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The aim of the article is to discuss the issue of strength of the circumferential backlash
compensating beam in a high-efficiency gear pump. Three geometric versions of the com-
pensating beam structure differing in the wrapping angle are analyzed. The mechanical
model is solved assuming the curved beam model supported at the contact points between
the beam and the gear teeth. The assumed mechanical structure is statically indeterminate.
In order to determine the reactions in the supports and in the beam fixing, the Menabrei
and Castigliano theorems are used. Based on analytical calculation results, the cause of
compensation structure damage during experimental tests of prototype units is identified
and the most favorable variant of beam structure, from the mechanical strength point of
view, is determined.
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1. Introduction

The efficiency of a gear pump is to a large extent determined by clearances between the gears
and the elements limiting the displacement chamber volume of the pump (Chrobot et al., 1997;
Judin, 1958; Kollek, 1996, 2004; Osiński et al., 2013; Osiński and Kollek, 2007; Ragunathan
and Manoharan, 2012; Vacca and Guidetti, 2011; Wang et al., 2011). Two types of clearance,
i.e. radial clearance and frontal clearance, are distinguished. The former is also referred to
as circumferential clearance (backlash). The circumferential gap is formed by the surface of
casing concavities and that of the cylinder with the radius of the addendum circle of toothed
displacement elements. The gap is not constant along the whole circumference the gears often
move within the bearing slackness limits towards the suction space. In conventional pumps
without radial backlash compensation, the circumferential gap assumes the shape of a crescent
widening towards the delivery side. In such a pump design, the gap ranges from 0.01 to 0.3mm.
The circumferential clearance is a gap with one fixed wall and one movable wall moving in the
direction opposite to that of the pressure drop. This is an advantageous configuration as a result
of the rotational motion of the gear the liquid is lifted from the suction space to the delivery
space, thereby reducing the leakages due to the pressure difference between the gap ends (Singal
et al., 2009; Stryczek, 1995).

Frontal clearances have the shape of a ring limited by the diameter of the dedendum circle
and that of the gear shaft. Most of the leakages are used to cool and lubricate the bearings.
After they pass through the bearings, the leakages are directed via special grooves to the suction
chamber, but some of the volume losses pass directly through the gap into the suction space. The
frontal clearance values are by one order of magnitude lower than the radial clearance values. In
typical pumps, frontal clearances are in a range of 0.01-0.05 mm. The recommended clearance
also depends on the pump size. Lower values are recommended for units with a lower specific
output.
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Nowadays backlash compensation is used to improve the efficiency of gear pumps (Kollek
and Radziwanowska, 2015). In addition, this treatment contributes to better running in of the
interacting parts and maintenance of a constant gap despite the wear of the parts. In the curren-
tly produced pumps, mainly the axial backlash compensation is carried out. However, if higher
efficiency is required, it is necessary to compensate also the circumferential gap. The latter can
be compensated in two ways. One way consists in compensating backlash locally along a short
distance. It is further referred to as radial backlash compensation (Fig. 1a). Another method,
developed by the authors, consists in ensuring a constant gap along the whole circumference
(Osiński, 2012a,b; Wiczkowski, 2012).The method is called circumferential backlash compensa-
tion (Fig. 1c).

Fig. 1. Schematic showing the way of sealing gears along circumference plus graph of circumferential
pressure measured in the gear root: (a) pump with radial backlash compensation, (b) pump with axial
backlash compensation, (c) pump with circumferential backlash compensation (Osiński et al., 2012a)

The influence of the applied compensation on the overall efficiency of the pump is shown in
Fig. 2. The comparative diagram is based on specifications found in the manufacturer catalogues
of Bosch, Casappa, Marzocchi, Hamworthy, Hidroirma, Orsta, Parker, PZL-Hydral, Rexroth,
WPH, VPS and on the authors’ own studies of prototype pumps with circumferential backlash
compensation (Osiński, 2013).

