

+
2
∑

j=1

∂Fj
∂w1
−
2
∑

j=1

∂

∂x

( ∂Fj
∂w1x

)

−
2
∑

j=1

∂

∂y

( ∂Fj
∂w1y

)

= 0

L(wi)− η
2N(wi) +

i+1
∑

j=i−1

δFj
δwi
= L(wi)− η

2N(wi)

(3.4)

+
i+1
∑

j=i−1

∂Fj
∂wi
−

i+1
∑

j=i−1

∂

∂x

( ∂Fj
∂wix

)

−

i+1
∑

j=i−1

∂

∂y

( ∂Fj
∂wiy

)

= 0

L(wn)− η
2N(wn) +

n
∑

j=n−1

δFj
δwn
= L(wn)− η

2N(wn)

+
n
∑

j=n−1

∂Fj
∂wn
−

n
∑

j=n−1

∂

∂x

( ∂Fj
∂wnx

)

−

n
∑

j=n−1

∂

∂y

( ∂Fj
∂wny

)

= 0

where i = 2, 3, . . . , n− 1 and the subscripts x, y and t denote differentiations
with respect to that variable, and δFi/δwi is the variational derivative defined
as

δFi
δwi
=
∂Fi
∂wi
−

k=3
∑

k=1

∂

∂ξk

( ∂Fi
∂wiξk

)

+
k=3
∑

k=1

j=3
∑

j=k

∂2

∂ξk∂ξj

( ∂Fi
∂wiξkξj

)

+ . . . (3.5)

where ξ1 = x, ξ2 = y and ξ3 = t. It is noted that the variational derivative
δFi/δwi of Fi(wi−1, wi, wi+1) follows from the Euler-Lagrange equations of
the functional

∫ t2
t1

∫ b
0

∫ a
0 Fi(wi−1, wi, wi+1)dx dy dt. Comparing equations (3.4)

with equations (2.2), we observe that the following equations have to be
satisfied for Euler-Lagrange equations (3.4) to represent the governing equ-
ations (2.2)

2
∑

j=1

δFj
δw1
= −c12∆w1 + η

2c12
(∂2∆w1
∂x2

+
∂2∆w1
∂y2

)



628 S. Adali

i+1
∑

j=i−1

δFj
δwi
= c(i−1)i∆wi−1 − ci(i+1)∆wi − η

2c(i−1)i
(∂2∆wi−1
∂x2

+
∂2∆wi−1
∂y2

)

(3.6)

+η2ci(i+1)
(∂2∆wi
∂x2

+
∂2∆wi
∂y2

)

n
∑

j=n−1

δFj
δwn
= c(n−1)n∆wn−1 − η

2c(n−1)n
(∂2∆wn−1
∂x2

+
∂2∆wn−1
∂y2

)

From equations (3.6), it follows that

F1(w1, w2) =
c12
4
(∆w1)

2 +
c12
4
η2
[(∂∆w1
∂x

)2
+
(∂∆w1
∂y

)2]

Fi(wi−1, wi, wi+1) =
c(i−1)i
4
(∆wi−1)

2 +
ci(i+1)
4
(∆wi)

2

+
η2c(i−1)i
4

[(∂∆wi−1
∂x

)2
+
(∂∆wi−1
∂y

)2]

(3.7)

+
η2ci(i+1)

4

[(∂∆wi
∂x

)2
+
(∂∆wi
∂y

)2]

for i = 2, 3, . . . , n− 1

Fn(wn−1, wn) =
c(n−1)n
4
(∆wn−1)

2 +
η2c(n−1)n
4

[(∂∆wn−1
∂x

)2
+
(∂∆wn−1
∂y

)2]

With Fi given by equations (3.7), we observe that equations (3.4) are equiva-
lent to equations (2.2), viz.

