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In modern engineering materials used for creating effective ballistic shields, the issues of
evaluation of their energy consumption are extremely important. The paper presents a new
way of solving this problem using a certain degenerate model with dry friction. This method
involves the use of specially derived identification equations which describe the decrease
in potential energy of the system during its vibratory motion induced by a single pulse
load. Analytical considerations have been verified using a computer simulation technique for
selected examples.
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1. Introduction

The amount of the energy that is absorbed in mechanical vibrating systems is usually described
by a single parameter that is related to the adopted model in form of pure viscous friction (the
friction that is proportional to the rate of deformation of the material) or so-called dry friction.
In the case of the ballistic impact on shields which are made of modern (lightweight) materials,
this issue becomes very complicated, because of complex and time-related strains that occur
during penetration of the projectile into the shield. The pierced material is subjected to varying
degrees of shearing, tension and compression, which depend primarily on the impact velocity
as well as on the shape and mechanical properties of the shield and the projectile. This issue
was comprehensively discussed in Bourke’s (2007) studies. The problem of dissipation of kinetic
energy of the projectile in multilayer materials, such as laminates and composites, is currently
analyzed by many researchers, such as Abrate (1998, 2010), Sanchez-Galvez et al. (2005), Garćıa-
Castillo et al. (2012), Sidney et al. (2011), Hou et al. (2010), Katz et al. (2008). The mathematical
approach to dissipation of the impact energy based on these works is an original approach to the
problem. Tabiei and Nilakantan (2008) presented the in-depth description of this phenomena
through the analysis of the literature on the subject matter. The authors have synthetically
presented the previous areas of the research conducted by worldwide scientists. In the papers
by Jamroziak and Bocian (2008), Kulisiewicz et al. (2008), Jamroziak et al. (2010), the issue of
dissipation of the impact energy was presented using the degenerate models.
It is generally assumed that the work A done by the projectile during the process of piercing

may be described by drop of its kinetic energy E, starting from the zero position (the impact
velocity) up to the moment it leaves the shield or stops in the shield. The relations that describe
piercing are derived on the basis of the a priori assumed models of the constitutive relations
(stress–strain relations) which are highly complex for this type of materials, as it can be seen
in the papers by Jach et al. (2004), Rusiński et al. (2005), Buchmayr et al. (2008). Some of the
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assumptions which are adopted for the description of these models were also included in the
paper by Iluk (2012). Buchacz and his team have been conducting a long-time research aiming
to develop a mathematical algorithm of analysis and synthesis of simple and complex mechanical
and mechatronic systems. To realize these tasks, different categories of graphs and structural
numbers were proposed by Białas (2008), Buchacz (1995), Buchacz and Wojnarowski (1995),
Buchacz and Płaczek (2009). The studies included also computer-aided methods of realizing
these tasks, Buchacz (2005). Vibrating mechatronic systems with piezoelectric transducers used
to damp or induce vibrations were modelled and analysed in the papers by Baier and Lubczyń-
ski (2009), Buchacz and Wróbel (2010). The aim of these works was to identify the optimal
(according to the adopted criteria) mathematical model of the analysed systems as well as to
develop mathematical tools useful to analyse these systems using approximate methods, see
Białas (2010, 2012), Buchacz and Płaczek (2010), Wróbel (2012), Żółkiewski (2010, 2011) and
the paper by Kulisiewicz et al. (2001) presenting the balance methods. Most of the hypotheses
concerning the problem of dissipation of the impact energy take as the starting point the well
known law of conservation of energy. This analysis was presented in the papers by Włodarczyk
(2006), Włodarczyk and Jackowski (2008), Carlucci and Jacobson (2008).