It appears from the diagram that the application of different methods of backlash compen-
sation considerably increases the efficiency and working pressure of gear pumps. The currently
produced pumps reach working pressures as high as 32MPa. The innovative circumferential
backlash compensation method enables one to increase the pressures by nearly 20%, i.e. to the
level of 40MPa. The increasing of the internal tightness also makes it possible to increase the
total efficiency by about 5% on average.

2. Circumferential compensation structure

There are three versions of the displacement pump structure with a compensating pressure
chamber (Osiński, 2013; Osiński et al., 2012), differing in the design of the compensating chamber
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Fig. 2. Comparison of total efficiency ηc of gear pumps with regard to forcing pressure pt and backlash
compensation (based on catalogues of major manufacturers + own research): 1 – without compensation,
2 – with axial compensation, 3 – with axial and radial compensation, 4 – with axial and circumferential

compensation

(Fig. 3). In this pump, two interacting gears perform rotations in the directions marked in Fig. 3,
forcing the working liquid (oil) from the suction chamber on the left side of the pump (Fig. 3)
through the inter tooth spaces into the delivery chamber on the right side of the pump.

Fig. 3. Schematic of the displacement pump with different compensating beam designs: (a) beam with a
wrapping angle ϕ0 = 102

◦, (b) ϕ0 = 132
◦, (c) ϕ0 = 169

◦

Experimental studies of prototypes of such pumps have shown that during operation under
heavy loads (at pressures p above 20MPa) the beam closing the compensating pressure chamber
is susceptible to failure in the place of its fixing because of too small beam thickness. The aim
of the calculations presented in this paper is to determine (from the strength condition) the
minimum thickness h in the fixed cross section of the beam ensuring that the stresses in this
cross section are carried.

Three geometric versions of the compensating beam structure have been designed. The most
optimal version will be selected on the basis of theoretical calculations and experiments. The
versions differ in the beam length, i.e. its wrapping angle, and so in the number of teeth inter-
acting with the beam. For the statical analysis, a fixed gear position in which one of the teeth
is in contact with the beam fixing cross section is assumed in each of the cases. The versions
include:

a) a beam with a wrapping angle ϕ0 = 102
◦, interacting with three teeth of the gear, one of

which is in contact with the beam fixing cross section (Fig. 3a);

b) a beam with a wrapping angle ϕ0 = 132
◦, interacting with four teeth of the gear, one of

which is in contact with the beam fixing cross section (Fig. 3b);

c) a beam with a wrapping angle ϕ0 = 169
◦, interacting with five teeth of the gear, one of

which is in contact with the beam fixing cross section (Fig. 3c).
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3. Static calculations for the pressure chamber beam

3.1. Beam with a wrapping angle ϕ0 = 102
◦

3.1.1. Beam geometry and loading diagram

During the operation of the pump, the compensating chamber beam is loaded from the out-
side with compensating pressure p2 constant along the whole length of the beam, and from the
inside with working pressure p1 (Fig. 4a). The pressure p1 decreases in the successive intertooth
spaces from the initial value p1p = p2 at the inlet to the compensating chamber up to end value
p1k = 0.5p2 in the tooth space at the beam fixing. Thus the pressure difference ∆p = p2 − p1k
constitutes a linearly variable continuous load q(ϕ) for the beam, whose initial value is
q(ϕ = 0) = 0 and its end value is q(ϕ = 2ϕ1 + α) = q0 = ∆pb, where b is the beam width
(Fig. 4b). Then the beam load can be reduced to a flat system.

