
JOURNAL OF THEORETICAL

AND APPLIED MECHANICS

49, 2, pp. 439-455, Warsaw 2011

MATHEMATICAL MODELLING OF A RECTANGULAR

SANDWICH PLATE WITH A METAL FOAM CORE

Ewa Magnucka-Blandzi

Poznań University of Technology, Institute of Mathematics, Poznań, Poland

e-mail: ewa.magnucka-blandzi@put.poznan.pl

The subject of the paper is a simply supported rectangular sandwich plate.
The plate is compressed in plane. It is assumed that the plate under consi-
deration is symmetrical in build and consists of two isotropic facings and a
core. The middle plane of the plate is its symmetry plane. The core is made
of a metal foam with properties varying across its thickness. The porous-
cellular metal as a core of the three layered plate is of continuous structure,
while its mechanical properties are isotropic. Dimensionless coefficients are
introduced to compensate for this.
The field of displacements and geometric relationships are assumed. This
non-linear hypothesis is generalization of the classical hypotheses, in parti-
cular, the broken-line hypothesis. The principle of stationarity of the total
potential energy of the compressed sandwich plate is used and a system
of differential equations is formulated. This system is approximately solved.
The forms of unknown functions are assumed, which satisfy boundary condi-
tions for supports of the plate. Critical loads for a family of sandwich plates
are numerically determined. Results of the calculation are shown in figures.
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1. Introduction

In the last years, composite beams, plates and shells are applied in mecha-
nical engineering, particularly in vehicles and building engineering. Strength
and buckling problems of sandwich structures are studied in practice since
the mid of the 20th century. There are monograph works devoted to this
topic, e.g. Plantema (1966), Volmir (1967), Grigolyuk and Chulkov (1973),
Noor et al. (1996), Wang et al. (2000), Magnucki and Ostwald (2001). These
monograph papers demonstrate the development of research of strength and
buckling of classical sandwich beams, plates, and shells with homogeneous
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cores. Contemporary studies of the strength and stability problems of classi-
cal sandwich structures are presented by Kotełko and Mania (2005) or Ohga
et al. (2005). The sandwich structures with metal foam cores are only rare-
ly dealt within such a wide field of investigation. Magnucki and Stasiewicz
(2004a,b), Malinowski and Magnucki (2005), Magnucki et al. (2006), carried
out analytical investigations of strength and stability of porous-cellular be-
ams, plates and cylindrical shells with consideration of a non-linear hypothesis
of the deformation of flat cross section of the structures. The first hypothe-
sis of displacements and equilibrium equations of three-layered constructions
were formulated in the middle of 20th century and it was presented by Gri-
golyuk and Chulkov (1973). Wang et al. (2000) discussed the higher order
hypotheses including shear deformation of beams and plates. Carrera (2000,
2001, 2003) formulated the zig-zag hypotheses for multilayered plates. Carre-
ra et al. (2008) presented the static analysis of functionally graded material
plates subjected to transverse mechanical loadings. Debowski and Magnucki
(2006) formulated a nonlinear hypothesis of deformation for porous rectangu-
lar plates with using trygonometric functions. Kasprzak and Ostwald (2006)
presented a generalization of the hypotheses of deformations. Banhart (2001),
Bart-Smith et al. (2001), and Hohe and Becker (2002) presented the manufac-
ture, characterization and application of cellular metals and metal foams for
sandwich structures. Magnucka-Blandzi and Magnucki (2007) and Magnucki
and Magnucka-Blandzi (2006) described the strength and stability problems
of a sandwich beam with a porous-cellular core and its effective design. Pandit
et al. (2008) presented an improved higher order zigzag theory and applied it
to study the buckling of laminated sandwich plates. The variation of in-plane
displacements through the thickness direction is assumed to be cubic for both
the face sheets and the core, while transverse displacement is assumed to va-
ry quadratically within the core but it remains constant over the face sheets.
Apetre et al. (2008) investigated several available sandwich beam theories for
their suitability of application to one-dimensional sandwich plates with func-
tionally graded cores. Two equivalent single-layer theories based on assumed
displacements, a higher-order theory, and the Fourier-Galerkin method were
compared. The variation of core Young’s modulus was presented by a differen-
tiable function in the thickness coordinate, but the Poisson’s ratio was kept
constant.
The subject of the paper is a simply-supported rectangular sandwich plate

