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A self-similar solution for the propagation of a spherical shock wave in
a non-ideal gas in the presence of an azimuthal magnetic field is inve-
stigated. The medium is assumed to be under a gravitational field due
to a heavy nucleus at the origin(Roche Model). The unsteady model of
Roche consists of a gas distributed with spherical symmetry around the
nucleus having a large mass. It is assumed that the gravitational effect
of the medium itself can be neglected compared with the attraction of
the heavy nucleus. The total energy of the flow-field behind the shock is
supposed to be increasing with time. Similarity solutions are obtained,
and the effects of variation of the parameter of non-idealness of the gas,
the shock-Mach number and the Alfven-Mach number on the flow-field
behind the shock are investigated.
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1. Introduction

Carrus et al. (1951) studied the propagation of shock waves in a gas under
the gravitational attraction of a central body of the fixed mass (Roche Model)
and obtained similarity solutions by numerical method. Rogers (1957) discus-
sed a method for obtaining an analytical solution to the same problem. Ojha
et al. (1998) discussed the dynamical behaviour of an unstable magnetic star
by employing the concept of the Roche Model in an electrically conducting
atmosphere. Singh (1982) studied the self-similar flow of a non-conducting



502 K.K. Singh, B. Nath

perfect gas, moving under the gravitational attraction of a central body of
the fixed mass, behind a spherical shock wave driven out by a propelling
contact surface into a quite solar wind region. Singh and Srivastava (1989)
studied the self-similar flow of a perfect gas, moving under the gravitatio-
nal attraction of a central body of the fixed mass, behind a spherical shock
wave moving into a conducting gas of spatially decreasing density and per-
vaded by a spatially decreasing magnetic field. Total energy content between
the inner expanding surface and the shock front is assumed to be increasing
with time. Ratkiewicz et al. (1994) studied similarity solutions for synchrotron
emission from a supernova blast wave. In all of the works, mentioned above,
the medium is taken to be a gas satisfying the equation of state of a perfect
gas.

The assumption that the gas is ideal is no longer valid when the flow takes
place at high temperatures. Anisimov and Spiner (1972) studied a problem of
point explosion in a non-ideal gas by taking the equation of state in a simplified
form, which describes the behaviour of the medium satisfactorily at low densi-
ties. Ranga Rao and Purohit (1976), Ojha (2002) and Vishwakarma and Nath
(2007) also studied the propagation of shock waves in gases with the above
equation of state. Roberts and Wu (1996, 2003) used an equivalent equation
of state to study the shock wave theory of sonoluminescence. Vishwakarma
et al. (2007) studied the propagation of the magnetogasdynamic cylindrical
shock wave in a rotating non-ideal gas by using the equation of state taken by
Roberts and Wu (1996, 2003).

In the present work, we therefore investigate the self-similar flow behind
a spherical shock wave propagating in a non-ideal gas in the presence of an
azimuthal magnetic field. The medium is assumed to be under a gravitational
field due to a heavy nucleus at the origin (Roche Model). The unsteady model
of Roche consits of a gas distributed with spherical symmetry around the
nucleus having a large mass m. It is assumed that the gravitational effect of
the medium itself can be neglected compared with the attraction of the heavy
nucleus. The total energy of the flow-field behind the shock is supposed to
be increasing with time (Freeman, 1968; Director and Dabora, 1977). This
increase can be obtained by the pressure exerted on the medium by the inner
expanding surface (Rogers, 1958). In order to obtain the similarity solutions of
the problem, the density of the undisturbed medium is assumed to be constant.
Effects of variation of the parameter of the non-idealness of the gas b, the
shock-Mach number M and the Alfven-Mach number MA on the flow field
behind the shock are investigated.



Self-similar flow of a non-ideal gas... 503

2. Fundamental equations and boundary conditions

The fundamental equations for one-dimensional adiabatic unsteady spherically
symmetric flow of a perfectly conducting non-ideal gas in which an azimuthal
magnetic field is permeated, in the generalized Roche Model are (Rogers, 1957;
Singh and Srivastava, 1989; Vishwakarma, 2000)
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where u, p, ρ and h are the velocity, pressure, density and azimuthal ma-
gnetic field, respectively, at a radial distance r from the center of the core at
time t, µ is the magnetic permeability, e is the internal energy per unit mass,
m denotes the constant mass of the core and G∗ is the gravitational constant.
Here, it is assumed that the gravitating effect of the medium itself is negligible
in comparison with the attraction of the heavy nucleus.

The above system of equations should be supplemented with an equation of
state. To discover how deviations from the ideal gas can affect the solutions, we
adopt a simple model. We assume that the gas obeys a simplified van der Waals
equation of state of the form (Roberts and Wu, 1996, 2003; Vishwakarma et
al., 2007)

p =
R∗ρT

1− bρ e = CvT =
p(1− bρ)
ρ(γ − 1) (2.2)

where R∗ is the gas constant, Cv = R
∗/(γ−1) is the specific heat at constant

volume and γ is the ratio of specific heats. The constant b is the ”van der
Waals excluded volume”; it places a limit, ρmax = 1/b, on the density of the
gas.