Fig. 4. (a) Static diagram of the beam with the wrapping angle of 102◦, loaded with working
pressure p1 and compensating pressure p2, (b) diagram after introduction of continuous load replacing

the action of pressures p1 and p2

As a result of the difference between the pressure p2 and p1, the beam comes into contact with
the pump gear teeth, constituting movable supports of the beam, in points A and B (Fig. 2b).
Respective reactions RA and RB and friction forces TA and TB , whose sense is consistent with
the direction of the rotational motion of the pump gear, occur in the supports. Two reactions:
RCx and RCy and fixing moment MC occur in the beam fixing place (point C). The directions
of reactions RCx and RCy correspond to the adopted flat reference system (xy) whose origin is
in the centre of gravity of the fixed cross section and which is connected with the normal and
tangent direction of this cross section (Fig. 4b).

The angles ϕ1 (marked in Fig. 4) between the central surfaces of the teeth amount to
ϕ1 = 360

◦/10 = 36◦ (the pump gears have 10 teeth) while the complementary angle between
point A and the beginning of the beam amounts to α = 30◦. The beam width (in the direction
perpendicular to the load surface) is constant and amounts to b = 26.3mm.

3.1.2. Solutions for beam static load system

For the assumed beam loading diagram (Fig. 4b), the static equilibrium equations have the
form

∑

Px = RCx −Qx +RBx +RAx + TC + TBx + TAx = 0
∑

Py = RCy −Qy +RBy +RAy − TBy − TAy = 0
∑

MC =MC +RBr sinϕ1 +RAr sin 2ϕ1 − TB(r − r cosϕ1)− TA(r − r cos 2ϕ1)

−Qr sin(ϕc/3) = 0

(3.1)



Strength calculations of an element compensating circumferential backlash... 255

The equations include the reaction force and friction force components amounting to:
RAx = RA sin 2ϕ1, RAy = RA cos 2ϕ1, RBx = RB sinϕ, RBy = RB cosϕ1, TAx = TA cos 2ϕ1,
TAy = TA sin 2ϕ1, TBx = TB cosϕ1, TBy = TB sinϕ1. Moreover, the action of continuous lo-
ad q(ϕ) has been replaced with the concentrated force Q applied to the point corresponding to
angle ϕ = 2/3ϕ0, where: ϕ0 = (2ϕ1 + α) is the maximum angle ϕ value (for the whole beam
span). Then the value of force Q can be calculated from the formula

Q =
1

2
q0rϕ0 (3.2)

and the force components for the axes x and y amount to Qx = Q sin(ϕ0/3) and
Qy = Q cos(ϕ0/3).

It appears from Eqs. (3.1) that the analyzed static system is a double hyperstatic system. The
Menabrei energy method, according to which the derivative of the system elastic energy relative
to the hyperstatic reaction amounts to zero (Zakrzewski and Zawadzki, 1983; Niezgodziński and
Niezgodziński, 1996; Dyląg et al., 1999), will be used to determine reactions in the supports and
in the beam fixing.

The bending moment equations and their derivatives over hyperstatic reactions RA and RB
depending on the angle ϕ for particular beam intervals are as follows:

— interval I (0 < ϕ ¬ α)

M Ig (ϕ) = −
qr2ϕ2

2ϕ0
sin
ϕ

3

∂M Ig
∂RA

= 0
∂M Ig
∂RB

= 0 (3.3)

— interval II (α < ϕ ¬ α2 = α+ ϕ1)

M IIg (ϕ) = −
qr2ϕ2

2ϕ0
sin
ϕ

3
+RAr sin(ϕ− α)− TA[r − r cos(ϕ− α)]

∂M IIg
∂RA

= r sin(ϕ− α)
∂M Ig
∂RB

= 0

(3.4)

— interval III (α2 < ϕ ¬ ϕ0)

M IIIg (ϕ) = −
qr2ϕ2

2ϕ0
sin
ϕ

3
+RAr sin(ϕ− α)− TA[r − r cos(ϕ− α)]

+RBr sin(ϕ− α2)− TB [r − r cos(ϕ− α2)]

∂M IIIg
∂RA

= r sin(ϕ− α)
∂M IIg
∂RB

= r sin(ϕ− α2)

(3.5)

