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The study presents several cases where use of specimens with reduced overall dimensions,
i.e. mini specimens in the course of fatigue tests is advantageous. The high-cycle fatigue
tests based on a developed method have been performed on mini specimens and normative
specimens (comparative tests). The tests have been conducted on EN AW-6063 aluminum
alloy specimens. A correction coefficient determined as a result of monotonic tests and
selected models of the size effect have been critically assessed based on the test results.
A statistical Weibull’s weakest link model and a monofractal approach based on a fractal
dimension have been verified.
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1. Introduction

Taking the size effect into consideration in the engineering practice is a known issue. It does not
allow using the material properties from normative tests for specimens with a different cross-
-sectional area. The issue applies to both specimens with smaller and larger dimensions compared
to the normative specimen.
A size effect coefficient (cross-section size K) may be determined based on the durability

tests on specimens with different dimensions. The coefficient value is expressed as follows

KZ =
Z

Zn
KHC =

σ

σn
KS =

Rm
Rmn

(1.1)

where Z/σ/Rm is the fatigue limit/fatigue strength/ultimate tensile strength of a specimen with
any cross-section, Zn/σn/Rmn is the fatigue limit/fatigue strength/ultimate tensile strength of
the normative specimen (cross-section 20-80mm2) prepared using the identical material.
The size effect is defined based on probabilistic models. The probability of material defects

resulting in fatigue crack increases with the specimen volume (Kocańda and Szala, 1997). The
effect was proven in the experimental studies on small specimens (Furuya, 2011; Haftirman,
2009; Hirose et al., 2000) confirming that metals are sensitive to changes in the cross-section.
Figure 1 shows the size effect test results for aluminum alloys.
In general, the size effect reduces fatigue strength and fatigue life with an increase in the

specimen size. The results show a linear change of the coefficient K (in a specific dimension
range) in relation to the cross-sectional area of the specimen. The impact of the size effect on
mechanical properties depends on the type and local features of the material structure (grain
size, microcracks, inclusions, discontinuities, dislocations and other defects). It is particularly
significant for large objects, e.g. bridge components, concrete slabs, hulls, bulkheads, decks and
masts.
Strength testing of structural materials (monotonic, fatigue) is mostly conducted on norma-

tive specimens (PN-74/H-04327) with a repeatable quality at specific geometry and dimensions.
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Fig. 1. Relation between the coefficient KZ to cross-sectional area of round, bent specimens; own data
based on (Brueggeman and Mayer, 1948; Hyler et al., 1954; Troshchenko and Sosnowski, 1987)

The tests on real-life objects (in operation) are limited (material and instrumentation availabi-
lity, testing costs). The tests on smaller specimens (mini specimens) are dedicated for specific
conditions depending on the object and the nature of the test, which translates directly into
availability of the test results for non-standard specimens. The trend is shown in Fig. 2 as a
quantitative distribution of the relation between the probability of obtaining experimental data
and the cross-sectional area of the specimen.

Fig. 2. Schematic approach to quantitative distribution of the probability of obtaining experimental
data for different cross-sectional areas

The following mathematical models of the size effect (SEM) have been presented to estimate
the normative test results (laboratory) to specimens with different geometry (cross-sectional
area). One of the first models is a statistical model based on the weakest link theory (Weibull,
1939). Another concept is a fractal approach with a fractal dimension depending on the material
structure (Carpinteri et al., 2001, 2009). The literature also contains references to the size effect
law (Bažant, 1984) and a critical volume model (Sosnovski, 1990).

The models are used for objects with the similar geometry and made of the identical material.
The models may be used to estimate fatigue characteristics for specimens with different cross-
-sectional areas. Figure 3 shows σa-N curves for specimens with a cross-section AA and AB
subject to a one-axis load.

The discussed approach to the size effect issue allows one to use the presented models to
estimate the high-cycle fatigue performance of specimens with lower or higher cross-sectional area
than the normative specimens. This approach is checked if mini specimen tests are appropriate.

