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In an unbounded, linearly-elastic, compressible and isotropic medium
there is a spherical cavity. Its wall is loaded by the time-dependent pres-
sure, which generates in the medium a spherical stress wave expanding
from the cavity. The influence of the load character on the wave para-
meters was studied and the dynamic coefficient of load was regarded as
the main compared parameter. Because of the spherical divergence of
the wave, its parameters decrease in the inverse proportion to the square
and the cube of the distance from the cavity center, so their maximum
absolute values appear at the cavity wall and, therefore, the analysis
was conducted there. For the pressure linearly increasing to the con-
stant value two practical limiting values of increase time were found,
which determinate three ranges of the load character. In the first, for
short times, the load can be considered as surge for which the dynamic
coefficient is the highest. In the third, for long times, the load can be
considered as quasi-static, neglecting its dynamic effects. However, in
the second range, the load has a transitional character and the parame-
ters of the wave generated by it should be determined with the use of
precise formulae presented in the paper. The maximum time of acting of
the constant pressure pulse, for which the wave parameters do not exce-
ed their static values yet, was also determined. However, a significant
decrease of the cavity radius was observed as the effect of unloading.

Key words: expanding spherical stress wave, isotropic elastic medium,
dynamic coefficient of load
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1. Introduction

In the scientific-technical literature a great deal of attention was devoted to
the problems of propagation of plastic-elastic disturbances generated by forces
applied to the wall of a spherical cavity. An extensive review of this kind of
studies relative to the ductile metal media was presented by Hopkins (1960).
The problems that were investigated and presented in literature (Chadwick,
1962; Kolsky, 1953; Cristescu, 1967; Achenbach, 1975; Kaliski et al., 1992b;
Cole, 1948; Graff, 1975; Broberg, 1956; Baum et al., 1975; Korobieiinikow,
1985) can be generally classified under two headings: problems of waves pro-
pagation, in which the material is subjected only to infinitesimal straining,
and problems of one-dimensional explosions, in which the pressure generated
inside the cavity is sufficiently strong in order to bring about large strains in
the surrounding material.

Within the scope of the first problem, the solution to the problem of dyna-
mic expansion of a spherical stress wave in the linearly-elastic isotropic medium
was presented by Włodarczyk and Zielenkiewicz (2009a,b) in the closed analy-
tical form. The wave was generated by the constant pressure suddenly created
inside a spherical cavity. The extensive qualitative and quantitative analysis
of variations of mechanical parameters of the medium surrounding the cavity
was conducted in those papers. Among other things, the resonant influence of
Poisson’s ratio on the wave parameters was discovered.

The quantitative measure of the dynamic parameters of propagating di-
sturbances is the dynamic coefficient of load generating the stress wave. As
is known (Kaliski et al., 1992a) its maximum value depends on the charac-
ter of load variations in time applied to given construction. In the technical
literature, this parameter is called the dynamic coefficient for short. It has
the key significance in the design of constructions subjected to surge-loads.
Taking this fact into account, an attempt of extensive qualitative and quan-
titative analysis of this parameter for the spherical stress wave expanding in
the linearly-elastic isotropic medium was made in this paper.

2. Formulation of the problem

Let us consider the propagation of an elastic stress wave in an unbounded
isotropic medium within the scope of linear elasticity theory (Nowacki, 1970).
The wave is generated by the pressure p(t) created in the spherical cavity of
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the initial radius a. Taking into account the spherical symmetry, the solution
to the problem will depend only on two independent variables, the Lagrangian
coordinate r and time t.
The states of stress and strain in the medium surrounding the cavity are

represented by the following components: σr – radial stress, σϕ = σθ – cir-
cumferential stresses, εr – radial strain and εϕ = εθ – circumferential strains.
The rest of the components of the stress and the strain tensors equal to zero
in the considered coordinate system.
According to the linear elasticity theory and generalized Hooke’s law (No-

wacki, 1970), we have

εr =
∂u

∂r
εϕ = εθ =

u

r
(2.1)

and

σr =
E

(1 + ν)(1− 2ν)
[

(1− ν)∂u
∂r
+ 2ν
u

r

]

