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Technical difficulties prevented so far wider applications of higher mode
shapes in damage detection. Yet these modes carry on a lot of, so much
needed, information on damage inflicted to a structure. However, recent
scanning laser-based vibration measurement techniques allow one to uti-
lize these higher modes in damage detection effectively. This paper deals
with the wavelet-based damage detection technique on a cantilever beam
with damage in the form of a single notch of depth 20%, 10% and 5%
of the beam height. The purpose of the study is to present the results
of experimental and numerical analyses of damage detection based on
higher order modes. The first eight modes are considered and the influ-
ence of the mode order on the effectiveness of damage detection by the
continuous wavelet transform is analysed in detail.
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1. Introduction

The ability to damage detection and localization at the earliest possible sta-
ge becomes an important issue throughout the aerospace, mechanical or civil
engineering communities. The existence of damage in a structure results in
changes of global dynamic characteristics. Therefore, relatively simple vibra-
tion measurements of a structural response and extraction of information on
natural frequencies, damping or mode shapes, make damage detection feasible
(Ren and De Roeck, 2002a,b). Dynamic tests are successfully used to damage
identification or even to damage reconstruction, especially combined with ge-
netic algorithms (Kokot and Zembaty, 2008, 2009) or artificial neural networks
(Waszczyszyn and Ziemiański, 2001; Kuźniar and Waszczyszyn, 2002; Rucka
and Wilde, 2010).
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A relatively recent area of research in damage detection and localization
is based on the wavelet transform applied to mode shapes or static deflection
line data. The wavelet transform acts as a differential operator and can be
applied effectively even for noisy signals. Damage which cannot be identified
directly from mode shapes, may be observed on wavelet transforms since local
abnormalities in a signal lead to substantial variations of wavelet coefficients
in the neighborhood of damage. The literature on wavelet transforms in da-
mage detection is very extensive (see e.g. Wang and Deng, 1996; Hong et al.,
2002; Douka et al., 2003; Gentile and Messina, 2003; Chang and Chen, 2003,
2004; Knitter-Piątkowska and Garstecki, 2004; Loutridis et al., 2004; Messina,
2004, 2008; Knitter-Piątkowska et al., 2006; Ziopaja et al., 2006; Rucka and
Wilde, 2006a,b; Castro et al., 2007; Trentadue et al., 2007; Pakrashi et al.,
2007). The previous studies have shown very good accuracy and effectiveness
of the wavelet transform although most of the investigations were performed
on numerical data without experimental verification. For a practical appli-
cation of the wavelet damage detection techniques, research on experimental
data is the most important. The applicability of the wavelet damage detection
techniques depends on measurement precision and sampling distances. Hong
et al. (2002), Douka et al. (2003), Loutridis et al. (2004) as well as Rucka
and Wilde (2006a) performed wavelet analyses on mode shapes obtained by
standard modal tests using accelerometers and a modal hammer. Trentadue
et al. (2007) used a laser sensor for a dynamic modes measurement. Pakrashi
et al. (2007) employed a video camera to measure the beam deflection shape.
The experimental research carried out so far revealed that only relatively large
defects can be detected by the wavelet transform. Hong et al. (2002), Pakrashi
et al. (2007) as well as Messina (2008) considered damage of 50% depth of
the beam height. Smaller depth of damage was studied by Rucka and Wilde
(2006a) – 35%, Douka et al. (2003) – 30% and Loutridis et al. (2004) – 20%
and 30%.
Most of the reported research based on the wavelet transform are devoted

to the analysis of the first mode shape (Hong et al., 2002; Chang and Chen,
2003; Douka et al., 2003; Loutridis et al., 2004; Rucka and Wilde, 2006a) or the
first three modes (Gentile and Messina, 2003; Messina, 2004, 2008; Trentadue
et al., 2007; Rucka and Wilde, 2010). It is so because the lower modes are much
easier to acquire than the higher ones. However, the measurements of higher
order modes have recently become much simpler by applying a modern scan-
ning laser vibrometer (Okafor and Dutta, 2000; Pai and Young, 2001; Waldron
et al., 2002). This raises a question if the higher order modes can also be ef-
fectively applied in damage detection using the wavelet technique. Okafor and
Dutta (2000) analysed three experimental and six numerical modes of a canti-