with a metal foam core. The paper is an improvement and continuation of the
papers by Magnucka-Blandzi and Magnucki (2007), Magnucki and Magnucka-
-Blandzi (2006), Magnucka-Blandzi (2008, 2009), Magnucka-Blandzi and Wa-
silewicz (2009) and Magnucka-Blandzi (2010).
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The plate with sizes a, b and the thickness 2tf + tc carries a uniform
compressive forces N0x , N

0
y (Fig. 1).

Fig. 1. Scheme of the sandwich plate under compression

2. Physical model of the sandwich plate

The sandwich plate with a metal foam core is studied. Metal faces of thick-
ness tf are isotropic of Young’s modulus Ef and Poisson’s ratio νf . The
metal foam core of thickness tc is assumed as isotropic with varying mechani-
cal properties (Fig. 2), but Poisson’s ratio νc is kept constant.

Fig. 2. Scheme of deformation of a plane cross section of the plate
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The minimal value of Young’s modulus occurs in the middle plane of the
plate and the maximal value at its top and bottom surfaces of the core. The co-
re is porous inside with the degree of porosity varying in the normal direction.
The moduli of elasticities are defined as follows

Ec(ζ) = Ec1[1− e0 cos(πζ)] Gc(ζ) = Gc1[1− e0 cos(πζ)] (2.1)

where
e0 – coefficient of the core porosity, e0 = 1− Ec0/Ec1
Ec0, Ec1 – Young’s moduli at z = 0 and z = ±tc/2, respectively
Gc0, Gc1 – shear moduli for z = 0 and z = ±tc/2, respectively
Gcj – relationship between the moduli of elasticity for j = 0, 1,

Gcj = Ecj/[2(1 + ν)]
νf , νc – Poisson’s ratios for faces and the core
ζ – dimensionless coordinate, ζ = z/tc
tf – thickness of each face
tc – thickness of the core

Displacements of points laying on the cross-section of the plate arise from
the assumed hypothesis of deformation (Fig. 2). The field of displacement is
defined:
— the upper face: −(0.5 + x1) ¬ ζ ¬ −0.5

u(x, y, ζ) = −tc
[

ζ
∂w

∂x
+ ψ0(x, y)−

1

π
ψ1(x, y)

]

(2.2)

v(x, y, ζ) = −tc
[

ζ
∂w

∂y
+ φ0(x, y)−

1

π
φ1(x, y)

]

where ψ1(x, t) = u1(x, t)/tc
— the core: −0.5 ¬ ζ ¬ 0.5

u(x, y, ζ) = −tc
{

ζ
[∂w

∂x
− 2ψ0(x, y)

]

+
1

π
ψ1(x, y) sin(πζ)

}

(2.3)

v(x, y, ζ) = −tc
{

ζ
[∂w

∂y
− 2φ0(x, y)

]

+
1

π
φ1(x, y) sin(πζ)

}

— the lower face: 0.5 ¬ ζ ¬ 0.5 + x1

u(x, y, ζ) = −tc
[

ζ
∂w

∂x
− ψ0(x, y) +

1

π
ψ1(x, y)

]

(2.4)

v(x, y, ζ) = −tc
[

ζ
∂w

∂y
− φ0(x, y) +

1

π
φ1(x, y)

]

where x1 = tf/tc.
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There are five unknown autonomous functions: w(x, y) – deflection,
ψ0(x, y), ψ1(x, y), phi0(x, y), φ1(x, y) – dimensionless functions of displace-
ments. In the particular case ψ0(x, y) = ψ1(x, y) = φ0(x, y) = φ1(x, y) = 0,
the field of displacements u, v is linear the Kirchhoff-Love hypothesis. Func-
tions ψ0(x, y), ψ1(x, y), φ0(x, y), φ1(x, y) extend the linear classical hypothesis.
In the classical theory, thea shear force is equal to zero (it follows from this
linear theory), but in the proposed non-linear hypothesis the shear force does
not equal zero, which corresponds with the facts.