A test method based on mini specimens has been suggested due to the extension of the scope
of fatigue tests outside the standard guidelines (imposed specimen geometry). It applies to the



Verification of selected models of the size effect... 885

Fig. 3. σa-N curves in a double-logarithmic coordinate system for specimens with different
cross-sectional areas

Fig. 4. Examples of mini specimen application: (a) sampling from a thin-walled structure, (b) sampling
from a component in operation, (c) test on a test stand with simplified loading system

cases where sampling is limited due to the size of a structural object. The tendency to dimension
the machine components by rigidity (thin, geometrically developed walls) and not the strength
leads to manufacturing of thin-walled objects with complex shapes. The examples include profile
sections (Fig. 4a) made of an aluminum alloy used in the extrusion moulding process. Strength
and cyclic properties of a pre-cast material change as a result of plastic strain specific to the
process. The actual fatigue life can be determined by testing the specimens sampled from the
finished components only.

Another approach is to verify the mechanical properties of the material of a structural
element in operation to determine the failure rate (damage) compared to a new component. The
examples include the structural nodes showed in Fig. 4b. A significantly lower volume of the
mini specimens allows comprehensive fatigue test even with a limited availability of the source
material. The impact of interference on the construction is greatly reduced.

The determination of fatigue performance is in many cases limited due to financial consi-
derations (availability of testing machines, test lead time etc.). A range of used loads may be
reduced to lower the costs. Also smaller forces are achievable at the test stand for reduced cross-
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-sectional areas of the specimens. It allows using simplified loading systems, e.g. with a kinematic
excitation (Fig. 4c) to reduce the operating and test stand investment costs.

This study aims to at verification of the size effect models within the scope of the results of
the experimental tests on non-standard and normative specimens. The non-standard specimen
is a specimen geometrically smaller (mini specimen) from the normative specimen. A criterion
to select the model is a quality of matching the estimated fatigue life of the normative specimen
based on the base performance data (obtained for a non-standard specimen).

2. Mathematical size effect models

2.1. Weakest link theory (Weibull, 1939)

A statistical model of the weakest link theory is based on the Weibull probability distribution
of failure. The theory describes a scatter of strength properties of brittle materials (e.g. ceramics).
It is also used for testing cyclic loading of metals (Weibull, 1949). It results from the nature of
the failure itself. A fatigue crack is initiated by a randomly distributed material defects as in the
case of brittle materials. The theory is used in high-cycle fatigue tests to determine a fatigue life
allowing for the stress gradient effect (Karolczuk and Palin-Luc, 2013) or to define the scatter
of strength properties in multiaxial fatigue (Flaceliere and Morel, 2004).

The theory is based on statistically distributed defects (non-homogeneities, inclusions, cracks,
precipitates) in a material per volume unit. A crack is initiated in a specific volume where the
most dangerous defect or the weakest link exists. The propagation of fatigue cracks is indepen-
dent in different areas. The Weibull distribution relates the effect of load and cross-sectional area
with the fatigue life. It may be used in a qualitative determination of the effect of cross-sectional
area. A classic form of the Weibull distribution for the failure probability is

P (σ,Ω) = 1− exp

[

−
1

Ωo

∫

Ω

f(σ) dΩ

]

(2.1)

where Ωo is the reference volume or surface, f(σ) is a function of the risk of rupture (two or
three parameters)

f(σ) =
( σ

σo

)m

f(σ) =
(σ − σu
σo

)m

(2.2)

where m is the shape parameter of the Weibull distribution function, σu is the threshold stress,
σo is the scale parameter.

The results of high-cycle fatigue tests are defined with a cumulative distribution func-
tion of failure probability (two parameters) of a function depending on the number of cycles
(P = f(N)). The fatigue life for a specific stress level shows a certain scatter with the distribu-
tion defined on a logarithmic scale (Schijve, 2009) and is expressed as follows

P (N) = 1− exp

[

−

( logN

logNo

)m
]

(2.3)

where No is the reference fatigue life (probability 0.63) for a specific stress level, m is the
distribution shape coefficient corresponding to the fatigue life scatter bandwidth N .

If the distribution of the results for the tested material may be expressed by Eq. (2.1), the
results may be estimated for specimens with different cross-sectional areas. The distribution
shape parameter m and the reference fatigue life No are material constants independent of the
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specimen size and stress distribution. The following relation may be used for a similar failure
probability, stress distribution and two different specimen sizes

N2
N1
=
(A1
A2

)

1

m

(2.4)

where N1 is the fatigue life for a specimen with the known surface (cross-sectional area) A1, N2 is
the estimated fatigue life for the specimen with determined surface (cross-sectional area) A2.
The failure probability value based on experimental data is estimated as follows

p =
i− 0.5

n
(2.5)

where i is the ordinal test number (1, 2, . . . , n), n is the number of tested specimens for a
specific load level.

