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The paper is focused on numerical identification of 2D temperature fields in flow boiling of
the liquid through a horizontal minichannel with a rectangular cross-section. The heat trans-
fer process in the minichannel is described by a two-dimensional energy equation with the
corresponding boundary conditions. Liquid temperature is determined using the homotopy
perturbation method (HPM) with Trefftz functions for Laplace’a equation. The numerical
solution to the energy equation found with the HPM is compared with the solution obtained
for the simplified form of the energy equation. Considering that only the thermal sublayer
is taken into account, both solutions give similar results.
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Nomenclature

a – thermal diffusivity [m2/ s]
a, b, c, d – approximation coefficients
cp – specific heat [J/(kgK)]
D – hydraulic diametrer [m]
f – friction coefficient
G – mass flux [kg/(m2s)]
h – homotopy
H – minichannel length [m]
N,M – number of Trefftz functions
p – pressure [Pa]
Pr – Prandtl number
q – heat flux [W/m2]
qV – volumetric heat flux [W/m3]
Re – Reynolds number
S – section area [m2]
T – temperature [K]
u – Trefftz function
w – velocity [m/s]
x – distance along minichannel length [m]
y – distance along glass, foil and liquid [m]
α – heat transfer coefficient [W/(m2K)]
δ – thickness, depth [m]
ϕ – void fraction
λ – thermal conductivity [W/(mK)]
µ – dynamic viscosity [Pa s]
ρ – density [kg/m3]
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Subscripts
ave – average, G – glass, F – foil, f – liquid, h – hydraulic, in – inlet, k – measurement

point, n – number of function, M – minichannel, out – outlet, sat – saturation, T – thermal
layer, 0 – initial approximation

Superscripts
n – refers to number of function, -̃- refers to particular solution

1. Introduction

The Trefftz method, first described by Trefftz (1926), is used for solving any partial differential
equations that are linear. The method involves approximating the unknown solution using a
linear combination of functions that exactly satisfy the given differential equation, i.e., Tref-
ftz functions. The linear combination coefficients are determined through minimizing the error
functional that describes the mean-square error between the approximate solution and the adop-
ted boundary conditions. In Ciałkowski and Frąckowiak (2002), Herrera (2000), Maciąg (2011),
Zieliński (1995) the authors reported the use of Trefftz functions for solving direct and inverse
problems in mechanics.
The homotopy perturbation method (HPM) proposed by He (1999) is a useful tool for

obtaining exact and approximate solutions to linear and nonlinear partial differential equations.
The unknown solution to the differential equation is expressed as the summation of an infinite
series that is supposed to be convergent to the exact solution. The HPM procedure generally
requires few calculation steps to achieve the accuracy of the solutions. Additional information
on HPM can be found in He (2000, 2006), Momani and Odibat (2007), Rajabi et al. (2007),
Jafari and Seifi (2009), Słota (2011). Application of HPM to the solution of direct and inverse
stationary and non stationary heat conduction problems was presented in Hetmaniok et al.
(2012), Al-Khatib et al. (2014) and Grysa et al. (2012).
The paper presents a two-dimensional mathematical model describing heat transfer in flow

boiling in an asymmetrically heated rectangular minichannel. In each of the three domains of
the test section: the glass pane, the heating foil and the liquid, the heat transfer process has
been described by different differential equations with appropriate boundary conditions. The
solution of these equations leads to the solution of a threefold conjugated heat transfer problem
consisting of a direct problem (in the glass pane) and two inverse problems (in the heating foil
and boiling liquid). The Trefftz functions for Laplace’s equation are used to determine two-
dimensional temperature distributions in the glass pane, in the heating foil and in the liquid.
The aim of this study is to apply the HPM coupled with the Trefftz method to find the two-
dimensional temperature distribution of the boiling liquid flowing in an asymmetrically heated
horizontal minichannel. Known liquid and foil temperature distributions help determination of
the heat transfer coefficient from the Robin condition.