The geometric relationships, i.e. components of the strain for each layer of
the plate, are:

— the upper face: −(0.5 + x1) ¬ ζ ¬ −0.5

ε(f1)x =
∂u

∂x
= −tc

(

ζ
∂2w

∂x2
+
∂ψ0
∂x
−
1

π

∂ψ1
∂x

)

ε(f1)y =
∂v

∂y
= −tc

(

ζ
∂2w

∂y2
+
∂φ0
∂y
−
1

π

∂φ1
∂y

)

γ(f1)xz =
1

tc

∂u

∂ζ
+
∂w

∂x
= 0 (2.5)

γ(f1)yz =
1

tc

∂v

∂ζ
+
∂w

∂y
= 0

γ(f1)xy =
∂u

∂y
+
∂v

∂x
=

= −tc
[

2ζ
∂2w

∂x∂y
+
∂ψ0
∂y
+
∂φ0
∂x
−
1

π

(∂ψ1
∂y
+
∂φ1
∂x

)]

— the core: −0.5 ¬ ζ ¬ 0.5

ε(c)x =
∂u

∂x
= −tc

[

ζ
(∂2w

∂x2
− 2

∂ψ0
∂x

)

+
1

π

∂ψ1
∂x
sin(πζ)

]

ε(c)y =
∂v

∂y
= −tc

[

ζ
(∂2w

∂y2
− 2

∂φ0
∂y

)

+
1

π

∂φ1
∂y
sin(πζ)

]

γ(c)xz =
1

tc

∂u

∂ζ
+
∂w

∂x
= 2ψ0(x, y)− ψ1(x, y) cos(πζ) (2.6)

γ(c)yz =
1

tc

∂v

∂ζ
+
∂w

∂y
= 2φ0(x, y)− φ1(x, y) cos(πζ)

γ(c)xy =
∂u

∂y
+
∂v

∂x
=

= −tc
[

2ζ
( ∂2w

∂x∂y
−
∂ψ0
∂y
−
∂φ0
∂x

)

+
1

π

(∂ψ1
∂y
+
∂φ1
∂x

)

sin(πζ)
]
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— the lower face: 0.5 ¬ ζ ¬ 0.5 + x1

ε(f2)x =
∂u

∂x
= −tc

(

ζ
∂2w

∂x2
−
∂ψ0
∂x
+
1

π

∂ψ1
∂x

)

ε(f2)y =
∂v

∂y
= −tc

(

ζ
∂2w

∂y2
−
∂φ0
∂y
+
1

π

∂φ1
∂y

)

γ(f2)xz =
1

tc

∂u

∂ζ
+
∂w

∂x
= 0 (2.7)

γ(f2)yz =
1

tc

∂v

∂ζ
+
∂w

∂y
= 0

γ(f2)xy =
∂u

∂y
+
∂v

∂x
=

= −tc
[

2ζ
∂2w

∂x∂y
−
∂ψ0
∂y
−
∂φ0
∂x
+
1

π

(∂ψ1
∂y
+
∂φ1
∂x

)]

Stresses in all layers of the plate, with respect to Hooke’s law, are as follows:

— the upper or the lower face

σ(fi)x =
Ef
1− ν2f

(

ε(fi)x + νfε
(fi)
y

)

σ(fi)y =
Ef
1− ν2f

(

ε(fi)y + νfε
(fi)
x

)

(2.8)

τ (fi)xy = Gfγ
(fi)
xy

— the core

σ(c)x =
Ec1
1− ν2c

[1− e0 cos(πζ)]
(

ε(c)x + νcε
(c)
y

)