D1(w1, w2) = L(w1)− η
2N(w1) +

2
∑

j=1

δFj
δw1
= f − η2∇2f

Di(wi−1, wi, wi+1) = L(wi)− η
2N(wi) +

i+1
∑

j=i−1

δFj
δwi
= 0 (3.8)

Dn(wn−1, wn) = L(wn)− η
2N(wn) +

n
∑

j=n−1

δFj
δwn
= 0

4. Free vibrations

In the present Section, the variational principle and the Rayleigh quotient are
given for the case of freely vibrating graphene sheets. Let the harmonic motion
of the i-th layer be expressed as

wi(x, y, t) =Wi(x, y)e
√

−1ωt (4.1)
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where ω is the vibration frequency and Wi(x, y) is the deflection amplitude.
The equations governing the free vibrations are obtained by substituting equ-
ation (4.1) into equations (2.2) with f(x, y, t) = 0 and replacing the deflection
wi(x, y, t) by Wi(x, y). The operators L(wi) and N(wi) now become LFV (Wi)
and N(Wi) given by

LFV (Wi) = D11
∂4Wi
∂x4

+ 2(D12 + 2D66)
∂4Wi
∂x2∂y2

+D22
∂4Wi
∂y4
−m0ω

2Wi

+m2ω
2
(∂2Wi
∂x2

+
∂2Wi
∂y2

)

(4.2)

N(Wi) = ∇
2
[

−m0ω
2Wi +m2ω

2
(∂2Wi
∂x2

+
∂2Wi
∂y2

)]

The variational principle for the case of free vibrations is the same as the
one given by equations (3.1) and (3.2) with the deflection wi(x, y, t) replaced
by Wi(x, y), the triple integrals replaced by the double integrals with respect
to x and y, i.e.,

∫ b
0

∫ a
0 Fi(Wi−1,Wi,Wi+1)dx dy, and U(wi), Ta(wi) and Tb(wi)

replaced by UFV (Wi), TFV a(Wi) and TFV b(Wi) given by

UFV (Wi) =
1

2

b
∫

0

a
∫

0

[

D11
(∂2Wi
∂x2

)2
+ 2D12

∂2Wi
∂x2
∂2Wi
∂y2
+D22

(∂2Wi
∂y2

)2

+4D66
(∂2Wi
∂x∂y

)2]

dx dy

TFV a(Wi) =
1

2

b
∫

0

a
∫

0

{

m0W
2
i +m2

[(∂Wi
∂x

)2
+
(∂Wi
∂y

)2]}

dx dy (4.3)

TFV b(Wi) = −
η2

2

b
∫

0

a
∫

0

{

m0
[(∂Wi
∂x

)2
+
(∂Wi
∂y

)2]

+m2
[(∂2Wi
∂x2

)2
+ 2

(∂2Wi
∂x∂y

)2
+
(∂2Wi
∂y2

)2]}

dx dy

The functions Fi(Wi−1,Wi,Wi+1) are of the same form as given by equations
(3.7) since the functions Fi(Wi−1,Wi,Wi+1) are independent of time. Next the
Rayleigh quotient is obtained for the vibration frequency ω from equations
(3.1), (3.2) and (4.3) as

ω2 = min
Wi

∑n
i=1 UFV i(Wi) +

∑n
i=1

b
∫

0

a
∫

0
Fi dx dy

∑n
i=1[TFV a(Wi) + TFV b(Wi)]

(4.4)
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where Fi (i = 1, 2, . . . , n) are given by equations (3.7) with wi(x, y, t) replaced
by Wi(x, y).