2. Experiment

Discussed in detail by Piasecka (2013, 2014) the experimental approach to this issue is described
below in brief. In the experiment in which the difference between temperatures of the heating
foil and the liquid is small, heat transfer enhancement occurs through the phase change that
accompanies the boiling process. A microstructured heating surface (the heating foil is enhanced
on the side of the fluid) additionally intensifies the process which described Piasecka (2013, 2014).
The basic module of the experimental stand is the test section with a minichannel and

cooling liquid FC-72 flowing through it, seeFig. 1. One of the walls of the minichannel, made of
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the heating foil supplied with the controlled direct current, is isolated with a glass pane from
the outside environment. A thin layer of liquid crystals deposited on the exterior of the foil
helps measurement of two-dimensional temperature distribution. Boiling liquid flow structures
are observed through the glass pane closing the minichannel on the other side of the flow.
The measurements included the local temperature of the heating foil, liquid inlet and outlet
temperatures and pressure, current and voltage drop of the electric power supplied to the foil,
local void fraction and mass flux. Numerical calculations for FC-72 were performed based on
the experiment and on the results described in detail in Piasecka (2014).

Fig. 1. Measuring module: 1 – glass panes, 2 – heating foil, 3 – thermosensitive liquid crystals,
4 – minichannel, 5 – thermocouples and pressure gauges (pictorial view, not to scale)

3. Mathematical model

For simplicity, only two dimensions are taken into account: dimension x along the flow direction
and dimension y, perpendicular to the flow direction, relating to the thickness of the protecting
glass (δG) and the foil (δF ), and to the depth of the channel (δM ), Fig. 2. We focused on the
central part of the measurement module (along its length) so that the physical phenomena on
the side edges did not affect the thermodynamic parameters within the investigated segment,
Fig. 2. The fluid flow in the minichannel was assumed to be steady, stationary and laminar
(Re < 2000) with a constant mass flux, (Hożejowska et al., 2014; Hożejowska and Piasecka,
2014). The velocity vector had only one component w(y) parallel to the heating foil (with other
components equal to zero) given by the formula

w(y) =
∆p

2µH
(δMy − y2) (3.1)

Thus the energy equation exclusively for the liquid phase can be written as follows

LTf = ATf (3.2)

where L = ∂2/∂x2+∂2/∂y2 is the Laplace operator and A is the differential operator defined as

A =
w(y)
a

∂

∂x
a =

λf
cp,fρf

The boundary conditions for equation (3.2) are as follows (Bohdal, 2000; Hożejowska et al.,
2014):
— liquid temperatures at the inlet and outlet of the minichannel are known

Tf (0, y) = Tin

Tf (H, y) = Tout

}
for 0 ¬ y ¬ δM (3.3)
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— liquid temperature in the domain of contact with the heating foil meets the condition

Tf (x, δG + δF ) =

{
TF (x, 0) if TF (x, 0) < Tsat(x)

Tsat(x) if TF (x, 0)  Tsat(x)
(3.4)

where Tsat is the saturation temperature dependent on the pressure p(x) which changes linearly
along the minichannel,
— the two-phase mixture per unit volume in the minichannel contains vapour phase and liquid
phase in proportion ϕ and (1 − ϕ), respectively. The same proportions of vapour and liquid
phases are assumed to refer to any cross-sectional area of the minichannel and then to the heat
transfer surface. For bubbly and bubbly-slug flows, following Bohdal (2000), Hożejowska et al.
(2014), the whole heat flux generated in the foil is assumed to be transferred to the liquid phase
in proportion carried over from the void fraction

λf
∂Tf
∂y
= λF (1− ϕ(x))

∂TF
∂y

for y = 0 and 0 ¬ x ¬ H (3.5)

Figure 2 shows a diagram of the unit with the minichannel and the boundary conditions.

Fig. 2. Scheme of the measuring module with boundary conditions (pictorial view, not to scale)

The temperatures of the heating foil and the glass are assumed to satisfy the following
equations (Hożejowska et al., 2009; Piasecka et al., 2004):
— in the glass

LTG = 0 (3.6)

— in the foil

LTF = −
qV
λF

(3.7)

The conditions at the glass-foil contact can be written as

TF (xk,−δF ) = TG(xk,−δF ) = Tk

λF
∂TF
∂y
= λG

∂TG
∂y

y = −δF 0 ¬ x ¬ H
(3.8)

where Tk denotes the temperature measured at the glass-foil interface at discrete points (xk,−δF )
using liquid crystals thermography. The remaining boundaries are assumed to be isolated, Fig. 2.
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When the heating foil temperature distribution and the temperature gradient are known, the
heat transfer coefficient α(x) at the foil-liquid interface can be determined from the Robin
condition

−λF
∂TF
∂y
(x, 0) = α(x)[TF (x, 0) − Tf,ave(x)] (3.9)

The reference temperature Tf,ave is determined as a mean liquid temperature in the thermal
layer