σ(c)y =
Ec1
1− ν2c

[1− e0 cos(πζ)]
(

ε(c)y + νcε
(c)
x

)

τ (c)xy = Gc1[1− e0 cos(πζ)]γ
(c)
xy (2.9)

τ (c)xz = Gc1[1− e0 cos(πζ)]γ
(c)
xz

τ (c)yz = Gc1[1− e0 cos(πζ)]γ
(c)
yz

The deflection for each layer of the plate is the same and does not depend on
the z coordinate, which means

w(x, y, z) = w(x, y) (2.10)
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3. Mathematical model of the sandwich plate

Equations of stability are based on the principle of minimum of the total
potential energy

δ(Uε −W ) = 0 (3.1)

Uε is the energy of elastic strain, where Uε = U
(f1)
ε + U

(c)
ε + U

(f2)
ε

U (f1)ε =
tc
2

a
∫

0

b
∫

0

−

1

2
∫

−( 1
2
+x1)

(

σ(f1)x ε(f1)x + σ(f1)y ε(f1)y + τ (f1)xy γ(f1)xy

)

dζ dy dx

U (c)ε =
tc
2

a
∫

0

b
∫

0

1

2
∫

−

1

2

(

σ(c)x ε
(c)
x + σ

(c)
y ε
(c)
y + τ

(c)
xy γ

(c)
xy + τ

(c)
xz γ

(c)
xz + τ

(c)
yz γ

(c)
yz

)

dζ dy dx

(3.2)

U (f2)ε =
tc
2

a
∫

0

b
∫

0

1

2
+x1
∫

1

2

(

σ(f2)x ε(f2)x + σ(f2)y ε(f2)y + τ (f2)xy γ(f2)xy

)

dζ dy dx

U
(f1)
ε – energy of the upper face, U

(c)
ε – energy of the core, U

(f2)
ε – energy of

the lower face. W is the work of the compressive force

W =
1

2

a
∫

0

b
∫

0

[

N0x

(∂w

∂x

)2
+N0y

(∂w

∂y

)2]

dy dx (3.3)

where N0x = kN0, N
0
y = (1− k)N0, (0 ¬ k ¬ 1).

Basing on the principle of minimum of the total potential energy, Eq. (3.1),
a system of five differential stability equations is obtained

(δw)
Ec1t

3
c

1− ν2c

[

(2α11c20 + c11)
(∂4w

∂x4
+
∂4w

∂y4

)

+

+(4α11νfc20 + 4α11c21 + 2c11)
∂4w

∂x2∂y2
− (α12c20 + 2c11) ·

·
(∂3ψ0
∂x3
+
∂3φ0
∂y3

)

− (α12νfc20 + α12c21 + 2c11)· (3.4)
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·
( ∂3ψ0
∂x∂y2

+
∂3φ0
∂x2∂y

)

+
( 1

π
α12c20 + c15

)(∂3ψ1
∂x3
+
∂3φ1
∂y3

)

+

+
( 1

π
α12νfc20 +

1

π
α12c21 + c15

)( ∂3ψ1
∂x∂y2

+
∂3φ1
∂x2∂y

)]

=

= −N0x
∂2w

∂x2
−N0y

∂2w

∂y2

(δψ0)
2t2c
1− νc

{

(α12c20 + 2c11)
∂3w

∂x3
+ (α12νfc20 + α12c21 + 2c11) ·

·
∂3w

∂x∂y2
− (2x1c20 + 4c11)

∂2ψ0
∂x2
− [x1c21 + 2c11(1− νc)] ·

·
∂2ψ0
∂y2
+
( 2

π
x1c20 + 2c15

)∂2ψ1
∂x2
+
[ 1

π
x1c21 + c15(1− νc)

]

· (3.5)

·
∂2ψ1
∂y2
− [2x1νf c20 + x1x21 + 2c11(1 + νc)]