In the above equations, the expression for the bending moment produced by continuous
load q(ϕ) = q0ϕ/ϕ0 takes into account equation (3.2): Q(ϕ) = 0.5rϕq(ϕ) = q0rϕ

2/(2ϕ0), as-
suming that for any cross section defined by angle ϕ the substitute force Q(ϕ) is applied to
the point situated relative to this cross section at angle ϕ/3: MQ(ϕ) = −Q(ϕ)r sin(ϕ/3) =
[−qr2ϕ2/(2ϕ0)] sin(ϕ/3). Moreover, in order to simplify the notation, the angle α2 = α+ ϕ1 is
introduced for determination of the range of variation of angle ϕ in intervals II and III.

According to the Menabrei theorem, hyperstatic reactions RA and RB can be calculated
from the following system of equations
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∂V

∂RA
=

[ α2
∫

α

(

−
qCr
2ϕ2

2ϕ0
sin
ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)

)

[r sin(ϕ − α)] dϕ

]

+
1

EI

[ ϕC
∫

α2

(

−
qCr
2ϕ2

2ϕ0
sin
ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)]

+RBr sin(ϕ− α2)− TBr[1− cos(ϕ− α2)]
)

[r sin(ϕ− α)] dϕ

]

= 0

∂V

∂RB
=
1

EI

[ ϕ0
∫

α2

(

−
qCr
2ϕ2

2ϕ0
sin
ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)]

+RBr sin(ϕ− α2)− TBr[1− cos(ϕ− α2)]
)

[r sin(ϕ− α2)] dϕ

]

= 0

(3.6)

Having solved the system of equations (3.6), one can calculate reactions RA and RB

RA = 0.2316∆pbr + 0.1915TA − 0.0283TB = 2376.7N

RB = 0.3870∆pbr + 0.8494TA + 0.2997TB = 3978.1N
(3.7)

Then using static equilibrium equations (3.1)one can calculate the reactions in the beam
fixing

RCx = QCx −RBx −RAx − TC − TBx − TAx = 490.4N

RCy = QCy −RBy −RAy + TBy + TAy = 3628.1N

MC = Qr sinϕ03−RBr sinϕ1 −RAr sin 2ϕ1 + TB(r − r cosϕ1)

+ TA(r − r cos 2ϕ1) = 13.35N

(3.8)

3.2. Beam with the wrapping angle ϕ0 = 132
◦

3.2.1. Beam geometry and loading diagram

The loading diagram for the beam with the wrapping angle ϕ0 = 132
◦ is shown in Fig. 5a,

while its modified version (having pressures replaced with the continuous load) is shown in
Fig. 3b. In the latter version, the beam interacts with four teeth of the gear and the working
pressure p1 decreases from the initial value p1p = p2 for ϕ = 0 up to end value p1k = 0.33p2 for
ϕ = ϕ0. The continuous load acting on the beam, arising due to the pressure difference, and the
resultant substitute force Q is defined the same as for the beam with the wrapping angle 102◦.
Besides the continuous load also the friction forces TA, TB , TC , TD, reactions in the supports (at
the contact with the pump teeth) RA, RB, RC and the reactions in the fixing RDx, RDy, MD
(Fig. 5b) act on the beam.

3.2.2. Solution for beam load static system

For the loading diagram shown in Fig. 5b, the static equilibrium equations have the form

∑

Px = RDx +RCx +RBx +RAx + TD + TCx + TBx − TAx −Qx = 0
∑

Py = RDy +RCy +RBy −RAy − TCy − TBy − TAy −Qy = 0
∑

MD =MD +RCr sinϕ1 +RBr sin 2ϕ1 +RAr cos
ϕ1
2
− TC(r − r cosϕ1)

− TB(r − r cos 2ϕ1)− TA
(

r + r sin
ϕ1
2

)