(2.2)

σϕ =
E

(1 + ν)(1− 2ν)
[

ν
∂u

∂r
+
u

r

]

where u is the radial displacement, E and ν denote Young’s modulus and
Poisson’s ratio, respectively.
For an infinitesimal element of the linearly-elastic medium, the equation

of motion can be written in the form

∂σr
∂r
+ 2
σr − σϕ
r

= ρ0
∂2u

∂t2
(2.3)

where ρ0 is the initial density of the medium. Eliminating the stresses σr and
σϕ from Eq. (2.3) by means of expressions (2.2), we obtain

∂2u

∂r2
+
2

r

∂u

∂r
− 2u
r2
=
1

c2e

∂2u

∂t2
(2.4)

where

c2e = n
2c20 n2 =

1− ν
(1 + ν)(1− 2ν) c20 =

E

ρ0
(2.5)

The quantity ce denotes the velocity of spherical stress wave propagation in
the linearly elastic medium.
The boundary conditions for Eq. (2.4) are

u(r, t) = 0 for r = a+ cet (2.6)

and
σr(r, t) = −p(t) p(t)  0 for r = a

σr(r, t) ≡ 0 for r →∞
(2.7)
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3. Solution to the problem

3.1. General solution

The general solution to Eq. (2.4) fulfilling boundary conditions (2.6) and
(2.7)2 has the form (Achenbach, 1975; Włodarczyk and Zielenkiewicz, 2009a)

u(r, t) =
ϕ′(r − a− cet)

r
− ϕ(r − a− cet)

r2
ϕ′(0) = ϕ(0) = 0 (3.1)

where

r − a = cet (3.2)

is the trajectory of stress wave front propagating from the face of cavity into
the medium (Fig. 1). The symbol ϕ′ denotes the derivative of function ϕ with
respect to its argument.

Fig. 1. Scheme of the studied initial-boundary problem

The variables r and t occuring in solution (3.1)1 are contained within the
intervals

a ¬ r ¬ ∞ t  r − a
ce

(3.3)

Substituting expression (3.1)1 into boundary condition (2.7)1, we obta-
in the following differential equation, which has to be fulfilled by the func-
tion ϕ(x), namely

ϕ′′(x0)− 2hϕ′(x0) +
2h

a
ϕ(x0) = −

a

n2E
p
(

−x0
ce

)

(3.4)

where

h =
1− 2ν
1− ν

1

a
 0 x0 = −cet (3.5)
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The solution to this equation with homogeneous initial conditions (3.1)2 is
represented by the following expression

ϕ(x0) = −
a

n2ωE

x0
∫

0

p
(y − x0
ce

)

ehy sinωy dy (3.6)

where

ω =

√
1− 2ν
(1− ν)a

The function ϕ(x0) and its derivatives uniquely determine all parameters
of the expanding spherical stress wave, namely

u(r, t) =
ϕ′(r − a− cet)

r
− ϕ(r − a− cet)

r2

εr =
ϕ′′

r
− 2ϕ

′

r2
+ 2
ϕ

r3
εϕ =

ϕ′

r2
− ϕ
r3

σr = (2µ+ λ)
ϕ′′

r
− 4µϕ

′

r2
+ 4µ

ϕ

r3
(3.7)

σϕ = λ
ϕ′′

r
+ 2µ
ϕ′

r2
− 2µ ϕ
r3

σz = |σϕ − σr| =
∣

∣

∣− 2µϕ
′′

r
+ 6µ
ϕ′

r2
− 6µ ϕ
r3

∣

∣

∣

where

λ =
νE

(1 + ν)(1− 2ν) µ =
E

2(1 + ν)

are Lame’s constants, and symbols ϕ′ and ϕ′′ denote respectively the first
and second derivative of the function ϕ with respect to its argument. The
quantity σz is the stress intensity. In the technical literature, it is also called
the reduced stress.