∂2φ0
∂x∂y

+

+
[ 2

π
x1νfc20 +

1

π
x1c21 + c15(1 + νc)

] ∂2φ1
∂x∂y

}

+

+4c0ψ0 − c16ψ1 = 0

(δψ1)
t2c
1− νc

{

−
( 2

π
α12c20 + 2c15

)∂3w

∂x3
+

−
( 2

π
α12νfc20 +

2

π
α12c21 + 2c15

) ∂3w

∂x∂y2
+

+
( 4

π
x1c20 + 4c15

)∂2ψ0
∂x2
+
[ 2

π
x1c21 + 2c15(1− νc)

]∂2ψ0
∂y2
+

−
( 4

π2
x1c20 + 2c18

)∂2ψ1
∂x2
−
[ 2

π2
x1c21 + c18(1− νc)

]∂2ψ1
∂y2
+ (3.6)

+
[ 4

π
x1νf c20 +

2

π
x1c21 + 2c15(1 + νc)

] ∂2φ0
∂x∂y

+

−
[ 4

π2
x1νfc20 +

2

π2
x1c21 + c18(1 + νc)

] ∂2φ1
∂x∂y

}

+

−c16ψ0 + c19ψ1 = 0

(δφ0)
2t2c
1− νc

{

(α12νfc20 + α12c21 + 2c11)
∂3w

∂x2∂y
+ (α12c20 + 2c11) ·

·
∂3w

∂y3
− [2x1νfc20 + x1c21 + 2c11(1 + νc)]

∂2ψ0
∂x∂y

+
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+
[ 2

π
x1νfc20 +

1

π
x1c21 + c15(1 + νc)

] ∂2ψ1
∂x∂y

+ (3.7)

−[x1c21 + 2c11(1− νc)]
∂2φ0
∂x2
− (2x1c20 + 4c11)

∂2φ0
∂y2
+

+
[ 1

π
x1c21 + c15(1− νc)

]∂2φ1
∂x2
+
( 2

π
x1c20 + 2c15

)∂2φ1
∂y2

}

+

+4c0φ0 − c16φ1 = 0

(δφ1)
t2c
1− νc

{

−
( 2

π
α12νfc20 +

2

π
α12c21 + 2c15

) ∂3w

∂x2∂y
+

−
( 2

π
α12c20 + 2c15

)∂3w

∂y3
+

+
[ 4

π
x1νf c20 +

2

π
x1c21 + 2c15(1 + νc)

] ∂2ψ0
∂x∂y

+

−
[ 4

π2
x1νfc20 +

2

π2
x1c21 + c18(1 + νc)

] ∂2ψ1
∂x∂y

+ (3.8)

+
[ 2

π
x1c21 + 2c15(1− νc)

]∂2φ0
∂x2
+
( 4

π
x1c20 + 4c15

)∂2φ0
∂y2
+

−
[ 2

π2
x1c21 + c18(1− νc)

]∂2φ1
∂x2
−
( 4

π2
x1c20 + 2c18

)∂2φ1
∂y2

}

+

−c16φ0 + c19φ1 = 0

where

α11 =
x1(4x

2
1 + 6x1 + 3)

12
α12 = x1(x1 + 1)

c0 = 1−
2

π
e0 c11 =

1

12

(

1− 6
π2 − 8

π3
e0
)

c12 =
1

π2

(1

2
−
8

9π
e0
)

c13 =
1

π2

(1

8
−
4

15π
e0
)

c14 =
1

2
−
14

15π
e0 c15 =

1

4π3

(

8− πe0
)

c16 =
1

π

(

4− πe0
)

c18 =
1

2π2

(

1−
4

3π
e0
)

c19 =
1

2
−
4

3π
e0 c20 = e1

1− ν2c
1− ν2f

c21 = e1
1− ν2c
1 + νf

c22 = 2α11c20 + c11

c23 = 4α11c20 + 2c11 c24 = α12c20 + 2c11
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c25 = α12c20 + 2c11 c26 =
1