2.2. Model based on the one-dimension fractal approach (Carpinteri et al., 2001, 2009)

A size effect is described using a fractal approach, where the material structure ligaments
are modelled using a fractal set (as in the case of Cantor’s mathematical set). The crack area is
modelled using similar fractal sets with geometry based on the von Koch curve. New mechanical
properties may be determined based on physical dimensions depending on the fractal dimension
treated as the fractional dimension. The material ligament failures or the macroscopic cracks
are modelled using this model.
The basic law of linear scaling of fractals is a one-dimension fractal approach (monofractal

– nomenclature as per Carpinteri et al. (2009)) using the fractal dimension. A non-linear model
was presented (multifractal approach), where the material properties were defined by three
parameters. It applies to large objects, where the effect of micro-structure and micro-failures on
mechanical properties is gradually reduced with an increase in object dimensions.
The monofractal approach can be used to determine the size effect on material fatigue. It is

based on Basquin’s equation to define the results of the experimental high-cycle fatigue tests

C = N(σa)
β (2.6)

where C is a constant parameter, β is the slope of the σa-N curve. Assuming the parallelism
(β = const ) between the σa-N curves for specimens with different size and the relation between
the constant C parameter and the cross-sectional area A, the following may be derived

CB = CA
(AA
AB

)

−dβ

(2.7)

where AA, AB are the cross-sectional areas for geometrically similar specimens A and B assu-
ming that AB > AA, CA, CB are constant parameters of the σa-N curve, dβ is the slope of
the curve (Fig. 5). The relation between the cross-sectional area and the material structure is
described by the fractal dimension α = 2−d (0 ¬ d ¬ 0.5). For AA = 1, AB = A and CA = C1
for the cross-sectional area A = 1, Eq. (2.7) it is expressed as

C(A) = C1(A)
−dβ (2.8)

The position of the C(A)-A curve is determined based on constant parameters C of the
σa-N curves for specimens with different cross-sectional areas A. C(A) tend towards zero for
specific characteristics. Thus σa tends towards zero for each N value. Therefore, the monofractal
approach is true for a narrow range of object dimensions. Equations (2.7), (2.8) define the
sensitivity of a material or a group of materials to the change in the cross-sectional area.
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Fig. 5. Relation between the C(A) parameter of the σa-N curve and the cross-sectional area A in a
bilogarithmic scale

2.3. Other models

A model presented by Bažant (1984) is a deviation from the standard size effect theory.
The total potential energy release (caused by a fatigue crack) depends on the crack length and
propagation area. The size of the crack propagation area is constant and independent of the
structure dimensions.
A statistical model of the size effect presented by Sosnovski (1990) assumes a limited area

(finite dimensions) with a critical level of normal stresses within the specimen. The area is known
as the critical volume of solid body deformation. It depends on volume, geometry, stress gradient
and distribution function parameters for a specific probability. A statistical solid body includes
a set of basic elements, each to a degree responsible for the strength of the entire body. The
critical volume of the specimen is defined as ‘a measure of responsibility’ of each elementary
volume.

3. Experimental tests

3.1. Test conditions

High-cycle fatigue tests have been performed on specimens with two different geometries
(normative specimen (PN-74/H-04327), mini specimen – Table 1) of similar shape. The speci-
mens were made of EN AW-6063 aluminum alloy. The tested materials were taken as flat bars
with the same thickness as the specimens to avoid machining. The specimen geometry was im-
posed by an aspect ratio αk of 1.05. The mini specimens were machined in sets (milling). The
surface was not ground or polished.