−Qr sin
ϕ0
3
= 0

(3.9)
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Fig. 5. (a) Static diagram of the beam with the wrapping angle of 132◦, loaded with working
pressure p1 and compensating pressure p2, (b) diagram after introduction of continuous load replacing

the action of pressures p1 and p2

The equilibrium equations include the reaction and friction force components amoun-
ting to: RAx = RA cos(ϕ1/2), RAy = RA sin(ϕ1/2), RBx = RB sin 2ϕ1, RBy = RB cos 2ϕ1,
RCx = RC sinϕ1, RCy = RC cosϕ1, TAx = TA sin(ϕ1/2), TAy = TA cos(ϕ1/2), TBx = TB cos 2ϕ1,
TBy = TB sin 2ϕ1, TCx = TC cosϕ1, TCy = TC sinϕ1, Qx = Q sin(ϕ0/3), Qy = Q cos(ϕ0/3).

Since the considered beam is a triple hyperstatic system, in order to calculate the reactions
occurring in the supports and in the beam fixing one should formulate three equations based
on the Menabrei method. Assuming RA, RB and RC as hyperstatic reactions occurring in the
supports, the equations become

∂V

∂RA
=
1

EI

[ α2
∫

α

(

−
q0r
2ϕ2

2ϕ0
sin
ϕ

3
+RAr sin(ϕ−α) − TAr[1− cos(ϕ−α)]

)

[r sin(ϕ−α)] dϕ

]

+
1

EI

[ α3
∫

α2

(

−
q0r
2ϕ2

2ϕ0
sin
ϕ

3
+RAr sin(ϕ−α) − TAr[1− cos(ϕ−α)]

+RBr sin(ϕ−α2)− TBr[1− cos(ϕ−α2)]
)

[r sin(ϕ−α)] dϕ

]

+
1

EI

[ ϕ0
∫

α3

(

−
q0r
2ϕ2

2ϕC
sin
ϕ

3
+RAr sin(ϕ−α) − TAr[1− cos(ϕ−α)] +RBr sin(ϕ−α2)

−TBr[1− cos(ϕ−α2)] +RCr sin(ϕ−α3)− TCr[1− cos(ϕ−α3)]
)

[r sin(ϕ−α)] dϕ

]

= 0

∂V

∂RB
=
1

EI

[ α3
∫

α2

(

−
q0r
2ϕ2

2ϕ0
sin
ϕ

3
+RAr sin(ϕ−α) − TAr[1− cos(ϕ−α)] (3.10)

+RBr sin(ϕ−α2)− TBr[1− cos(ϕ−α2)]
)

[r sin(ϕ−α2)] dϕ

]

+
1

EI

[ ϕ0
∫

α3

(

−
q0r
2ϕ2

2ϕC
sin
ϕ

3
+RAr sin(ϕ−α) − TAr[1− cos(ϕ−α)] +RBr sin(ϕ−α2)

−TBr[1− cos(ϕ−α2)] +RCr sin(ϕ−α3)− TCr[1− cos(ϕ−α3)]
)

[r sin(ϕ−α2)] dϕ

]

= 0
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∂V

∂RC
=
1

EI

[ ϕ0
∫

α3

(

−
q0r
2ϕ2

2ϕ0
sin
ϕ

3
+RAr sin(ϕ−α) − TAr[1− cos(ϕ−α)] +RBr sin(ϕ−α2)

− TBr[1− cos(ϕ−α2)] +RCr sin(ϕ−α3)− TCr[1− cos(ϕ−α3)]
)

[r sin(ϕ−α3)] dϕ

]

= 0

Having solved equations (3.10), one can calculate reactions RA, RB and RC

RA = 0.1103∆pbr + 0.2522TA − 0.0259TB + 0.0067TC = 1510.2N

RB = 0.3164∆pbr + 0.7156TA − 0.3009TB − 0.0369TC = 4334.5N

RC = 0.5946∆pbr + 0.6019TA − 0.6787TB + 0.3009TC = 8144.1N

(3.11)

Finally, using static equilibrium equations (3.9), one gets the values of reactions in the beam
fixing