3.2. Static solution

If the pressure p0 inside the spherical cavity is created statically (increasing
in theoretically infinite time), then the displacement of medium elements is
only a function of the spatial coordinate r and Eq. (2.4) can be reduced to
the form

d2us
dr2
+ 2
(1

r

dus
dr
− us
r2

)

= 0 (3.8)
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with the boundary conditions

σr(a) = (2µ+ λ)
dus
dr

∣

∣

∣

∣

r=a

+ 2λ
us
a
= −p0 p0 > 0

(3.9)
σr(∞) = 0

The general integral of Eq. (3.8) is

us(r) = Cr +
D

r2
(3.10)

From conditions (3.9) and solution (3.10) it follows that

C = 0 D =
1 + ν

2

p0
E
a3

Finally, the static parameters of the problem can be determined with the
following formulae

us(r) =
1 + ν

2

p0
E
a
(a

r

)2

εrs(r) = −(1 + ν)
p0
E

(a

r

)3

εϕs(r) =
1 + ν

2

p0
E

(a

r

)3

σrs(r) = −p0
(a

r

)3

σϕs(r) =
p0
2

(a

r

)3

σzs(r) = |σϕs(r)− σrs(r)| =
3

2
p0
(a

r

)3

(3.11)

3.3. Solution for constant pressure of limited duration

Consider the solution to the problem for constant pressure p0 of limited
duration tg suddenly applied to the wall of cavity (Fig. 2), i.e.

p(t) ≡
{

p0 for 0 ¬ t < tg
0 for t  tg

(3.12)

In the first range of time course (3.12)1, the solution overlaps the results
obtained for the constant pressure p0 suddenly applied to the wall of cavity
and acting in infinite time. This case was thoroughly described and analysed
in papers (Włodarczyk and Zielenkiewicz, 2009a,b). The following expressions
for the function ϕ and its derivatives were obtained
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Fig. 2. Scheme of the finite pulse of constant pressure

ϕd(x) = −
a

n2ω(h2 + ω2)

p0
E
[ω + ehx(h sinωx− ω cosωx)]

ϕ′d(x) = −
a

n2ω

p0
E
ehx sinωx (3.13)

ϕ′′d(x) = −
a

n2
p0
E
ehx
(h

ω
sinωx+ cosωx

)

where

ωx =

√
1− 2ν
1− ν

( r

a
− 1− nc0t

a

)

hx =
1− 2ν
1− ν

( r

a
− 1− nc0t

a

)

(3.14)

The parameters characterising this solution are identified by the subscript d,
which indicates the dynamic (percussive) action of pressure on the cavity wall.
The dynamics of the studied medium is described by linear differential

equation (2.4) with linear boundary conditions. Therefore, the solutions to
the studied problem in the second range of time (3.12)2 can be obtained by
superposition of the results mentioned above with the solution obtained for
identical pressure of opposite sign, applied suddenly to the cavity wall after
time tg. So to obtain the solution in the range t  tg, it is enough to know
results (3.13) and (3.14).

3.4. Solution for quasi-static pressure

The simplest mathematical model describing quasi-static pressure (re-
aching a constant value in finite time) is the function linearly increasing in
the period tg to the value p0 (Fig. 3)

p(t) =
t

tg
p0 for 0 ¬ t < tg

p(t) ≡ p0 for t  tg
(3.15)
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Fig. 3. Schematic variation of quasi-static pressure in time

In the first place, by means of expression (3.6), the forms of function ϕ
and its derivatives ϕ′ and ϕ′′ for the pressure increasing linearly with time
(3.15)1 were determined, namely

ϕl(x) =
1

n3ω(h2 + ω2)2
p0
E

a

c0tg
{2hω + ωx(h2 + ω2) +

+ehx[(h2 − ω2) sinωx− 2hω cosωx]}

ϕ′l(x) =
1

n3ω(h2 + ω2)

p0
E

a

c0tg
[ω + ehx(h sinωx− ω cosωx)] (3.16)

ϕ′′l (x) =
1

n3ω

p0
E

a

c0tg
ehx sinωx

The parameters obtained for such a load are distinguished by the subscript l.