Table 1. Specimen dimensions

Thickness Min. width Radius Cross-sectional area
[mm] [mm] [mm] [mm2]

Normative specimen 4 7 50 28

Mini specimen 1 3.5 25 3.5

The experimental tests were conducted for the high-cycle fatigue with controlled stress. A
macro crack was the test end criterion. The aluminum alloys showed cyclic hardening above the
yield point. It was observed in the course of cyclic tests on prestrain specimens, where a 15%
increase in yield point was reported (Tomaszewski and Sempruch, 2012). A 190MPa (normative
specimen) and 210MPa (mini specimen) stress was taken as the upper limit of high-cycle fatigue.
A fatigue life of 1 · 106-5 · 106 cycles was taken as the lower limit of the tested area (Sonsino,
2007). The tests were performed at a 5Hz frequency of the load change. A load cycle with a
stress ratio R = 0.1 which eliminated the mini specimen buckling was used. The tests were
performed on the servo-hydraulic testing machine Instron 8874.
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3.2. Test results in monotonic load conditions

The mechanical properties of the material were measured via a static tensile test compliant
with the norm (PN-EN ISO 6892-1:2010). The test was performed on specimens with a cross-
-sectional area corresponding to the specimens used in fatigue tests. The properties were deter-
mined for two geometries (five specimens each). Table 2 and Fig. 6 show the average results.
The results indicate a relation between the strength properties and the cross-sectional area.

Table 2. Monotonic material properties

Rm [MPa] Re [MPa] A [%] Z [%]

Normative specimen (A = 28mm2)

200 167 16.6 61.2

Mini specimen (A = 3.5mm2)

230 208 10.8 53.0

KS
1.15 1.25 – –

Fig. 6. Static tensile plot

3.3. Test results in fatigue load conditions

Figure 7 shows the fatigue test results. The experimental points were approximated to the
linear form log σa = a logN + b, for which the confidence interval of 0.95 was determined.

Fig. 7. σa-N curves for the normative and mini specimen

The correlation coefficient R2 (0.93 – mini specimen, 0.97 – normative specimen) was used
as a measure of matching the regression model. High values reflect quality and repeatability
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of the results. Despite high agreement between the slope coefficient a of the regression line,
the test of significance was performed. There were no premises to discard the hypothesis on
the equality of the slope coefficients a (parallel in relation to σa-N curves). The scatter of
strength properties for the tested specimens was described with a coefficient KHC independent
of the stress level. The position of specimen crack with a random distribution was measured.
It indicated no effect of the geometry shape, machining and other factors on the test results
(Tomaszewski and Sempruch, 2014).

4. Implementation of the size effect models

The selected models of the size effect theory were used to estimate the fatigue life of the normative
specimen. The fatigue life for the cross-sectional area of this specimen was determined using the
σa-N curve received for the mini specimen. The regression line obtained as a result of the
experimental tests on the normative specimens was used as the reference. The coefficient of
residual variation and the standard error of the estimate were used to define the matching rate
of the estimated lines (based on the models) and the experimental data.

The weakest link theory was the first implemented model. The estimated failure probability
(2.5) was non-linear approximated to a cumulative distribution function of the two-dimensional
Weibull distribution as in Eq. (2.3). The reference fatigue life No and m parameter values were
determined for the stress amplitude σa (Table 3). Figure 8 shows experimental points on the
σa-N curve with the fatigue life scatter for P = 0.05, 0.63, 0.95. The fatigue life for the normative
specimen was estimated based on Eq. (2.4).

Table 3. Probability distribution model parameters resulting from Eq. (2.3) for the results of
the experimental tests on the mini specimen

σa [MPa] logNo m

93.6 5.261 40.01

89 5.491 65.49

84.6 5.704 85.08

80 6.040 61.92

75.6 6.374 42.39

Fig. 8. σa-N curve with experimental values and fatigue life scatter for P = 0.05, 0.95 and the reference
fatigue life (P = 0.63) of the Weibull distribution

The monofractal approach was also applied due to the extent of tested geometry sizes. The
basic characteristic (mini specimen) was defined using Eq. (2.6) as 2.0013 · 1030 = N(σa)

12.76.
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The fractal dimension for aluminum alloys is α = 1.934, d = 0.066 (based on the analysis
of four aluminum alloys in Tomaszewski and Sempruch (2013)). Based on the results of the
experimental tests on the mini specimen, curve Eq. (2.7) was plotted (relation between the
constant parameter C and the specimen cross-sectional area A on a natural logarithmic scale).
The constant CB is calculated from Eq. (2.7) for a defined cross-sectional area (AB) of the
normative specimen. Figure 9 shows the experimental values (mini specimen) and the estimated
values (normative specimen) along the C-A curve. This approach allowed one to determine
values of The C parameter for specimens with different cross-sectional areas while maintaining
the assumed constant slope of the σa-N curves.