RDx = Qx −RCx −RBx −RAx − TD − TCx − TBx + TAx = 583.8N

RDy = Qy −RCy −RBy +RAy + TCy + TBy + TAy = 3889.9N

MD = Qr sin
ϕ0
3
−RCr sinϕ1 −RBr sin 2ϕ1 −RAr cos

ϕ1
2
+ TC(r − r cosϕ1)

+ TB(r − r cos 2ϕ1) + TA
(

r + r sin
ϕ1
2

)

= 15.98N

(3.12)

3.3. Beam with the wrapping angle ϕ0 = 169
◦

3.3.1. Beam geometry and loading diagram

Figures 6a and 6b show the loading diagram and the diagram which takes into account the
replacement of pressures p1 and p2 (acting on both sides of the beam) with continuous load q
for the pump with the compensating chamber with the wrapping angle ϕ0 = 169

◦.

Fig. 6. (a) Static diagram of the beam with the wrapping angle ϕ0 = 169
◦, loaded with working

pressure p1 and compensating pressure p2, (b) diagram after introduction of continuous load replacing
the action of pressures p1 and p2

In this case, the chamber beam is in contact with five teeth of the gear and the wor-
king pressure p1 decreases from the initial value p1p = p2 for ϕ = 0 down to the end value
p1k = 0.166p2 for ϕ = ϕ0. Besides the continuous load, as shown in Fig. 4b, the friction forces
TA, TB , TC , TD, TE , reaction forces in the supports RA, RB , RC , RD and the forces in the beam
fixing REx, REy, ME act on the beam.
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3.3.2. Solutions for the beam subject to load static scheme

The static equilibrium equations for the considered beam assume the form

∑

Px = REx +RDx +RCx +RBx +RAx + TE + TDx + TCx − TBx − TAx −Qx = 0
∑

Py = REy +RDy +RCy −RBy −RAy − TDy − TCy − TBy − TAy −Qy = 0

∑

ME =ME +RDr sinϕ1 +RCr sin 2ϕ1 +RBr cos
ϕ1
2
+RAr cos

3ϕ1
2

− TD(r − r cosϕ1)− TC(r − r cos 2ϕ1)− TB
(

r + r sin
ϕ1
2

)

− TA
(

r + r sin
3ϕ1
2

)

−Qr sin
ϕc
3
= 0

(3.13)

The reaction and friction force components in equations (3.13) are described by the formu-
las: RAx = RA cos(3ϕ1/2), RAy = RA sin(3ϕ1/2), RBx = RB cos(ϕ1/2), RBy = RB sin(ϕ1/2),
RCx = RC sin 2ϕ1,RCy = RC cos 2ϕ1, RDx = RD sinϕ1,RDy = RD cosϕ1, TAx = TA sin(3ϕ1/2),
TAy = TAcos(3ϕ1/2), TBx = TB sin(ϕ1/2), TBy = TB cos(ϕ1/2), TCx = TC cos 2ϕ1,
TCy = TC sin 2ϕ1, TDx = TD cosϕ1, TDy = TD sinϕ1, Qx = Q sin(ϕ0/3), Qy = Q cos(ϕ0/3).

In order to determine the four hyperstatic reactions (assumed here as the reactions in the
supports) one should formulate four Menabrei equations

∂V

∂RA
=
1

EI

[ α2
∫

α

(

−
q0r
2ϕ2

2ϕ0
sin
ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)]

)

[r sin(ϕ− α)] dϕ

]

+
1

EI

[ α3
∫

α2

−
q0r
2ϕ2

2ϕ0
sin
ϕ

3
+RAr sin(ϕ− α) − TAr[1− cos(ϕ− α)]

+RBr sin(ϕ− α2)− TBr[1− cos(ϕ− α2)]
)

[r sin(ϕ− α)] dϕ

]

+
1

EI

[ α4
∫

α3

(

−
q0r
2ϕ2

2ϕ0
sin
ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)] +RBr sin(ϕ− α2)