Analogously to the case of constant pressure of limited duration, the so-
lution for the range of time (3.15)2 is obtained using superposition of results
(3.16) with the solution obtained for identical pressure variation with the op-
posite sign and applied to the cavity wall after time tg (Fig. 3).

3.5. Selected parameters of stress wave

In order to simplify the quantitative analysis of the stress wave parameters,
the following dimensionless quantities were introduced

ξ =
r

a
η =
c0t

a
ηg =

c0tg
a

U =
u

a
Us =

us
a

Sr =
σr
p0

(3.17)
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Srs =
σrs
p0

Sϕ =
σϕ
p0

Sϕs =
σϕs
p0

Sz =
σz
p0

Szs =
σzs
p0

P =
p0
E

According to (3.3) and (3.17), the dimensionless independent variables ξ
and η are contained within the following intervals

1 ¬ ξ ¬ ∞ η  ξ − 1
n

(3.18)

Using expressions (3.7) and (3.13), the parameters of the expanding stress
wave, generated by the constant pressure of limited duration in range (3.12)1,
can be determined with the use of dimensionless quantities in the form

U1p(ξ, η) = Ud(ξ, η) =
1 + ν

2

P

ξ2
{1− [A1(ξ) sinωx+ cosωx]ehx}

Sr1p(ξ, η) = Srd(ξ, η) = −
1

ξ3
{1 + [A2(ξ) sinωx+A3(ξ) cos ωx]ehx}

(3.19)

Sϕ1p(ξ, η) = Sϕd(ξ, η) =
1

2ξ3
{1− [A4(ξ) sinωx+A5(ξ) cos ωx]ehx}

Sz1p(ξ, η) = Szd(ξ, η) =
∣

∣

∣

3

2ξ3
{1 + [A6(ξ) sinωx+A7(ξ) cos ωx]ehx}

∣

∣

∣

where

ωx =

√
1− 2ν
1− ν (ξ − 1)−

1√
1− ν2

η hx =
1− 2ν
1− ν (ξ − 1)−

√

1− 2ν
1− ν2 η
(3.20)

and

A1(ξ) =
√
1− 2ν(2ξ − 1) A2(ξ) =

√
1− 2ν(ξ − 1)2

A3(ξ) = ξ
2 − 1

A4(ξ) =
√
1− 2ν

( 2ν

1− ν ξ
2 + 2ξ − 1

)

A5(ξ) =
2ν

1− ν ξ
2 + 1

A6(ξ) =
√
1− 2ν

(2(1 − 2ν)
3(1− ν) ξ

2 − 2ξ + 1
)

A7(ξ) =
2(1− 2ν)
3(1 − ν) ξ

2 − 1
(3.21)

They are marked by the subscript p. The dimensionless variables ξ and η are
contained within the intervals

1 ¬ ξ ¬ ∞ ξ − 1
n
¬ η < ξ − 1

n
+ ηg (3.22)
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From the superposition of results discussed above it follows that the pa-
rameters of the stress wave generated by the finite pulse of constant pressure
for t  tg can be expressed by the following functions

U2p(ξ, η) = Ud(ξ, η) − Ud(ξ, η − ηg) =

= −1 + ν
2

P

ξ2
{[A1(ξ) + (Sg −A1(ξ)Cg)Eg] sinωx+

+[1− (A1(ξ)Sg + Cg)Eg] cosωx}ehx

Sr2p(ξ, η) = Srd(ξ, η) − Srd(ξ, η − ηg) =

= − 1
ξ3
{[A2(ξ) + (A3(ξ)Sg −A2(ξ)Cg)Eg] sinωx+

+[A3(ξ)− (A2(ξ)Sg +A3(ξ)Cg)Eg] cosωx}ehx
(3.23)

Sϕ2p(ξ, η) = Sϕd(ξ, η) − Sϕd(ξ, η − ηg) =

= − 1
2ξ3
{[A4(ξ) + (A5(ξ)Sg −A4(ξ)Cg)Eg] sinωx+

+[A5(ξ)− (A4(ξ)Sg +A5(ξ)Cg)Eg] cosωx}ehx

Sz2p(ξ, η) = |Szd(ξ, η)− Szd(ξ, η − ηg)| =

=
∣

∣

∣

3

2ξ3
{[A6(ξ) + (A7(ξ)Sg −A6(ξ)Cg)Eg] sinωx+

+[A7(ξ)− (A6(ξ)Sg +A7(ξ)Cg)Eg] cosωx}ehx
∣

∣

∣

where

Eg = exp
(

√

1− 2ν
1− ν2 ηg

)