5. Boundary conditions

After substituting equations (3.2) into functional (3.1), we take its first varia-
tion with respect to wi in order to derive the natural and geometric boundary
conditions. The first variations of V (w1, w2, . . . , wn) with respect to wi, de-
noted by δwiV , are given by

δw1V (w1, w2, . . . , wn) = δw1V1(w1, w2) + δw1V2(w1, w2, w3)

δwiV (w1, w2, . . . , wn) = δwiVi−1(wi−2, wi−1, wi) + δwiVi(wi−1, wi, wi+1)
(5.1)

+δwiVi+1(wi, wi+1, wi+2) for i = 2, 3, . . . , n− 1

δwnV (w1, w2, . . . , wn) = δwnVn−1(wn−2, wn−1, wn) + δwnVn(wn−1, wn)

The first variation of Vi(wi−1, wi, wi+1) with respect to wi is given by

δwiVi(wi−1, wi, wi+1) = δwiU(wi)− δwiTa(wi)− δwiTb(wi)
(5.2)

+δwi

t2
∫

t1

b
∫

0

a
∫

0

[

Fi(wi−1, wi, wi+1)
]

dx dy dt

for i = 1, 2, . . . , n − 1, n. Let δwi denote the variation of wi satisfying the
boundary conditions

δwix(x, 0, t) = 0 δwix(x, b, t) = 0

δwiy(0, y, t) = 0 δwiy(a, y, t) = 0
(5.3)

where the following notation was used δ(∂wi/∂x) = δwix, δ(∂wi/∂y) = δwiy.
Moreover, the deflections wi(x, y, t) and their space derivatives vanish at the
end points t = t1 and t = t2, i.e., δwi(x, y, t1) = 0, δwi(x, y, t2) = 0,
δwix(x, y, t1) = 0, δwix(x, y, t2) = 0, etc.

Next using the subscript notation for differentiation, i.e., wix = ∂wi/∂x,
wiy = ∂wi/∂y etc., we derive the first variations δwiU(wi), δwiTa(wi),

δwiTb(wi) and δwi
∫ t2
t1

∫ b
0

∫ a
0 [Fi(wi−1, wi, wi+1)]dx dy dt by integration by parts

to obtain
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δwiU(wi) =

t2
∫

t1

b
∫

0

a
∫

0

(D11wixxδwixx +D12wixxδwiyy +D12wiyyδwixx

+D22wiyyδwiyy + 4D66wixyδwixy
)

dx dy dt

=

t2
∫

t1

b
∫

0

a
∫

0

[D11wixxxx + 2(D12 + 2D66)wixxyy +D22wiyyyy]δwi dx dy dt

+B1(wi, δwi)

δwiTa(wi) =

t2
∫

t1

b
∫

0

a
∫

0

[m0witδwit +m2(wixtδwixt + wiytδwiyt)] dx dy dt

= −

t2
∫

t1

b
∫

0

a
∫

0

[m0witt −m2(wixxtt + wiyytt)]δwidx dy dt+B2(wi, δwi)

(5.4)

δwiTb(wi) = η
2

t2
∫

t1

b
∫

0

a
∫

0

m0(wittδwixx + wixxδwitt + wittδwiyy

+wiyyδwitt) dx dy dt . . .

+η2
t2
∫

t1

b
∫

0

a
∫

0

m2(wixxtδwixxt + 2wixytδwixyt + wiyytδwiyyt) dx dy dt

= η2
t2
∫

t1

b
∫

0

a
∫

0

∇2[m0witt −m2(wixxtt + wiyytt)]δwidx dy dt +B3(wi, δwi)

t2
∫

t1

b
∫

0

a
∫

0

δwi [Fi(wi−1, wi, wi+1)] dx dy dt

=
1

2

t2
∫

t1

b
∫

0

a
∫

0

(c(i−1)i∆wi−1 − ci(i+1)∆wi)δwi dx dy dt . . .