Fig. 9. Relation between the parameter C and cross-sectional area A for EN AW-6063 aluminum alloy

5. Results analysis

The results of the experimental tests and applied models of the size effect were defined with a
linear regression model with a slope coefficient a and an absolute term b (Table 4).

Table 4. Parameters of the inear regression model, standard error of the estimate and the
coefficient of variation in relation to empirical values

Data

Linear regression Standard error Coefficient of

line of estimate residual variation

log σa=a logN + b Se=

√

1

n− 2

n
∑

i=1

(yi − yi est)2 Ve =
Se
y
· 100%

a b Se [cycles] Ve [%]

Mini specimen
−0.078 2.37 331 518 41.3

experimental tests

Normative specimen
−0.078 2.32 162 209 24.1

experimental tests

Weakest link theory −0.088 2.41 930 951 138.1

Monofractal approach −0.078 2.33 285 788 42.4

Coefficient KS for Rm
−0.078 2.31 309 815 45.9

from monotonic test

Figure 10e shows the results of the experimental test (normative specimen – confidence
interval, mini specimen – regression line) and dashed lines showing the fatigue life results based
on the models (item 2 – weakest link model Eq. (2.4), monofractal approach Eq. (2.7)) and
the dotted line (based on the coefficient KS resulting from the monotonic tests). The curves
were calculated based on the results of the experimental test on mini specimens. The equivalent
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fatigue life values were determined for the normative specimen. Figure 10e shows the analysed
models (allowing for the size effect) result in the offset of σa-N curves in the right direction.

Figure 10a shows the fatigue life scatter (experimental tests) for specimens with different
geometry. The confidence interval of the results of the tests on the normative specimens does
not correspond to the results obtained for the mini specimens. It is due to evident impact of
the size effect on fatigue life of the specimens made of EN AW-6063 aluminum alloy. Its value
is defined with the coefficient KHC with a mean value of the stress amplitude of 1.13.

The coefficient KS resulting from Eq. (1.1)3 was used to estimate the fatigue life based on
monotonic tests. Figure 10b shows that in specific conditions, the coefficient KS may be used as
a correction coefficient for the parallel characteristics offset (for mini specimen) in the direction
of lower fatigue life values. The high satisfaction level resulting from the quality of the results
requires further verification for different groups of structural materials.

Fig. 10. Fatigue curves plotted based on the experimental tests and mathematical models: (a) mini
specimen (experimental), normative specimen (experimental), (b) normative specimen (experimental),
monotonic tests (analytical – based on KS), (c) normative specimen (experimental), weakest link
theory (analytical), (d) normative specimen (experimental), monofractal approach (analytical),

(e) comparison σa-N curves
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Figures 10c and 10d show that the better approximation (compared the weakest link mo-
del) was obtained using the monofractal model with the coefficient of residual variation equal
to 42.4%. The fractal model locates the σa-N curve on the safe side. The estimated fatigue life
values are lower than the regression line for experimental points.

6. Conclusions

The intention of the study is to recall the necessity of taking into consideration the size effect in
structural calculations. Some inaccuracies found in calculations using various fatigue strength
and fatigue life models in mechanical engineering are a result of neglecting the size effect.

The experimental tests show a significant impact of the size effect on both monotonic and
fatigue loads. Its value is defined by a size effect coefficient of 1.15 (KS) and 1.13 (KHC).
Despite the diverse nature of specimen failure in monotonic and fatigue tests, high conformity
of the size effect coefficient is observed.

The weakest link theory model which only requires the Weibull distribution parameters
for the σa-N curve is the least complex among the verified theoretical models. The monofractal
approach requires a mean value of the fractal dimension based on the results of the experimental
tests on the size effects available in the literature (at least two different cross-sectional areas)
for a group of materials (in this case four different aluminum alloys).
The applied models allow an offset of the basic characteristics in the right direction (Fig. 10e)

to estimate the fatigue life with lower values. It is consistent with the experimental results.
Weibull’s model does not reflect the material constants and thus the results are affected by a
138.1% error. The σa-N curve is characterised by a different slope inconsistent with the results
of the experimental tests. An accurate approximation is possible with the monofractal model
affected by a 42.4% error.
The characteristics offset using the KS coefficient is determined by an unexpectedly low

error (45.9%) considering the divergence in the definition of monotonic and fatigue tests. This
conclusion shall be treated as a signal rather than an approval of the applicability of this value.
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