Sg = sin
ηg√
1− ν2

Cg = cos
ηg√
1− ν2
(3.24)

and

1 ¬ ξ ¬ ∞ η  ξ − 1
n
+ ηg (3.25)

In an analogous way, the parameters of the expanding stress wave genera-
ted in the linearly-elastic medium by the quasi-static pressure were determi-
ned. For time 0 ¬ t < tg (3.15)1, they can be expressed with the use of the
following functions

U1q(ξ, η)=Ul(ξ, η) =
1 + ν

2

P

ηgξ2

{

η+

√

1 + ν

1− ν [B1(ξ) sinωx−B2(ξ) cosωx]e
hx
}
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Sr1q(ξ, η) =Srl(ξ, η) = −
1

ηgξ3

{

η −
√

1 + ν

1− ν [B3(ξ) sinωx+B2(ξ) cos ωx]e
hx
}

(3.26)

Sϕ1q(ξ, η) =Sϕl(ξ, η) =
1

2ηgξ3

{

η +

√

1 + ν

1− ν [B4(ξ) sinωx−B2(ξ) cos ωx]e
hx
}

Sz1q(ξ, η) =Szl(ξ, η) =
∣

∣

∣

3

2ηgξ3

{

η −
√

1 + ν

1− ν [B5(ξ) sinωx+B2(ξ) cos ωx]e
hx
}∣

∣

∣

where

B1(ξ) = (1− 2ν)ξ + ν B2(ξ) =
√
1− 2ν(ξ − 1)

B3(ξ) = (ξ − 1)[(1 − ν)ξ + ν] B4(ξ) = 2νξ
2 + (1− 2ν)ξ + ν

B5(ξ) =
2
3
(1− 2ν)ξ2 − (1− 2ν)ξ − ν

(3.27)

They are marked by the subscript q. In turn, for time t  tg (3.15)2, we
have

U2q(ξ, η) = Ul(ξ, η)− Ul(ξ, η − ηg) =

=
1 + ν

2

P

ξ2

{

1 +
1

ηg

√

1 + ν

1− ν [(B1(ξ)− (B2(ξ)Sg +B1(ξ)Cg)Eg) sinωx+

−(B2(ξ) + (B1(ξ)Sg −B2(ξ)Cg)Eg) cos ωx]ehx
}

Sr2q(ξ, η) = Srl(ξ, η)− Srl(ξ, η − ηg) =

= − 1
ξ3

{

1− 1
ηg

√

1 + ν

1− ν [(B3(ξ) + (B2(ξ)Sg −B3(ξ)Cg)Eg) sinωx+

+(B2(ξ)− (B3(ξ)Sg +B2(ξ)Cg)Eg) cos ωx]ehx
}

(3.28)
Sϕ2q(ξ, η) = Sϕl(ξ, η) − Sϕl(ξ, η − ηg) =

=
1

2ξ3

{

1 +
1

ηg

√

1 + ν

1− ν [(B4(ξ)− (B2(ξ)Sg +B4(ξ)Cg)Eg) sinωx+

−(B2(ξ) + (B4(ξ)Sg −B2(ξ)Cg)Eg) cos ωx]ehx
}

Sz2q(ξ, η) = |Szl(ξ, η) − Szl(ξ, η − ηg)| =

=
∣

∣

∣

3

2ξ3

{

1− 1
ηg

√

1 + ν

1− ν [(B5(ξ) + (B2(ξ)Sg −B5(ξ)Cg)Eg) sinωx+

+(B2(ξ)− (B5(ξ)Sg +B2(ξ)Cg)Eg) cos ωx]ehx
}∣

∣

∣
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4. Analysis of the parameters of expanding stress wave

As is known, due to spatial divergence of stress wave parameters, their absolute
maximum values occur on the cavity wall and, therefore, we analyse them
there. Moreover, in the analysis of phenomena, the relative (dimensionless)
values of wave parameters are used. In order to shorten the descriptions, the
word ”relative” is omitted and the name of dimensional parameter is used.