Damage detection in beams... 401

lever beam by the wavelet transform. They concluded that the first and third
translational modes showed the damage location clearly, but the second mode
was inconclusive because the damage fell in the vicinity of zero-crossing for the
second mode. Gentile and Messina (2003) indicated that damage may occur
in locations having poor sensitivity for certain mode shapes. They concluded
that neither the fundamental mode shape nor any other higher single mode
can be a priori considered as particularly useful in damage detection. They
also stated that all available modes or operational deflection shapes should
be analysed. Castro et al. (2006) presented a numerical study of the quality
of damage detection versus the order of vibration modes for a rod vibrating
axially and formulated the conclusions about the influence of the mode order
on damage detection. They stated that higher modes are more appropriate to
damage detection and deduced that the modes of displacement that have a
node closer to the defect of stiffness type are the best for its detection in the
rod.

This paper is devoted to damage detection in a cantilever beam with da-
mage depth of 20%, 10% and 5% of the beam height by the continuous wavelet
transform (CWT) on mode shapes and operational deflection shapes (ODS).
Its purpose is to present the results of experimental and numerical analyses
of damage detection based on higher order modes. The first eight modes are
considered and the influence of the mode order on the effectiveness of damage
detection by the CWT is analysed in detail.

2. Continuous wavelet transform in damage detection

This section shortly recapitulates the theoretical bases of the continuous wa-
velet transform and its application to detection of singularities. For a given
one-dimensional signal f(x) (here in the form of a beam mode shape, as it
is shown in Fig. 1) the continuous wavelet transform can be defined as (e.g.
Mallat, 1998)

Wf(u, s) =
1√
s

+∞
∫

−∞

f(x)ψ∗
(x− u

s

)

dx (2.1)

where x is the spatial variable, Wf(u, s) is the wavelet coefficient for the
wavelet function ψu,s(x) and the real numbers s and u denote the scale and
the translation parameter, respectively. In the detection of signal singularities,
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the vanishing moments play an important role. A wavelet has n vanishing
moments if the following equation is satisfied

+∞
∫

−∞

xkψ(x) dx = 0 k = 0, 1, 2, . . . , n− 1 (2.2)

Mallat (1998) proved that for wavelets having n vanishing moments and a fast
decay, there exists a smoothing function θ(x) with a fast decay such that

ψ(x) = (−1)nd
nθ(x)

dxn
(2.3)

Therefore the wavelet with n vanishing moments can be rewritten as the n-
th order derivative of the smoothing function θ(x), and the resulting wavelet
transform can be expressed as a multiscale differential operator (Mallat, 1998)

Wf(u, s) = sn
dn

dun

(

f(x) ∗ θs(x)
)

(u) θs(x) =
1√
s
θ
(−x
s

)

(2.4)

where f(x) ∗ θs(x) denotes convolution of functions. Equation (2.4) reveals
that the wavelet transform is the n-th derivative of the signal f(x) smoothed
by the function θs(x) at the scale s. Singularities in a signal f(x) can be
detected by finding the abscissa where the maxima of the wavelet transform
modulus (WTM) |Wf(u, s)| converge at fine scales (Mallat, 1998). The sketch
presented in Fig. 1 illustrates the scheme of operation of the wavelet-based
damage detection technique.

Fig. 1. (a) Geometry of the analysed beam; (b) sketch showing the wavelet-based
damage detection technique

The selection of an appropriate type of the wavelet function and the cho-
ice of the number of its vanishing moments is crucial for the effective use of
the wavelet analysis in damage detection. The application of wavelets which
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create the maximum number of wavelet coefficients that are close to zero faci-
litate damage identification. In this case, strong non-zero values are observed
only in places where damage occurs (Fig. 1). For the first mode shape of a
cantilever or simply supported beam, the wavelet function with 4 vanishing
moments should be used. For structural deflection shapes, which can be ap-
proximated by polynomials of higher order than 4, the use of wavelets with
higher numbers of vanishing moments is necessary. In this paper, the Gaussian
wavelets gaus4, gaus6 and gaus8 (Misiti et al., 2007) having four, six and eight
vanishing moments, respectively, have been tested as the best candidates to
damage detection with the one-dimensional continuous wavelet transform. The
advantages of the Gaussian wavelets were discussed by Mallat (1998), Gentile
and Messina (2003) as well as Rucka and Wilde (2006a,b).