2. Formulation of the problem

The basic assumption made by the authors is that the lightweight shield acts on the piercing
mass m with the resisting force S, whoose functional form is based on the mathematical analysis
of the dynamic model. This paper assumes the model presented on the scheme shown in Fig. 1b.
The standard model consists of the Maxwell element in parallel configuration with a purely

elastic element c and the element h that describes dry friction. It may be noted that the adoption
of the constant c0 →∞ in this system results in obtaining the widely used dynamic model which
describes the vibrations of one-degree-of-freedom mechanical systems with dry friction (Fig. 1a).
Similarly, if c = 0, the obtained model takes form of the purely Maxwell element in parallel
configuration with the element h. In this sense, the system presented in Fig. 1b is the universal
model, which should accurately describe the mechanical properties of many modern construction
materials. The introduction of the element h of dry friction in both models has been based on
the results of the previous research of the authors, which concerned the impact process. This
research was presented in the papers by Bocian et al. (2009), Jamroziak et al. (2009), Jamroziak
and Bocian (2010).

Fig. 1. The scheme of the analyzed dynamic models: (a) typical model with dry friction; (b) standard
model (Zener model) with dry friction
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3. Energy consumption according to the classic model with dry friction

The commonly used method for assessing the energy losses in dynamic and vibrating systems
is based on the concept of damping decrement. This parameter describes the amplitude decay
rate of free vibrations in linear systems with viscous damping. In the case when the damping
is non-linear (as it is in the system shown in Fig. 1a), the convenient measure of the vibrations
decay can take form of the decrease of potential energy of the deformed part of the system (e.g.
shield), which is observed during damped vibrations. In the case of oscillations induced by a
single pulse (impact), the typical shape of the system takes form shown in Fig. 2.

Fig. 2. The typical shape of the system response to the pulse load; (a) pulse p = p(t), (b) x(t) diagram

As it can be noted, at the time points t1 and t2, the displacement x(t) reaches the extreme
values. At these points of time, the velocity v(t) must have the value of zero, that is

v(t1) = v(t2) = 0 (3.1)

which follows directly from the definition of velocity (v = dx/dt).
In the case of the system shown in Fig. 1a, motion of the mass m is described by the

differential equation

mẍ+ kẋ+ h sgn ẋ+ cx = p(t) (3.2)

By multiplying the above equation by the elementary displacement dx = ẋdt and integrating it
in the time period t ∈ (t1, t2), we obtain the following sequence
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It can be seen that the last integral (3.3) must be equal to zero for a pulse of any shape as long
as the influence of the pulse force ends at the moment t0 < t1. Such a situation is the most
common case in practice and it can be easily checked on appropriate time graphs. Taking into
account results (3.3), a relation in the following form is obtained for equation (3.2)
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kβvx + h(x1 − x2) =
c

2
(x21 − x

2
2) βvx =

t2
∫

t1

v2 dt > 0 (3.4)

It can be seen that βvx is equal to the field limited by the relation v(x), which is the part of the
phase trajectory of the pulse load system in the time interval ∆t = t2 − t1 (Fig. 3).

Fig. 3. Typical shape of the phase trajectory of the analyzed system in the time interval ∆t

4. Energy consumption according to the Zener model with dry friction

The movement of the mass m, in the case of the model shown in Fig. 1b, can be written with
a single third-order differential equation of the form
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]

= p(t) (4.1)

Using the same transformations as it has been done in the previous model, we obtain the following
sequence
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The above results, after summing up and taking into account the similar components derived
from the analysis of the previous model, give us an equation of the form
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As it can be seen, the equation that has been derived is a bit different from the similar equation
used in the previous model (cf. (3.4)1). It may be noted that, although the first components are
positive, the third component must be less than zero. This is because the variable βva is of the
form
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Integrating the above integral by parts, gives
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In addition, for c0 → ∞, equation (4.3) is identical to equation (3.4)1. Because of that, the
energy losses described by equation (4.3) are more complete and, therefore, this equation should
be used in practice. Some exemplary results of computer simulations are described below.