4.1. Analysis of wave parameters for quasi-static load

The variation of cavity wall displacement U(1, η)/P versus time η, caused
by the pressure linearly increasing in the period of time ηg = 10 to the con-
stant value p0 for selected values of the parameter ν was presented in Fig. 4.
For comparative purposes, graphs of the quantity U(1, η)/P for the limiting

Fig. 4. Variation of the displacement (U/P ) of the cavity wall (ξ = 1) loaded by
quasi-static pressure versus η for ηg = 10 and selected values of ν

case ηg = 0 (dashed lines), i.e. for the surge-load of cavity wall by the con-
stant pressure p0 were also shown. As can be seen, the presented courses of
quantity U(1, η)/P are similar for a wide range of Poisson’s ratio ν variation.
In the interval of linear increase of pressure, the displacement increases also
approximately linearly. At the end of pressure increase, as a result of action
of the medium inertial force, the quantity U(1, η)/P continues to increase for
a short time. It slightly exceeds the static value (1 + ν)/2 (3.11)1, reaches
the global maximum and next approaches the static value mentioned above
with the damped oscillatory movement. The quantity U/P behaves similarly
for the limiting case, i.e. for ηg = 0, but for the surge-load of cavity wall by
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the constant pressure p0, the influence of medium inertia is much larger in
comparison with the quasi-static load.

The graphs of variation of the reduced stress Sz were shown in Fig. 5 in
the analogous way as for the displacement. The courses are similar, but the
difference is that the static value is Szs = 1.5 (3.11)6 and does not depend
on the medium compressibility (parameter ν). In order to keep the clarity of
graphs, the number of values of the parameter ν was reduced to two extreme
from the studied ones.

Fig. 5. Variation of the reduced stress Sz on the cavity wall (ξ = 1) loaded by
quasi-static pressure versus η for ηg = 10 and selected values of ν

The measure of influence of the medium inertia for the studied wave pa-
rameters is the dynamic coefficient of load Ψ , which is defined as the ratio of
the maximum displacement to its static value, i.e.

Ψ =
U2q(1, ηe)

Us(1)
(4.1)

where ηe is the root locus of the following equation

∂U2q(1, η)

∂η

∣

∣

∣

∣

∣

η=ηe

=
1 + ν

2

P

ηg
exp
(

−
√

1− 2ν
1− ν2 ηe

)

·

·
{

[
√
1− 2ν + (Sg −

√
1− 2νCg)Eg] sin

ηe√
1− ν2

+ (4.2)

−[1− (
√
1− 2νSg − Cg)Eg] cos

ηe√
1− ν2

}

= 0
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From Eq. (4.2), we obtain

ηe =
√

1− ν2
(

arctan
1− (
√
1− 2νSg − Cg)Eg√

1− 2ν + (Sg −
√
1− 2νCg)Eg

+ kπ
)

(4.3)
ηg < ηe < ηg +

π√
1− ν2

The static displacement of cavity wall, according to (3.11)1, amounts

Us(1) =
1 + ν

2
P (4.4)

Formulae (4.1), (4.3), (4.4) and (3.28) allow for qualitative and quantitative
description of the influence of the increase time of load ηg on the dynamic
coefficient Ψ . The results are presented in Fig. 6 in the form of graphs plotted
for selected values of Poisson’s ratio ν. In order to facilitate the analysis of
results for various orders of magnitude of the increase time, the logarithmic
scale was used to describe the ηg axis.