3. Numerical analysis of damage detection on an example of a

cantilever beam

A steel cantilever beam with dimensions b = 0.01m, h = 0.01m, L = 0.4m
is considered as the testing model (Fig. 1a). The experimentally determined
material parameters are: the modulus of elasticity E = 198.25GPa and the
mass density ρ = 7718.59 kg/m3. The beam has introduced a rectangular
notch at the distance xd measured from the fixed end to the notch centre.
The notch of length 0.002m was obtained by a high precision cut. The depth
of the notch is 20% of the beam height.

Numerical simulations were performed on the first eight mode shapes
(Fig. 2). The mode shapes of the beam were computed by the finite element
method using the classical Euler-Bernoulli beam theory. The beam was divided
into 200 elements of length 2mm and damage was modelled as an element with
a reduced height. Each mode shape line was normalized to 1 and a piecewise
cubic spline data interpolation was used to decrease the sampling distance
to 1mm. Then each mode was extended outside the original beam span by
a cubic spline extrapolation based on four neighbouring points to reduce the
boundary effects (cf. Rucka and Wilde, 2006a,b).

In the first simulation, the notch has been introduced at the distance
xd = 0.201m. The CWT was conducted on the first eight beam mode shapes
by the Gaussian wavelet family. The following wavelet functions were applied
in the performed analysis: gaus4 (for the 1st mode shape), gaus6 (for the 2nd,
3rd, 4th mode shapes) and gaus8 (for the 5th, 6th, 7th, 8th mode shapes).
The chosen wavelet functions create the maximum number of wavelet coeffi-



404 M. Rucka

Fig. 2. Numerical mode shapes (black line), curvatures of mode shapes without
damage (dashed line) and curvatures of mode shapes with damage (gray line) for

the considered cantilever beam

cients that are close to zero, and non-zero values dominate at the position of
damage. Figure 3 shows the computed WTM for the 1st to 8th mode shape.
The modulus maximum value grows with the increasing scale s = 1-15, and
the centre notch position can be very well located at xd = 0.201m for the
1st, 2nd, 4th, 6th and 8th mode shapes. However for the 3rd, 5th and 7th
modes, the wavelet transform results do not allow one to identify the damage
existence in this position, because the damage lies within the zero curvature
part of the mode shape. It should also be noted that for the chosen wavelet
(e.g. gaus8), the higher mode (see mode 6th and 8th in Fig. 3), the higher
value of the wavelet transform modulus (for the 6th mode the maximum va-
lue of the WTM is 0.0106, while for the 8th mode is 0.0202). This is a result
of the property of vanishing moments (Eq. (2.2)). A wavelet having n vani-
shing moments is orthogonal to polynomials up to degree n − 1. Since 6th
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Fig. 3. Wavelet transform modulus of the first eight numerical mode shapes for
damage at the distance xd = 0.201m
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and 8th modes can be approximated by polynomials of higher order than 6
and 8, respectively, hence both produce some non-zero coefficients which are
larger for higher order polynomials. Figure 4 presents the WTM of the 2nd
and 8th mode shapes computed using gaus4 and gaus6 wavelets. Application
of the wavelet function with a smaller number of vanishing moments causes
that some non-zero values are observed beyond the defect position. However,
the maximum value of the WTM in the defect place has a larger value for
the wavelet with the smaller number of vanishing moments than for the wa-
velet with the larger number of vanishing moments. For the 8th mode, the
maximum value of WTM is 0.0438 when gaus6 is used and 0.0202 when gaus8
is applied. This is because that the wavelet transform is proportional to the
nth derivative of a function (Eq. (2.4)). Since in Eq. (2.4) a signal function is
smoothed by a smoothing function, values of the WTM are smaller for higher
numbers of vanishing moments n.