We assume that the spherical shock wave is propagating outwards from
the center of symmetry in a perfectly conducting non-ideal gas with constant
density and a variable azimuthal magnetic field, which is at rest.

The flow variables immediately ahead of the shock front are

u1 = 0 ρ1 = const h1 = cR
−k (2.3)
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where R is the shock radius, c and k are constants and the subscript 1 denotes
the condition immediately ahead of the shock.
At the equilibrium state, the pressure ahead of the shock is

p1 = G
∗mρ1R

−1 + µc2(1− k)R
−2k

2k
(2.4)

where 2k = 1.
The jump conditions across the magnetogasdynamic shock are

ρ2(Ṙ− u2) = ρ1Ṙ h2(Ṙ− u2) = h1Ṙ
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where subscript 2 denotes conditions immediately behind the shock and
Ṙ(= dR/dt) denotes the velocity of the shock front.
From eqautions (2.5), we obtain
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ρ1Ṙ2/(γp1) is the shock-Mach number referred to the frozen

speed of sound
√

γp1/ρ1, and MA =
√
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where, b = bρ1 is the parameter of non-idealness of the gas.
The shock-Mach number Me referred to the speed of sound in non-ideal

gas
√

γp1/[ρ1(1− b)] is given by

Me =M

√

1− b (2.8)
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The total energy E of the flow-field behind the shock is not constant, but
assumed to be time dependent and varying as (Rogers, 1958; Freeman, 1968;
Director and Dabora, 1977)

E = Ect
s (2.9)

where s is a non-negative number and Ec is a constant. The positive values of
s correspond to the class in which the total energy increases with time. This
increase can be achieved by the pressure exerted on the gas by the expanding
surface (a contact surface or a piston). Thus the flow is headed by a shock
front and has the expanding surface as the inner boundary.

3. Similarity solutions

Following the general similarity analysis of Sedov (1959), we define two cha-
racteristic parameters a and d with independent dimensions as

[a] = [mG∗ρ1] [d] = [mG∗] =

[

Ec
ρ1

]
3

5

The single dimensionless independent variable in this case will be

η = (αmG∗)
−δ1

2 rt−δ1 (3.1)
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2

3
=
2 + s

5
(3.2)

and α is a constant to be determined by the condition that η assumes the
value 1 at the shock front.
Second of equations (3.2) shows that the similarity solution of the present

problem exists only when the total energy of the flow-field behind the shock
increases as t4/3, that is only when s = 4/3.
From (3.1), we find that

Ṙ2 =
4αmG∗
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dṘ
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= − Ṙ
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(3.3)

From equations (2.4) and (3.3)1, we obtain the following expression for α
in terms of the shock-Mach number M and Alfven-Mach number MA
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The quantity 9/(4α) (= δ, say) may be taken as a parameter of gravitation.
To obtain similarity solutions, we write the unknown variables in the fol-

lowing form (Vishwakarma and Yadav, 2003)

u = ṘU(η) ρ = ρ1g(η)

p = ρ1Ṙ
2P (η)

√
µh =

√
ρ1ṘH(η)

(3.5)

where U , g, P and H are functions of the non-dimansional variable (similarity
variable) η only.
The condition to be satisfied at the inner expanding surface is that the

velocity of the fluid is equal to the velocity of the surface itself. This kinematic
condition, from equations (3.1) and (3.5), can be written as

U(ηp) = ηp (3.6)

where ηp is the value of η at the inner expanding surface.
Using similarity transformations (3.5), the equations of motion are trans-

formed into
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From equations (3.7), we have
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The transformed shock conditions are

U(1) = 1− β g(1) =
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where β is given by equation (2.7).

For exhibiting the numerical solutions, it is convenient to write the field
variables in the non-dimensional form as
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Ordinary differential equations (3.8) with boundary conditions (3.9) can
now be numerically integrated to obtain the solution for the flow behind the
shock surface.

4. Results and discussion

Distribution of the flow variables in the flow-field behind the shock front are
obtained by numerical integration of equations (3.8) with boundary condi-
tions (3.9) by the Runge-Kutta method of the fourth order. For the purpose
of numerical integration, the values of constant parameters are taken to be
(Roberts and Wu, 1996, 2003; Rosenau and Frankenthal, 1976; Vishwakarma
et al., 2007) γ = 5/3; b = 0, 0.025, 0.05; M = 5, 10; M−2A = 0, 0.02, 0.1. For
a fully ionized gas γ = 5/3, and therefore it is applicable to stellar medium.
Rosenau and Frankenthal (1976) have shown that the effects of magnetic field
on the flow-field behind the shock are significant when M−2A  0.01; therefore
the above values of M−2A are taken for calculations in the present problem.
The value b = 0 corresponds to the perfect gas case.