Fig. 6. Variation of the dynamic coefficient of load Ψ on the cavity wall (ξ = 1)
loaded by quasi-static pressure versus ηg for selected values of ν

As can be seen on the graph, with the rise of parameter ν, which means
the fall of medium compressibility, the influence of inertia on the course of
displacement increases. It is connected with the fact that for higher values of
Poisson’s ratio, despite the increase of the velocity of spherical stress wave
front, the rate of transfer of the disturbance energy to further spherical layers
of the medium is slower, which means that the energy is distributed in a wider
zone after the wave front (Włodarczyk and Zielenkiewicz, 2009b). However,
for the studied range of parameter ν, the differences do not exceed 20%.
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It can be also noticed that regardless of the parameter ν value, for ηg less
than about 1, variations of the dynamic coefficient in relation to the value for
surge-load (ηg → 0) are insignificant, but in this range the differences between
the results for the studied values of Poisson’s ratio are the largest. Above the
value of 1 both the dynamic coefficient and the differences begin to decrease
intensively. In the close neighbourhood of ηg = 10, the coefficient falls below
1.05 and, next, monotonically approaches 1. The dynamic coefficient Ψ = 1.05
means that the maximum displacement exceeded by 5% its static value, which
can be considered as insignificantly small. Therefore, the value of time ηg = 10
of the pressure increase can be assumed to be the conventional limit, above
which the load can be called quasi-static.

For comparison, the calculations were performed also for the limiting case
ν → 0.5 (dashed line). In such a medium, the wave character of its parameters
propagation vanishes, because it becomes incompressible and behaves like a
mechanical system of one degree of freedom (Włodarczyk and Zielenkiewicz,
2009a,b; Nowacki, 1970). After loading by the constant pressure suddenly ap-
plied to the cavity wall, all spherical sections of the medium oscillate with
non-damped movement of common phase around the static values with ampli-
tudes equal to these values. Therefore, as can be expected, Ψ = 2 for ηg → 0
on the graph. The response of such a medium for the quasi-static load is
also characteristic for a mechanical system of one degree of freedom. Howe-
ver, because the oscillations are not damped, the parameters do not approach
asymptotically the static values. Only in the particular case, when the incre-
ase time of pressure is a multiple of the natural period of the medium, the
parameters stabilize at the static level immediately at the moment of pressure
stabilization, and this gives the value Ψ = 1 for these times and the characte-
ristic shape of the graph with discontinuities of the derivative at these points.
The slight outline of this tendency can be observed already on the plot of
displacement for ν = 0.45.

4.2. Analysis of solution for finite pulse of constant pressure

The graphs of displacement of the cavity wall suddenly loaded by the con-
stant pressure of limited duration for two extreme analysed values of Poisson’s
ratio ν were presented in Fig. 7. The duration times of pulses were matched so
as to not allow the maximum displacements to exceed the static values marked
on the graph with horizontal dashed lines. The courses of displacement for the
infinite time constant pressure pulse were also plotted with dashed lines.
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Fig. 7. Variation of the displacement (U/P ) of the cavity wall (ξ = 1) loaded by the
finite time pressure pulse versus η for ηg = ηg st and selected values of ν

The duration times of pulses can be determined using the function descri-
bing the course of cavity wall displacement for the infinite pulse

U(1, η)=
1 + ν

2
P
{

1+
[√
1− 2ν sin η√

1− ν2
−cos η√

1− 2ν
]

exp
(

−
√

1− 2ν
1− ν2 η

)}

(4.5)
and the value of static displacement Us(1) (4.4). Solving the equation

U(1, ηg st) = Us(1) (4.6)

we obtain the searched value of pulse duration time, namely

ηg st =
√

1− ν2 arctan 1√
1− 2ν (4.7)

As can be seen on the graph and from formulae (3.19)1 and (3.23)1, after
applying suddenly the constant pressure of infinite acting time (ηg → ∞),
the displacement asymptotically approaches the static value determined by
this pressure. However, if after the finite time ηg there comes unloading with
the pulse of opposite sign (pressure termination, p0 = 0), the process will be
stopped and the displacement will approach the static value determined by
the new pressure, in this case being zero.
It can be also observed that for the analysed values of Poisson’s ratio, the