π
α12c20 + c15

c27 =
1

π
α12c20 + c15 c28 = 2x1c20 + 4c11

c29 = x1c21 + 2c11(1− νc) c30 =
2

π
x1c20 + 2c15

c31 =
1

π
x1c21 + c15(1− νc) c32 = x1(2νf c20 + c21) + 2c11(1 + νc)

c34 =
2

π2
x1c20 + c18 c33 =

1

π
x1(2νf c20 + c21) + c15(1 + νc)

c35 =
1

π2
x1c21 +

1

2
c18(1− νc) c36 =

1

π2
x1(2νf c20 + c21) +

1

2
c18(1 + νc)

c37 =
1

π
x1c21 + c15(1− νc) e1 =

Ef
Ec1

The boundary conditions for the simply supported sandwich plate are

w(0, y) = 0 w(a, y) = 0 w(x, 0) = 0 w(x, b) = 0

Mg(0, y) = 0 Mg(a, y) = 0 Mg(x, 0) = 0 Mg(x, b) = 0
(3.9)

where Mg is the bending moment and w – deflection.

4. Analytical solution

There are five unknown functions in the system of stability equations. Forms
of them are assumed as follows

w(x, y) = wa sin
mπx

a
sin

nπy

b

ψ0(x, y) = ψa0 cos
mπx

a
sin

nπy

b
ψ1(x, y) = ψa1 cos

mπx

a
sin

nπy

b

φ0(x, y) = φa0 sin
mπx

a
cos

nπy

b
φ1(x, y) = φa1 sin

mπx

a
cos

nπy

b

(4.1)

where m,n ∈ N (N – the set of natural numbers), wa – the amplitude of
deflection, ψa0, ψa1, φa0, φa1 – the amplitudes of dimensionless diceplacment
functions.

These functions, Eq. (4.1) satisfy boundary conditions, Eq. (3.9). Substitu-
ting these above five functions, Eq. (4.1), into the system of stability equations
(3.4)-(3.8) a system of five algebraic homogeneous equations is obtained
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a11 −Km a12 a13 a14 a15
a12 a22 a23 a24 a25
a13 a23 a33 a25 a35
a14 a24 a25 a44 a45
a15 a25 a35 a45 a55































wa
tc
ψa0
ψa1
φa0
φa1

















=















0
0
0
0
0















(4.2)

where

a11 =
t2c
a2
(mπ)2[c22(1 + β

4) + c23β
2] a12 = −

tc
a
mπ(c24 + c25β

2)

a13 =
tc
a
mπ(c26 + c27β

2) a14 = −
tc
a
mπ(c24β

3 + c25β)

a15 =
tc
a
mπ(c26β

3 + c27β) a22 = c28 + c29β
2 + 2c0c38

a23 = −
(

c30 + c31β
2 +
1

2
c16c38

)

a24 = c32β

a25 = −c33β a33 = c34 + c35β
2 +
1

2
c19c38

a35 = c36β a44 = c29 + c28β
2 + 2c0c38

a45 = −
(

c37 + c30β
2 +
1

2
c16c38

)

a55 = c34β
2 + c35 +

1

2
c19c38

c38 =
a2

t2c

1− νc
(mπ)2

β =
a

b

n

m

Km =
N0
Ec1tc

[k + (1− k)β2](1− ν2c )

Because of the homogeneous algebraic equations, the main determinant of the
system must be equal to zero. So, the critical forces

N0,cr = min
m,n
{N0(m,n)} (4.3)

could be calculated from this equation.

5. Numerical calculations

There are some examples considered below, where the influence of the core
porosity is shown for a family of plates with b = 200mm, νf = 0.34, νc = 0.15,
Ec1 = 7.1 · 10

3MPa. The dimensionless parameter k is connected with the
compressive forces, which means N0x = kN0, N

0
y = (1 − k)N0, (0 ¬ k ¬ 1).
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The thickness of the core is tc = b/20 = 10mm (Figs. 3-5). The dimensionless
parameter x1 = tf/tc = 1/20 is in every example below.