Figures 1-4 show the variation of the flow variables u/u2, ρ/ρ2, h/h2 and
p/p2 with η at various values of the parameters b,M

−2 and M−2A . It is shown
that, as we move inwards from the shock front towards the inner contact sur-
face, the reduced fluid velocity u/u2 and the reduced azimuthal magnetic field
h/h2 increase, and the reduced density ρ/ρ2 decreases whereas the reduced
pressure p/p2 increases when M

−2
A 6= 0 and decreases when M

−2
A = 0 (non-

magnetic case).
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Fig. 1. Variation of reduced velocity u/u2 in the flow-field behind the shock front
for γ = 5/3

Fig. 2. Variation of reduced density ρ/ρ2 in the flow-field behind the shock front for
γ = 5/3
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Fig. 3. Variation of reduced azimuthal magnetic field h/h2 in the flow-field behind
the shock front for γ = 5/3

Fig. 4. Variation of reduced pressure p/p2 in the flow-field behind the shock front
for γ = 5/3
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Table 1. Density ratio β across the shock front and the position of the inner
expanding surface ηp for different values of b, M

−2 and M−2A with γ = 5/3

b M−2 M−2A β ηp

0

0 0.400000 0.7741250
0.04 0.02 0.418474 0.7519095

0.1 0.488109 0.6844721
0 0.325000 0.8236720

0.01 0.02 0.344752 0.8000735
0.1 0.417444 0.7327128

0.025

0 0.418750 0.7645350
0.04 0.02 0.435571 0.7432718

0.1 0.500606 0.6779128
0 0.343750 0.8150435

0.01 0.02 0.361215 0.7927513
0.1 0.428142 0.7280513

0.05

0 0.437500 0.7546676
0.04 0.02 0.452864 0.7342914

0.1 0.513580 0.6709548
0 0.362500 0.8061769

0.01 0.02 0.377997 0.7850806
0.1 0.439469 0.7230134

The density ratio β across the shock front and the position of the inner
expanding surface ηp are tabulated in table 1 for γ =

5
3
and various values of

b, M−2 and MA
−2.

It is found that the effects of an increase in the value of the parameter of
non-idealness b of the gas are:

(i) to increase the value of β, i.e. to decrease the shock strength (see Ta-
ble 1);

(ii) to increase the reduced velocity u/u2 and the reduced density ρ/ρ2 at
any point in the flow field behind the shock (see Figs. 1 and 2);

(iii) to slightly increase the reduced pressure p/p2 and the reduced magnetic
field h/h2 at any point in the flow field near the shock front and to
decrease these quantities at any point in the flow field near the inner
expanding surface in the magnetic case whereas to increase the reduced
pressure p/p2 at any point in the flow field behind the shock in the
non-magnetic case (see Figs. 3 and 4);
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(iv) to increase the distance of the inner expanding surface from the shock
front (see Table 1). Physically it means that the gas behind the shock is
less compressed, i.e. the shock strength is reduced, which is the same as
given in (i) above.

The effects of an increase in the value of M (i.e. a decrease in the value
of M−2) are:

(i) to decrease the value of β, i.e. to increase the shock strength (see Ta-
ble 1);

(ii) to decrease the reduced velocity u/u2 and the reduced density ρ/ρ2 at
any point in the flow field behind the shock (see Figs. 1 and 2);

(iii) to increase the reduced pressure p/p2 and the reduced azimuthal magne-
tic field h/h2 at any point in the flow field behind the shock, in general;
in the magnetic case, whereas to decrease the reduced pressure p/p2 at
any point in the flow field behind the shock in the non-magnetic case
(see Figs. 3 and 4);

(iv) to decrease the distance of the inner expanding surface from the shock
front (see Table 1).

The effects of an increase in the value of M−2A (i.e. the effects of an increase
in the strength of ambient magnetic field) are:

(i) to increase the value of β, i.e. to decrease the shock strength (see Ta-
ble 1);

(ii) to decrease the reduced velocity u/u2 and the reduced magnetic field
h/h2, and to increase the reduced density ρ/ρ2 and the reduced pressure
p/p2 at any point in the flow field behind the shock (see Figs. 1 to 4);

(iii) to increase the distance of the inner expanding surface from the shock
front (see Table 1).
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Automorficzny przepływ gazu niedoskonałego o wzrastającej energii za

magnetogazodynamiczną falą uderzeniową w obecności pola

grawitacyjnego

Streszczenie

W pracy przedstawiono automorficzne rozwiązanie dla problemu propagacji sfe-
rycznej fali uderzeniowej w gazie niedoskonałym w obecności azymutalnego pola ma-
gnetycznego. W rozważaniach przyjęto, że ośrodek podlega wpływowi pola grawitacyj-
nego pochodzącego od jądra (model Roche’a) Nieustalony model Roche’a opisuje gaz
o sferycznej symetrii dookoła jądra o dużej masie m. Założono, że efekt grawitacyjny
od samego ośrodka jest pomijalny w porównaniu do przyciągania od ciężkiego jądra.
Przyjęto również, że całkowita energia pola przepływu gazu za falą uderzeniową rośnie
z upływem czasu. Otrzymano automorficzne rozwiązania dla tego zagadnienia oraz
zbadano wpływ zmienności parametru określającego niedoskonałość gazu b, zmienno-
ści liczby Macha M oraz Alfven-Macha MA na pole przepływu za falą uderzeniową.
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