Tf,ave(x) =
1
δT

δT∫

0

Tf (x, y) dy (3.10)

where δT is the thickness of the thermal boundary layer determined by Bohdal (2000)

δT =
− 1
3

Pr δh (3.11)

and

δh =
2µf

fwaveρf
f =
64
Re

Re =
waveρfD

µf
(3.12)

and wave is the mean velocity of the liquid, calculated from

wave =
1
0.5δM

0.5δM∫

0

w(y) dy (3.13)

4. Numerical methods

4.1. Trefftz method

The Trefftz method has been used to calculate approximate two-dimensional temperature
distributions of the glass pane and the heating foil. The unknown distributions of TG and TF
have been approximated with a linear combination of the Trefftz functions ui(x, y) adequate for
Laplace’s equation (3.6) (Piasecka et al., 2004), in this case harmonic polynomials, that is

TG(x, y) =
NG∑

i=1

aiui(x, y) TF (x, y) = ũ(x, y) +
NF∑

j=1

bjuj(x, y) (4.1)

where ũ(x, y) is the particular solution to equation (3.7). The unknown coefficients ai and bj of
linear combinations (4.1) are calculated using the least square method which led to minimizing
the functionals suitable for each function TG and TF . These functionals describe the mean
squared error between the approximates and prescribed boundary conditions. This procedure
was thoroughly discussed in Piasecka et al. (2004) and Hożejowska et al. (2009).
Numerical computations have been made sequentially. We obtained the solution first in

the glass, and then in the heating foil. The approximate functions TG and TF , obtained with
the Trefftz method, satisfied exactly equations (3.6) and (3.7), respectively, and approximately
the adopted boundary conditions. Solving these equations has led to solving two heat transfer
problems: the direct problem in the glass and then the inverse problem in the heating foil. Fluid
temperature has been computed in the next stage by solving the inverse problem with the HPM
and Trefftz method combined.
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4.2. Homotopy perturbation method (HPM)

The use of the HPM in combination with the Trefftz method for identifying the source
function was presented in Grysa and Maciąg (2013) and Al-Khatib et al. (2014). In this study,
the above combination is used to find the two-dimensional liquid temperature distribution in
the minichannel. According to the homotopy method, a homotopy h(x, y, p) can be constructed
as the solution to

(1− p)[L(h)− L(u0)] + p[L(h) −A(h)] = 0 (4.2)

where the parameter 0 ¬ p ¬ 1 and u0 is the initial approximation of equation (2) that satisfies
boundary conditions (3.3)-(3.5). Substituting p = 1 into (4.2), we have

L(h)−A(h) = 0 (4.3)

that is equation (3.2).
Expanding the function h in the power series in p, we obtain

h(x, y, p) = h0(x, y) + h1(x, y)p + h2(x, y)p2 + h3(x, y)p3 + . . . (4.4)

and the solution to (3.2) is expressed as

Tf (x, y) = lim
p→1

h(x, y, p) = h0(x, y) + h1(x, y) + h2(x, y) + h3(x, y) + . . . (4.5)

Finally, we take an approximate solution of (3.2) in form of truncated series (4.5)

Tf (x, y) =
Nf∑

i=0

hi(x, y) (4.6)

The convergence of HPM for partial differential equations was proved in Biazar and Ghazvini
(2009) and Turkyilmazoglu (2011). The outcome of computations indicates that satisfactory
results can be obtained with three or four terms in series (4.6). The assumptions relating to the
initial approximation u0 can be weaker. In further calculation, the initial approximation may
be an arbitrary function. Substituting (4.4) into (4.2) and comparing coefficients at subsequent
powers of p to zero, we obtain a system of equations from which we calculate h0, h1, h2, . . .
sequentially

L(h0)− L(u0) = 0
L(h1) + L(u0)−A(h0) = 0
L(h2)−A(h1) = 0
...