− TBr[1− cos(ϕ− α2)] +RCr sin(ϕ− α3)− TCr[1− cos(ϕ− α3)]
)

[r sin(ϕ− α)] dϕ

]

+
1

EI

[ ϕ0
∫

α4

(

−
q0r
2ϕ2

2ϕ0
sin
ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)]

+RBr sin(ϕ− α2)− TBr[1− cos(ϕ− α2)] +RCr sin(ϕ− α3)− TCr[1− cos(ϕ− α3)]

+RDr sin(ϕ − α4)− TDr[1− cos(ϕ− α4)]
)

[r sin(ϕ− α)] dϕ

]

= 0

∂V

∂RB
=
1

EI

[ α3
∫

α2

(

−
q0r
2ϕ2

2ϕ0
sin
ϕ

3
+RAr sin(ϕ − α)− TAr[1− cos(ϕ− α)]

+RBr sin(ϕ− α2)− TBr[1− cos(ϕ− α2)]
)

[r sin(ϕ− α2)] dϕ

]

+
1

EI

[ α4
∫

α3

(

−
q0r
2ϕ2

2ϕ0
sin
ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)] +RBr sin(ϕ− α2)
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−TBr[1− cos(ϕ− α2)] +RCr sin(ϕ− α3)− TCr[1− cos(ϕ− α3)]
)

[r sin(ϕ− α2)] dϕ

]

+
1

EI

[ ϕ0
∫

α4

(

−
q0r
2ϕ2

2ϕ0
sin
ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)] (3.14)

+RBr sin(ϕ− α2)− TBr[1− cos(ϕ− α2)] +RCr sin(ϕ− α3)− TCr[1− cos(ϕ− α3)]

+RDr sin(ϕ− α4)− TCr[1− cos(ϕ− α4)]
)

[r sin(ϕ− α2)] dϕ

]

= 0

∂V

∂RC
=
1

EI

[ α4
∫

α3

(

−
q0r
2ϕ2

2ϕ0
sin
ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)]

+RBr sin(ϕ− α2)− TBr[1− cos(ϕ− α2)] +RCr sin(ϕ− α3)

−TCr[1− cos(ϕ− α3)]
)

[r sin(ϕ− α3)] dϕ

]

+
1

EI

[ ϕ0
∫

α4

(

−
q0r
2ϕ2

2ϕ0
sin
ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)]

+RBr sin(ϕ− α2)− TBr[1− cos(ϕ− α2)] +RCr sin(ϕ− α3)− TCr[1− cos(ϕ− α3)]

+RDr sin(ϕ− α4)− TDr[1− cos(ϕ− α4)]
)

[r sin(ϕ− α3)] dϕ

]

= 0

∂V

∂RD
=
1

EI

[ ϕ0
∫

α4

(

−
q0r
2ϕ2

2ϕ0
sin
ϕ

3
+RAr sin(ϕ− α)− TAr[1− cos(ϕ− α)]

+RBr sin(ϕ− α2)− TBr[1− cos(ϕ− α2)] +RCr sin(ϕ− α3)− TCr[1− cos(ϕ− α3)]

+RDr sin(ϕ− α4)− TCDr[1− cos(ϕ− α4)]
)

[r sin(ϕ− α4)] dϕ

]

= 0

By solving the Menabrei equations one can determine reactions RA, RB , RC and RD

RA = 0.0908∆pbr − 0.4034TA − 0.0255TB + 0.0073TC − 0.0019TD = 1548.2N

RB = 0.2542∆pbr + 0.7128TA + 0.3001TB − 0.0400TC + 0.0104TD = 4352.4N

RC = 0.4593∆pbr + 0.6065TA + 0.6777TB + 0.3127TC − 0.0400TD = 7863.2N

RD = 0.7524∆pbr + 0.6340TA + 0.6126TB + 0.6750TC + 0.3027TD = 12880.2N

(3.15)