+
η2

2

t2
∫

t1

b
∫

0

a
∫

0

[−c(i−1)i∇
2(∆wi−1) + ci(i+1)∇

2(∆wi)]δwi dx dy dt

+B4(wi, δwi)

where Bk(wi, δwi), k = 1, . . . , 4 are the boundary terms. B1(wi, δwi) is given
by
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B1(wi, δwi) =
k=3
∑

k=1

B1k(wi, δwi) (5.5)

where

B11(wi, δwi) =

t2
∫

t1

b
∫

0

[D11(wixxδwix − wixxxδwi)

+D12(wiyyδwix − wixyyδwi)]
∣

∣

∣

x=0

x=0
dy dt

B12(wi, δwi) =

t2
∫

t1

a
∫

0

[D12(wixxδwiy − wixxyδwi) (5.6)

+D22(wiyyδwiy − wiyyyδwi)]
∣

∣

∣

y=b

y=0
dx dt

B13(wi, δwi) = −2D66

t2
∫

t1

b
∫

0

wixyyδwi
∣

∣

∣

x=0

x=0
dy dt − 2D66

t2
∫

t1

a
∫

0

wixxyδwi
∣

∣

∣

y=b

y=0
dx dt

Similarly, B2(wi, δwi) and B3(wi, δwi) are given by

B2(wi, δwi) = −m2

t2
∫

t1

b
∫

0

wixttδwi
∣

∣

∣

x=0

x=0
dy dt−m2

t2
∫

t1

a
∫

0

wiyttδwi
∣

∣

∣

y=b

y=0
dx dt

(5.7)

B3(wi, δwi) =
k=3
∑

k=1

B3k(wi, δwi)

where

B31(wi, δwi) = η
2m0

t2
∫

t1

b
∫

0

(wittδwix − wixttδwi)
∣

∣

∣

x=0

x=0
dy dt

+η2m0

t2
∫

t1

a
∫

0

(wittδwiy − wiyttδwi)
∣

∣

∣

y=b

y=0
dx dt

(5.8)

B32(wi, δwi) = η
2m2

t2
∫

t1

b
∫

0

[−wixxttδwix + (wixxxtt + wixxytt)δwi]
∣

∣

∣

x=0

x=0
dy dt

B33(wi, δwi) = η
2m2

t2
∫

t1

a
∫

0

[−wiyyttδwiy + (wiyyytt + wixyytt)δwi]
∣

∣

∣

y=b

y=0
dx dt



Variational principles and natural boundary conditions... 633

Finally, we have

B4(w1, δw1) =
η2

2

( t2
∫

t1

b
∫

0

c12∆w1xδw1
∣

∣

∣

x=0

x=0
dy dt +

t2
∫

t1

a
∫

0

c12∆w1yδw1
∣

∣

∣

y=b

y=0
dx dt

)

B4(wi, δwi) =
η2

2

t2
∫

t1

b
∫

0

(c(i−1)i∆w(i−1)x + ci(i+1)∆wix)δwi
∣

∣

∣

x=0

x=0
dy dt

(5.9)

+
η2

2

t2
∫

t1

a
∫

0

(c(i−1)i∆w(i−1)y + ci(i+1)∆wiy)δwi
∣

∣

∣

y=b

y=0
dx dt for i = 2, . . . , n−1

B4(wn, δwn) =
η2

2

( t2
∫

t1

b
∫

0

c(n−1)n∆w(n−1)xδwn
∣

∣

∣

x=0

x=0
dy dt

+

t2
∫

t1

a
∫

0

c(n−1)n∆w(n−1)yδwn
∣

∣

∣

y=b

y=0
dx dt

)

Using the fundamental lemma of calculus of variations, the boundary condi-
tions at x = 0, a and y = 0, b are obtained from equations (5.5)-(5.9) for
i = 2, . . . , n − 1. The boundary conditions at x = 0, a are given by

D11wixx +D12wiyy + η
2(−m0witt +m2wixxtt) = 0 or wix = 0

−D11w1xxx −D12w1xyy − 2D66w1xyy +m2w1xtt

+η2[m0w1xtt −m2(w1xxxtt + w1xxytt + c12∆w1x)] = 0 or w1 = 0

−D11wixxx −D12wixyy − 2D66wixyy +m2wixtt

+η2[m0wixtt −m2(wixxxtt + wixxytt)] (5.10)