L(hNf )−A(hNf−1) = 0

(4.7)

The Trefftz method is used to determine functions hn(x, y), n = 0, 1, . . . , Nf , which are solutions
to successive equations in system (4.7). In this case, the solutions hn(x, y) contain two terms: a
linear combination of the Trefftz functions ui(x, y) and a particular solution of the n-th equation
from system (4.7), see Ciałkowski and Frąckowiak (2000), i.e.
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h0(x, y) =
N0∑

i=1

c
(0)
i ui(x, y) + u0

h1(x, y) =
N1∑

i=1

c
(1)
i ui(x, y) + L−1[A(h0)]− u0

h2(x, y) =
N2∑

i=1

c
(2)
i ui(x, y) + L−1[A(h2)]

...

hn(x, y) =
Nn∑

i=1

c
(n)
i ui(x, y) + L−1[A(hn−1)]

(4.8)

where the functions u0, L−1[A(h0)]− u0, L−1[A(hn)] are particular solutions to the appropriate
equations from system (4.7) and L−1 is the inverse of operator L. Since the differential operators
L and A are linear, one can rewrite recursive formula (4.8) in a more concise form

h0(x, y) =
N0∑

i=1

c
(0)
i ui(x, y) + u0

hn(x, y) =
n∑

s=0

Ns∑

i=1

c
(s)
i L−(n−s)[An−s(ui(x, y))] + L−n[An(u0)]− L−n+1[An−1(u0)]

n = 1, 2, . . . , Nf

(4.9)

where L−n = L−1(L−(n−1)) and An = A(An−1). The description of the use of inverse operators
in the Trefftz method can be found in Ciałkowski and Frąckowiak (2000), Grysa et al. (2012).
Known boundary conditions (3.3)-(3.5) help determination of the coefficients of linear com-

bination (4.8) by minimizing the corresponding error functional appropriate for each function
hn(x, y), n = 0, 1, . . . , Nf . Sequential determination of the functions hn(x, y) requires each time
taking into account the computed functions hn(x, y) in boundary conditions (3.3)-(3.5) after
appropriate modification (Grysa and Maciąg, 2013). The approximate liquid temperature com-
puted from (4.6) satisfies approximately both equation (3.2) and boundary conditions (3.3)-(3.5).

5. Results

Numerical calculations for cooling liquid FC-72 have been performed based on the experimental
results described in detail in Piasecka (2013, 2014) concerning a forced flow of FC-72 through
an asymmetrically heated minichannel, Fig. 3. The flow structures and the void fraction have
also been observed. In further calculations, the local void fraction determined at lengths 0.09m,
0.133m, 0.27m, and 0.34m is approximated with a quadratic function, Fig. 3.
Approximate temperature distributions of the glass, heating foil and liquid have been deter-

mined sequentially. In the first instance, the approximate temperatures of the glass TG and
the heating foil TF were calculated knowing both the temperature distribution at the foil-
-glass interface and the heat flux at the foil inside the surface-liquid interface. Fifteen Tref-
ftz functions ui(x, y) for Laplace’s equation were adopted for calculations, i.e. NG = NF = 15.
To determine TG and TF , we adopted the particular solution to equation (4.1) in the form
ũ(x, y) = −0.5qV λ−1F y2. The distribution of the fluid temperature could be obtained only after
determining the glass and the foil temperature. The liquid temperature Tf in the minichannel
was determined based on (4.6) with the initial approximation u0 = 0 (other forms of the initial
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Fig. 3. (a) Hue distribution on the exterior of the minichannel obtained with liquid crystal
thermography and the corresponding flow structures observed for the given temperature distribution,

(b) void fraction. Experimental parameters of the runs (Piasecka, 2014); foil parameters:
δF = 1.02 · 10−4m, H = 0.35m, λF = 8.3W/(mK); glass parameters: δG = 0.006m, λG = 0.71W/(mK);
for #1: G = 282kg/(m2s), Re = 944, pin = 129kPa, Tin = 293K, Tout = 319K, qV = 1.92 · 105 kW/m3;
for #2: G = 277kg/(m2s), Re = 009, pin = 139 kPa, Tin = 293K, Tout = 334K, qV = 2.99 · 105 kW/m3

approximation u0, for example, a harmonic function, did not affect the final result). The follo-
wing quantities were used in calculations: local void fraction, pressure drop, liquid temperature
at the inlet and outlet of the minichannel, liquid saturation temperature and the foil tempe-
rature gradient in the foil-liquid contact area along the channel. Three steps of recursion were
made approximating hn(x, y) with five Trefftz functions ui(x, y) in each step, i.e. Nf = 2 and
Nn = 5. Figure 4 presents two-dimensional temperature distribution of the glass, the foil and
the flowing liquid. Application of Trefftz method allowed to obtain two-dimensional temperature
distributions in the three neighbouring domains.