In Fig. 3, the critical loads in the case k = 1, which means N0x = N0,
N0y = 0 for the plate with constant mechanical properties of the core (e0 = 0)
and for the plate with varying mechanical properties of the core (e0 6= 0,
e0 = 0, 0.5, 0.8) and for different e1 = 10, 20, 30, where e1 = Ef/Ec1 are
shown. The critical load increases when the dimensionless parameter e1 incre-
ases or dimensionless coefficient of the core porosity e0 decreases.

Fig. 3. Critical loads in the case N0
x
= N0, N

0

y
= 0, k = 1

In Fig. 4, the critical loads are also shown, but for different compressive
forces, which means for k = 1, then N0x = N0, N

0
y = 0, for k = 0.75, then

N0x = 0.75N0, N
0
y = 0.25N0, for k = 0.5, then N0x = N0y = 0.5N0 and for

the plate with constant mechanical properties of the core (e0 = 0). In this
example, the influence of dimensionless parameter e1 is shown too. If the
parameter k decreases then the critical load also decreases.

In Fig. 5, the critical loads are shown for different compressive forces
(k = 1, 0.75, 0.5) as previously, but for the plate with varying mechanical
properties of the core (e0 = 0.5 in Fig. 5a and e0 = 0.8 in Fig. 5b). Both of
them are for the same value e1 = 10.

The last two examples are for different thickness of the plate core. The
dimensionless parameter x1 = 1/20, so the thickness of each face also
changes.
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Fig. 4. Critical loads for the plate with constant mechanical properties of the core
under different compressive forces; e0 = 0

Fig. 5. Critical loads of the plate under different compressive forces; (a) e0 = 0.5
e1 = 10, (b) e0 = 0.8 e1 = 10

In Fig. 6, the influence of the thickness of the core on the critical load is
shown while the parameter e1 changes. In this example the core of the plate
has constant mechanical properties (e0 = 0) and the commpresive forces are
N0x = N0, , N

0
y = 0 (k = 1).

Instead, in the last example, in Fig. 7, the influence of the thickness of the
plate core for the critical load is shown, but the parameter e1 is fixed and the
coefficient of core porosity e0 is changing.
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Fig. 6. Critical loads of the plate with different thickness of the core; e0 = 0, k = 1

Fig. 7. Critical loads of the plate with different thickness of the core; e1 = 10, k = 1

6. Conclusions

The field of displacements for the sandwich plate is a generalization of the clas-
sical hypotheses. The non-linear hypothesis of deformation of the plane cross
section for a sandwich plate includes the shear deformable effect. The mathe-
matical model of the sandwich plate is without internal contradiction. The
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equations of equilibrium-stability are correct for thin or thick plates. The sys-
tem of five differential stability equations can be reduced to a single equation.
The influence of the core thickness and dimensionless parameter e1 = Ef/Ec1
on the critical load is crucial.
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Matematyczne modelowanie prostokątnej płyty trójwarstwowej

z rdzeniem z pianki metalowej

Streszczenie

Przedmiotem pracy jest prostokątna płyta trójwarstwowa podparta przegubowo
na czterech brzegach i ściskana w płaszczyźnie środkowej. Okładziny płyty są izotropo-
we i o takich samych właściwościach mechanicznych. Rdzeń wykonany z pianki meta-
lowej jest również izotropowy, jego właściwości mechaniczne są zmienne na grubości.
Płaszczyzna środkowa płyty jest jej płaszczyzną symetrii. Zdefiniowano pole prze-
mieszczeń dla dowolnego punktu rdzenia oraz okładzin płyty. Sformułowano energię
odkształcenia sprężystego płyty i pracę obciążenia. Następnie z zasady stacjonarności
całkowitej energii potencjalnej otrzymano układ równań równowagi, który rozwiązano
analitycznie w sposób przybliżony i wyznaczono obciążenie krytyczne płyty.
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