5. The simulations

Looking for solutions to differential equations (3.2) and (4.1), which describe vibrations of the
analyzed models using the Mathematica software, simulation studies were performed. The fol-
lowing values have been substituted into equations (3.3)2,3 and (3.3)5 of model 1a and into
equations (4.2)1,2 and (4.2)3 of model 1b:

• Model 1a: k = 480 kg/s, c = 30000 kg/s2, m = 40 kg, h = 5

• Model 1b: k = 480 kg/s, c = 30000 kg/s2, c0 = 20000 kg/s2, m = 40 kg, k0 = 406 kg/s,
h = 5.

Each case included simulation of the pulse load in the form of:

– for t < 0.1 s

– where the force p(t) has been modeled by function p(t) = A sin(10πt).

Responses of the models for pulse loads and different parameters are illustrated in the following
figures (Figs. 4–7). Examples of the applied exciting force p(t) are shown in Fig. 4. The pulses
were one-sided and their assumed time of duration was equal to t0 = 0.1 s. Examples of the
obtained responses are shown in Fig. 5 for model (a) and in Fig. 6 for model (b). The phase
trajectories for both models are presented in Fig. 7.

Fig. 4. Pulse loads p(t): (a) for model 1a, (b) for model 1b

Fig. 5. Responses to the pulse loads for model 1a, (a) velocity v = v(t), (b) displacement x = x(t)
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Fig. 6. Responses to the pulse loads for model 1b, (a) velocity v = v(t), (b) displacement x = x(t)

Fig. 7. Trajectories of the phase analysis for simulation in the time interval ∆t: (a) for model 1a, (b) for
model 1b

The loop fields have been determined on the basis of the results obtained during simulations.
Then, the values of coefficients from the identification equation (Table 1) were generated using
the linear regression. As it can be seen, these equations are generally satisfied, although in one
case of model (b) the estimated value of the coefficient contains a big mistake. In other cases,
the mistakes were no greater than 10%.

Table 1. The parameters assumed and derived from the linear regression

Model (a) Model (b)

Assumed Derived Assumed Derived

2k
c
= 3.20 · 10−2

2k
c
= 3.18 · 10−2

2k0m
c0c
= 5.40 · 10−5

2k0m
c0c
= 5.19 · 10−5

– –
2k0(c0 + c)
c0c

= 6.77 · 10−4
2k0(c0 + c)
c0c

= 6.0 · 10−4

2h
c
= 3.333 · 10−4

2h
c
= 3.328 · 10−4

2h
c
= 3.333 · 10−4

2h
c
= 3.313 · 10−4

6. Summary

The presented fragment of the research work concerns the analysis of the energy consumption of
dynamic rheological models in the process of ballistic impact. Two dynamic models have been
adopted for this analysis. The first model describes vibrations of mechanical systems with one
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degree of freedom, and the second one describes vibrations of mechanical systems with one and
a half degree of freedom. This is a model from a group of the degenerate models. The analysis
of the models have been conducted based on the mathematical relations which determine the
dissipation of the impact energy.
The models have also been subjected to computer simulation in order to verify the theoretical

assumptions. The simulations resulted in obtaining time responses for the pulse force p(t). It
has been assumed that at the time points t1 and t2, the displacement x(t) should reach the
extreme values for the points of time in which the velocity v(t) must have the value of zero.
The simulation has confirmed the expected objectives. Indeed, for the velocity v(t) (Fig. 5), at
moments its reaches zero, the displacement in these moments x(t) reaches its maximum (Fig. 6).
It can be also noted that in the case of the degenerate model, the displacement x(t) takes much
lower values than in model 1a. These differences occur because the responses of this model are
suppressed more effectively. This also shows that the process of energy consumption is described
more accurately by the degenerate model.
The obtained shapes of the phase trajectory of the analyzed systems in the time interval ∆t

shows also some significant differences. Drawing conclusions requires still some additional simu-
lations at this stage. The presented diagrams provide rather the qualitative description of these
phenomena. To reach a quantitative description, a number of research studies still have to be
carried out, and their results will be presented in the future papers.
To sum up, the hypothesis assumed by the authors that the degenerate models can quite

accurately describe the mechanical properties of modern structural materials has been confirmed
and justifies the direction of the undertaken work.
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