Fig. 4. Temperature of the glass pane and the heating foil determined by the Trefftz method.
Temperature of the liquid obtained HPM /Trefftz method. Additional data: as in Fig. 3 for #2

To verify the solution obtained by the HPM combined with the Trefftz method, equation
(3.2) has been solved using a different approach with an additional simplification. The liquid
temperature change along the whole minichannel length has been replaced with the formula
from (Bohdal, 2000)

∂Tf
∂x
=

Dq

SGcp,f
(5.1)
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Substituting (5.1) into (3.2), we obtain the Poisson equation. The solution to this equation is
given in the form of the sum of the linear combination of the Trefftz functions ui(x, y) and the
particular solution

TF (x, y) =
Mf∑

j=1

djuj(x, y) +
Dqρf
SGλf

L−1[w(y)] (5.2)

The coefficients dj are calculated in the same way as in the Trefftz method. Five Trefftz functions
ui(x, y) are taken, analogously to the combination of the HPM with the Trefftz method.
Figure 5 compares the cooling liquid temperature distribution derived from the solution ob-

tained from formulas (4.6) and (5.2). Both approaches produce very similar results in the thermal
layer, Fig. 5. This is the result of the fact that the determination of the liquid temperature in
the minichannel leads to the solution of the inverse problem.

Fig. 5. Temperature of the liquid: (a) obtained by formula (4.6), (b) obtained by formula (5.2),
(c) temperature scale; additional data: as in Fig. 3 for #2

For correct interpretation of the temperature distribution shown in Fig. 5, one has to take
into account the physics of flow boiling. In the considered case, the heat received from the foil
is transferred by the bubbles of gas to the center (axis) of the minichannel which can be seen
in Fig. 4. For that reason, once the boiling incipience has taken place, the bubbles lower the
temperature of the fluid in the immediate neighbourhood of the foil and the temperature of the
foil alone, see Fig. 5. The measured temperature of the heating foil at the foil-glass contact, see
Fig. 3, confirms that such a phenomenon is observed (i.e. temperature rise and then a rapid drop
after the boiling incipience), see Fig. 4 and Fig. 5 as well as the figures presented in Piasecka
(2013, 2014).
In Hożejowska and Piasecka (2014) and Hożejowska et al. (2014) in order to determine the

temperature of the liquid for equation (3.2), the Trefftz functions were derived assuming the
velocity w(y) to be a roof or parabolic function. When the velocity profile has a more complex
form, liquid temperature can be calculated from the HPM combined with the Trefftz method.
The known temperature field of the liquid is employed to determine the heat transfer coeffi-

cient at the contact point of the foil and liquid, calculated from Robin condition (3.9). Figure 6
presents the heat transfer coefficient calculated from Eq. (3.9) when the liquid temperature is
calculated using the HPM plus Trefftz method and when the liquid temperature is obtained
by (5.2). Concentrating only on the thermal sublayer, we obtain similar plots of heat transfer
coefficients, Fig. 6, with differences that do not exceed 5 kW/(m2K) on average. A fast increase
in the heat transfer coefficient values results from the phase change which accompanies heat
transfer. It is observed that when the heat flux supplied to the heating wall grows, the heat
transfer coefficient grows too. A further increase in the heat flux results in an increase in the
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void fraction and a decrease in the heat transfer coefficient, Fig. 6. In the enhanced boiling
region, heat transfer coefficient values decrease with the distance from the minichannel inlet and
with the increasing vapour fraction in the flowing mixture.

Fig. 6. Heat transfer coefficients as a function of the minichannel length obtained using: (a) HPM plus
Trefftz method, (b) Trefftz method and inverse operations; additional data: as in Fig. 3

6. Conclusions

The presented combination of the HPM and the Trefftz method helps determination of the
approximate two-dimensional temperature distribution of the boiling liquid. The Trefftz method
is used to solve the direct heat transfer problem for the glass pane and the inverse problem in the
heating foil, determining their temperatures and gradients. Known temperature distributions in
the foil-liquid contact area are used to compute the heat transfer coefficient from the Robin
boundary condition. The results are summarized and compared with those obtained from the
simplified model. The resulting two-dimensional liquid temperature distributions are similar, in
particular when the considerations are limited to the thermal layer. An analogous relationship
is observed for the heat transfer coefficient calculated for both models. The advantage of the
HPM/Trefftz method combination is its simplicity and a small number of steps of recursion to
produce a satisfactory result. The number of Trefftz functions used in calculations is also small.
In addition, this combination of methods can be used to solve problems described by non-linear
equations. Thus, further work will be directed towards determination of the temperature of the
liquid phase, vapour phase and the mixture of these two phases in two-phase flows for more
complex models than those presented here.
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