Fig. 4. Wavelet transform modulus of the 2nd and 8th numerical mode shapes for
damage at the distance xd = 0.201m

In the second simulation, the notch location xd changes from 0.009m to
0.393m with the step of 0.002m, giving 193 different damage positions. Fi-
gure 5 shows the wavelet analysis on the second mode shape for the beam
with the notch situated near both ends of the beam, namely at xd = 0.021m,
and xd = 0.381m as well as with the notch situated within the beam span
(xd = 0.101m and xd = 0.251m). It is visible that for the established wavelet
function (here: gaus6), the maximum value of the WTM achieves different va-
lues depending on damage localization. Figure 6 shows the value of the WTM
(for the scale s = 15) at the position of the introduced notch. In this way,
we can observe localizations, where the particular mode shape is not sensitive
enough to detect the damage. The 1st mode displays only one such area near
the free end, whereas the 8th mode has eight such dead areas. The regions
where the quality of damage detection by CWT is poor cover of course with
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zeros of mode shape curvatures. The maximum value of WTM for each da-
mage position provides curves (Fig. 6) which agree with the absolute values of
mode shapes curvatures (Fig. 2).

Fig. 5. Wavelet transform modulus of the 2nd numerical mode shape for damage at
the distance (a) xd = 0.021m; (b) xd = 0.151m; (c) xd = 0.251m; (d) xd = 0.381m

4. Experimental verification using scanning laser vibrometer

The experimental setup is shown in Fig. 7. Measurements were performed
on the previously calculated beam with the notch situated at the distance
xd = 0.201m. Three different depths of the notch were considered: name-
ly 20%, 10% and 5% of the beam height. The beam was excited using the
electrodynamic vibration systems TIRA TV 50009 which consists of shaker
S 503 and amplifier BAA 60. The velocity signals were measured by the Po-
lytec Scanning Laser Vibrometer PSV-3D-400-M in 101 point distributed at
the distance of 4mm along the beam axis. The load cell PCB W208C01 was
applied to register the excitation force. In the first step, resonant frequen-
cies were found using the frequency response function (FRF). The periodic
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Fig. 6. Values of the wavelet transform modulus line (for the scale s = 15) at the
position of damage (position of damage xd from 0.009m to 0.393m, every 0.002m)
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chirp signal excitation was applied in the frequency range from 0 to 10 kHz. It
was possible to identify eight resonant frequencies within this range with the
resolution of 0.78125 Hz (for example frequencies for the beam with 20% de-
fect were found to be: 47.65625 Hz, 285.15625 Hz, 782.8125 Hz, 1577.34375 Hz,
2709.375 Hz, 3848.4375 Hz, 5380.46875 Hz, 6796.09375 Hz). Each velocity and
force measurements were repeated ten times and then the data were averaged
in the frequency domain. The estimator H1 for the FRF was used because
for scanning measurements the output noise was bigger than the input noise.
Next, a sine excitation at eight particular frequencies was used to measure the
deflection shapes. The measured dynamic shapes for the beam with the notch
of depth 20% are illustrated in Fig. 8. For the single input force and small
damping, if the structure is excited at a resonance, the ODS are similar to the
mode shapes (Waldron et al., 2002).

Fig. 7. Experimental setup

The wavelet transform analysis on the measured ODS for the beam with
20% defect were performed using the Gaussian wavelet family (gaus4 for the
1st and 2nd ODS, gaus6 for 3rd to 8th ODS). The wavelet transform modulus
results are illustrated in Fig. 9. Detection of damage using the 1st ODS was
impossible due to insufficient quality of the signal. In the case of 2nd, 4th, 6th
and 8th ODS, the dominant maxima lines, corresponding to the defect po-
sitions, increase monotonically, and for larger scales they achieve the largest
values. The notch presence can be easily recognized and its position determi-
ned by the wavelet analysis varies from 0.2m to 0.201m. The wavelet analysis
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Fig. 8. Experimentally measured operational deflection shapes (black line) and their
curvatures (gray line) for the beam with defect of 20% depth

of the 3rd, 5th and 7th ODS makes it impossible or ambiguous to detect da-
mage presence and localization because these ODS have zero curvatures in the
vicinity of damage location. Figure 10 shows the wavelet transform modulus
of 2nd and 8th ODS performed using gaus6 and gaus8 wavelets, respective-
ly. Note, that the application of wavelets with a higher number of vanishing
moments provides worse damage identification on experimental data, becau-
se the wavelet function with smaller numbers of vanishing moments removes
small single fluctuations due to measurement noise, and the detection of large
variations is dominated.