+η2(c(i−1)i∆w(i−1)x + ci(i+1)∆wix) = 0 o wi = 0 for i = 2, . . . , n− 1

−D11wnxxx −D12wnxyy − 2D66wnxyy +m2wnxtt

+η2[m0wnxtt −m2(wnxxxtt +wnxxytt + c(n−1)n∆w(n−1)nx)] = 0

or wn = 0

and at y = 0, b by

D12wixx +D22wiyy + η
2(−m0witt +m2wiyytt) = 0 or wiy = 0

−D12w1xxy −D22w1yyy − 2D66w1xxy +m2w1ytt

+η2[m0w1ytt −m2(w1yyytt + w1xyytt)] + η
2c12∆w1y = 0 or w1 = 0
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−D12wixxy −D22wiyyy − 2D66wixxy +m2wiytt

+η2[m0wiytt −m2(wiyyytt + wixyytt)] (5.11)

+η2(c(i−1)i∆w(i−1)y + ci(i+1)∆wiy) = 0 or wi = 0 for i = 2, . . . , n − 1

−D12wnxxy −D22wnyyy − 2D66wnxxy +m2wnytt

+η2[m0wnytt −m2(wnyyytt + wnxyytt + c(n−1)n∆w(n−1)ny)] = 0

or wn = 0

It is observed that when η 6= 0, the natural boundary conditions are coupled,
that is, the nonlocal formulation of the problem leads to natural boundary
conditions which contain derivatives of wi−1 and wi+1 in the expression for wi,
e.g. see the first equations of (5.10)3 and (5.11)4.

6. Conclusions

The variational formulations for the free and forced vibrations of multilayered
graphene sheets were derived using a continuum formulation based on the
nonlocal orthotropic plate theory. The nonlocal theory used in the formula-
tion allows the inclusion of small size effects and as such improves the accuracy
of the model. A semi-inverse approach was employed in the derivation of the
variational principles and the Rayleigh quotient for free vibrations was obta-
ined. The formulation was used to obtain the natural boundary conditions.
The variational principles presented here may form the basis of approxima-
te and numerical methods of solution such as the Rayleigh-Ritz and finite
element methods based on the energy functional of the problem and may faci-
litate the implementation of complicated boundary conditions. It was observed
that the nonlocal theory leads to coupled boundary conditions as opposed to
uncoupled natural boundary conditions in the case of local theory of graphene
sheets.
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Zasady wariacyjne i naturalne warunki brzegowe dla wielowarstwowych

ortotropowych paneli grafenowych poddanych drganiom, sformułowane

w ramach nielokalnej teorii sprężystości

Streszczenie

W pracy zajęto się problemem drgań poprzecznych ortotropowych paneli grafe-
nowych, dla których sformułowano zasady wariacyjne na podstawie nielokalnej teo-
rii sprężystości, co pozwoliło na budowę ciągłego modelu takich struktur. Formuła
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wariacyjna umożliwiła konstrukcję naturalnych warunków brzegowych wyrażonych
zbiorem sprzężonych równań opisujących grafenowe panele wielowarstwowe w odróż-
nieniu od rozprzężonych warunków brzegowych stosowanych jedynie do zamocowań
typu swobodne podparcie lub zamurowanie, jednocześnie przy zastosowaniu lokalnej
(klasycznej) teorii sprężystości. Dla przypadku drgań swobodnych wyznaczono iloraz
Rayleigha układu z grafenu. W prezentowanym sformułowaniu użyto odpowiednich
technik obliczania funkcjonałów i półodwrotnej metody wyznaczania całek. Wyka-
zano, że postać wariacyjna stanowi podstawę dla numerycznych metod poszukiwa-
nia przybliżonych rozwiązań i pogłębia zrozumienie zachodzących zjawisk fizycznych
w takich układach.
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