limiting times of pulse duration ηg st are of the same order ηg ≈ 1, but the
differences between them cannot be neglected. The short time of displacement
increase would cause the exceeding of static values even by 15%, which is al-
ready the significant value. It should also be noticed that the loading of this
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kind subsequently causes, after unloading, the occurrence of the negative di-
splacement of cavity wall even to 30% of the static value, which means the
decrease of cavity radius below the initial value. According to the analysis
presented in the previous section, it is the result of significant part of inertia
during surge-loading and the influence of inertia increasing with the decrease
of compressibility. The graphs of reduced stress shown in Fig. 8 have the si-
milar character, but at the initial instant and at the instant of unloading the
discontinuities of describing functions occur. The differences of values betwe-
en the functions in points of discontinuity decrease with the fall of medium
compressibility.

Fig. 8. Variation of the reduced stress Sz on the cavity wall (ξ = 1) loaded by the
finite time pressure pulse versus η for ηg = ηg st and selected values of ν

5. Conclusions

From the analysis presented above, the following conclusions can be drawn:

• For the spherical cavity in an unbounded, linearly-elastic, compressible,
isotropic medium loaded by the internal pressure linearly increasing to
a constant value in a limited time, there exists a distinct limit of the ti-
me of increase of load, above which it can be considered as quasi-static,
neglecting the dynamic factor. ηg = 10 can be assumed as the approxi-
mate limiting value. In turn, for the time of increase of pressure ηg < 1,
the case can be considered by simplification as the surge-load. On the
contrary, for times in the range 1 < ηg < 10 it would be recommended
to apply the exact formulae presented in the paper.
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• For the steel medium of parameters E = 210GPa, ν = 0.3, ρ =
= 7800 kg/m3 with the spherical cavity of radius a [m], the real limiting
time of increase of pressure at ηg = 10 will be tg = 0.002a s, which
means that it increases proportionally to the radius. For the cavity of
radius 1m, it will be tg = 2ms. This time is short enough to consider
the load generated by the detonation of gaseous explosive mixture as
quasi-static, but this assumption cannot be taken for high explosives.

• The loading of cavity by a constant pressure pulse of time of duration
that is short enough indeed does not cause the displacement to exceed
the static value, but after unloading its dynamic character generates
negative displacements of the cavity wall reaching 30% of this value.
This situation in some cases can be unacceptable.
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O współczynniku dynamiczności obciążenia generującego ekspandującą

kulistą falę naprężenia w ośrodku sprężystym

Streszczenie

W nieograniczonym, liniowo-sprężystym i ściśliwym ośrodku izotropowym znajdu-
je się kulista kawerna. Jej ścianka obciążona jest ciśnieniem zmiennym w czasie, które
generuje w ośrodku ekspandującą z kawerny kulistą falę naprężenia. Zbadano wpływ
charakteru obciążenia na charakterystyki parametrów fali, przy czym za główne kry-
terium porównawcze przyjęto współczynnik dynamiczności obciążenia. Ze względu na
kulistą dywergencję fali, jej parametry maleją odwrotnie proporcjonalnie do drugiej
i trzeciej potęgi odległości od centrum kawerny, tak więc ich maksymalne bezwzględne
wartości występują na ściance kawerny i dlatego też analizę przeprowadzono w tym
miejscu. Znaleziono dwie praktyczne graniczne wartości czasu liniowego narastania ci-
śnienie do stałej wartości, wyznaczające trzy obszary charakteru takiego obciążenia.
W pierwszym z nich, dla krótkich czasów, może być ono traktowane jako skokowe,
dla którego współczynnik dynamiczny jest największy. W trzecim, dla czasów długich,
obciążenie to można traktować jako kwazistatyczne, pomijając jego skutki dynamicz-
ne. Natomiast w obszarze drugim ma ono charakter przejściowy i parametry fali nim
wywołanej należałoby opisywać wzorami dokładnymi zaprezentowanymi w artykule.
Wyznaczono również maksymalną długość czasu działania impulsu stałego ciśnienia,
dla której parametry fali nie przekraczają jeszcze wartości statycznych. Zaobserwo-
wano jednak znaczne zmniejszanie promienia kawerny poniżej wartości początkowej
na skutek odciążenia.
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