Finally, using static equilibrium equations (3.13), one can calculate reactions in the beam
fixing

REx = Qx −RDx −RCx −RBx −RAx − TE − TDx − TCx − TBx − TAx = 877.0N

REy = Qy −RDy −RCy +RBy +RAy + TDy + TCy + TBy + TAy = 3747.4N

ME = Qr sin
ϕ0
3
−RDr sinϕ1 −RCr sin 2ϕ1 −RBr cos

ϕ1
2
−RAr cos

3ϕ1
2

+ TD(r − r cosϕ1) + TC(r − r cos 2ϕ1) + TB
(

r + r sin
ϕ1
2

)

+ TA
(

r + r sin
3ϕ1
2

)

= 23.8Nm

(3.16)
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4. Calculations of the minimal beam thickness in a fixed cross section

The beam thickness h must satisfy the strength condition for the fixed beam cross section. This
cross section is loaded with reaction forces RC , RD or RE for the pump geometric conditions
at ϕ0 respectively 102

◦, 132◦, 169◦ and the bending moment MC , MD or ME, respectively. The
loads generate a complex state of stress in the fixed cross section. The shearing stress (produced
by the tangential component of the reaction denoted generally as Ry) reaches the highest value
in central fibres of the cross section while the bending stress reaches the highest value in extreme
fibres.
The strength condition concerning the maximum shear stress has the form

τmax =
3

2

|Ry|

bh
¬ kt (4.1)

thus the minimal beam thickness must satisfy the criterion

hmin(τ) =
3

2

|Ry|

bkt
(4.2)

The strength condition for the allowable normal stress must take into account the simulta-
neous action of the tensile (or compressive) stress produced by the reaction component Rx and
the bending stress generated by the fixing moment Mu in the extreme fibres

σ = |σr|+ |σg| ¬ kr (4.3)

By substituting the normal stress values (calculated as for straight bars when beam curvature
radius r > 6h, the error due to the shift of the neutral beam bending axis does not exceed 0.5%)
σr = Rx/(bh), σg = 6Mu/(bh

2) into equation (4.3), one gets the following equation for the
minimal beam thickness hmin

bkrh
2
min − |Rx|hmin − 6|Mu| = 0 (4.4)

The solution of this equation yields the second value of the minimal beam thickness

hmin(τ) =
|Rx|+

√

R2x + 24Mubkr
2bkr

(4.5)

One should adopt the second value of the two values obtained from formulas (4.2) and (4.5)
as the minimal beam width h.
Table 1 shows exemplary minimal beam thickness values calculated for three geometric ver-

sions of the pump, assuming the experimental friction forces generated by teeth of the gears
Ti = 7.96N, safety factor n = 1.4 and permissible stresses: kr = 350MPa and kt = 400MPa.

Table 1. Exemplary load values and the minimal thickness hmin for the beam with the wrapping
angle ϕ0 = 102

◦

Beam wrapping
r b p1k p2 hminangle

ϕ0 = 102
◦ 26mm 26.3mm 15MPa 30MPa 2.98mm

ϕ0 = 132
◦ 26mm 26.3mm 10MPa 30MPa 3.26mm

ϕ0 = 169
◦ 26mm 26.3mm 5MPa 30MPa 3.99mm

The results of the static strength calculations show that from among the three versions of
the compensating chamber the most advantageous one is the version with the beam with thw
wrapping angle ϕ0 = 102

◦ for which the minimal beam thickness amounts to 2.98mm. In the
case of the other versions, the beam thickness needs to be increased:
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• for the beam with the wrapping angle ϕ0 = 132
◦, the minimal thickness amounts to

3.26mm (an increase by 9.4%),

• for the beam with the wrapping angle ϕ0 = 169
◦, the minimal thickness amounts to

3.99mm (an increase by 31%).

Experimental studies are planned to be carried out on prototypes of the pump in order to
verify the results of the calculations.
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