Results for the beam with the defect of depth 10% are illustrated in Fig. 11.
Only 6th and 8th mode enable defect localization using gaus6 wavelet. If gaus8
was applied, the identification was impossible. Defect of depth 5% of the beam
height was impossible to localize, even on higher modes (Fig. 12).
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Fig. 9. Wavelet transform modulus of the first eight experimental operational
deflection shapes (defect with depth of 20%)
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Fig. 10. Wavelet transform modulus of the 2nd and 8th experimental operational
deflection shapes (defect with depth of 20%)

5. Conclusions

In this paper, the wavelet-based damage detection technique was investigated
both experimentally and numerically on an example of the cantilever beam
with damage in the form of the notch of depth 20%, 10% and 5% of the beam
height. The analysis was performed on the first eight mode shapes. Results of
the research on the effectiveness of the wavelet-base damage detection techni-
que applied to higher vibration modes lead to the following conclusions:

• For the established wavelet function, if the mode is higher, the value of
the wavelet transform modulus is also higher, what indicates that higher
modes are more sensitive to the presence of the defect.

• For the established mode shape, if the number of vanishing moments of
the wavelet is higher, the WTM contains a large number of zero valu-
es, what facilitates damage identification. In this case, strong non-zero
values are observed only in places where the damage occurs. On the
other hand, the application of the wavelet function with a smaller num-
ber of vanishing moments causes that some non-zero values are observed
beyond the defect position.

• For the established mode shape, the maximum value of the WTM in the
defect place is larger for the wavelet with the smaller number of vanishing
moments than for the wavelet with larger numbers of vanishing moments.

Experimental investigations demonstrated that:

• Damage detection by the CWT on the first ODS was impossible, even
though the ODS was determined using very precise apparatus.

• Damage detection by the wavelet analysis was more effective on higher
experimentally measured ODS.
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Fig. 11. Wavelet transform modulus of the first eight experimental operational
deflection shapes (defect with depth of 10%)
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Fig. 12. Wavelet transform modulus of the 6th and 8th experimental operational
deflection shapes (defect with depth of 5%)

• The smallest detectable defect was found to be of depth 10% of the beam
height. Localization of this defect was only possible on higher vibration
modes (on the 6th and 8th ODS).

• For experimental data, the analysis of higher operational deflection sha-
pes by the CWT using wavelets with smaller numbers of vanishing mo-
ments appeared to be more effective. Application of wavelets with higher
number of vanishing moments provided worse or even impossible damage
identification.

Each mode shape has one or more regions in which it loses sensitivity
to damage detection by the CWT. These regions are in agreement with the
zeros of mode shapes curvatures. Higher modes are more sensitive to damage;
however they contain more dead zones, where the quality of damage detection
by the CWT is poor. Dead zones for particular mode shapes generally do
not cover; therefore damage detection based on the CWT is possible for each
damage position, if more than one mode is available. For reliable damage
localization, minimum two modes are necessary. The future studies will be
dedicated to develop a solution that will allow selecting which particular modes
should be measured (instead of measuring all possible modes) in order to
identify damage at an arbitrary position by the CWT technique.
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Wykrywanie uszkodzeń w konstrukcjach belkowych za pomocą

transformaty falkowej na bazie wyższych postaci drgań

Streszczenie

Niniejsza praca poświęcona jest technice diagnostyki konstrukcji bazującej na
transformacie falkowej. Badany obiekt to belka wspornikowa z uszkodzeniami w fir-
mie nacięcia o głębokości 20%, 10% oraz 5% wysokości belki. Pomiary postaci drgań
wykonano za pomocą nowoczesnego wibrometru laserowego. Celem pracy jest przed-
stawienie eksperymentalnych i numerycznych analiz wpływu wyższych postaci drgań
na efektywność wykrywania uszkodzeń metodą ciągłej transformaty falkowej.
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