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With the help of the equation of optimum overstrain or depth of the plastic zone, a set
of concise and accurate equations for residual stresses and their equivalent stress as well
as the total stress and their equivalent stresses are obtained, and features of these stresses
are discussed, thereupon the law of distribution and the varying tendency of these stresses
become clearer. Safe and optimum load-bearing conditions for a cylinder are presented.
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1. Introduction

Much of mechanical problems is involved in the autofrettage of cylinders. Currently, researches
on autofrettage have been concentrated mostly on specific engineering problems, while a general
theoretical study is rare. Due to their structural geometric features and the load bearing pattern,
we feel that there must be a mathematical mystery behind autofrettage theory of cylinders, which
theoretically describes the physical meaning of autofrettaged cylinders. To discover the general
law contained in autofrettage theory, the autofrettage of a cylinder is investigated based on the
fourth strength theory by theoretical analysis and the image method.

The autofrettage technology is a clever and effective measure to obtain a favorable stress
pattern inside the wall of a cylinder and raise of load-bearing capacity for (ultra-)high pressure
vessels. Much of mechanical problems is concerned in the autofrettage of cylinders. Lots of
researches concentrated upon specific engineering problems in the autofrettage have been done
(Gao et al., 2008; Hameed et al., 2004; Huang et al., 2009, 2011; Levy et al., 2003; Lin et al.,
2009; Zheng et al., 2010; Zheng and Xuan, 2010; etc.), nevertheless, many theoretical problems
in the autofrettage remain unsolved. No doubt it would be necessary to solve specific engineering
problems about the autofrettage, but theoretical studies are more penetrating and can probe
deeply into the essence of things, thus have universality and generality. Moreover, because of
their structural geometric features and load bearing pattern, we feel that there must be more
to it than meets the eye in autofrettage theory of cylinders, which theoretically describes the
physical meaning of autofrettaged cylinders. Therefore, we dismiss specific engineering problems
and do general research about the autofrettage in this paper.

For an autofrettaged cylinder, depth of the plastic zone kj or overstrain ε is key, which
affects residual stresses and load-bearing capacity. For determination of kj , previous researchers
presented various methods. A repeated trial calculation method to determine the radius of
elastic-plastic juncture rj was presented by Yu (1990), which is too tedious and inaccurate,
and this method is based on limiting only the hoop stress and is essentially based on the first
strength theory which is in agreement with brittle materials, while pressure vessels are made
usually from ductile materials which are in excellent agreement with the third or fourth strength
theory (Yu, 1990). Another method for determination of rj to ensure the equivalent stress of
total stress at elastic-plastic juncture σej to be minimum was also suggested by Yu (1990).
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However, to ensure σej to be minimum is not ideal and optimal, for it cannot ensure that a
cylinder is not yielded compressively (reversed yielding) when processed with autofrettage, and
its load-bearing capacity cannot be raised as high as possible. Thus, Zhu (2008) advanced an
expression to calculate the depth of the plastic zone kj for a cylinder with the radius ratio k
not to be yielded compressively when it is autofrettaged in his previous research, which is
k2 ln k2j − k2 − k2j + 2 = 0. If kj of a cylinder is determined by this equation, its ultimate load-
bearing capacity can reach two times the initial yield pressure (the maximum elastic load-bearing
capability of an unautofrettaged cylinder), 2pe (Zhu, 2008). By use of k

2 ln k2j −k2−k2j +2 = 0,
Zhu and Zhu (2013a) simplified the equations for the residual stresses and the total stress, thus
the laws of distribution and varying tendency of these stresses were discovered and relations
among various parameters were revealed. By limiting the hoop residual stress, Zhu and Zhu
(2013b) studied load-bearing capacity and depth of the plastic zone of an autofrettaged cylinder,
where load-bearing capacity and depth of the plastic zone are both fixed for a certain k, and there
is a sole corresponding depth of the plastic zone kjθ for a certain k. We found that the research
should be carried on in a more extensive and more general sense, and it is well known that the
greater the kj , the greater the load-bearing capacity, while the more different to perform the
autofrettage technology. Therefore, if it is not necessary for a cylinder to bear 2pe or (

√
3+2)pe/2

(Zhu and Zhu, 2013b), kj can be lowered to be beneficial to the performance of autofrettage
technology. Then, how to determine kj of a cylinder for a certain load-bearing capacity and the
radius ratio k? Or what is the relation between kj and k for a certain load-bearing capacity
when p < 2pe? What results will be brought about by this relation? How to determine the load-
bearing capacity of a cylinder for a certain kj and k? What is the characteristics of residual
stresses and their equivalent stress as well as total stress and their equivalent stress under new
conditions? Therefore, on the basis of the author’s previous work, this paper is intended to resolve
more general theoretical problems in the autofrettage and bring to light essential relations and
laws contained in the current theory on the autofrettage according to the fourth strength theory
(Mises yield criterion).

Because we deal with the ideal case, and problems about the autofrettage under specific
engineering conditions can be resolved by reference to the results of this paper on the basis of the
specific engineering conditions, we bypass specific engineering conditions which vary in thousands
of ways and do our research based on the following ideal conditions as in our previous works:
(1) the material of a cylinder is perfectly elastic-plastic and Bauschinger’s effect is neglected,
the compressive yield limit is equal to the tensile one; (2) strain hardening is ignored; (3) there
is not any defect in the material.

It is hoped that the obtained theoretical results are of academic value and are referential as
well as applicable to the design of (ultra-)high pressure apparatus.

2. Residual stresses under ordinary condition

At a general location (relative location, r/ri) within the plastic zone, the residual stresses are
as follows(ZHU, 2008)

σ′z
σy
=
1√
3

[k2j
k2
+ ln
(r/ri)

2

k2j
−
(

1−
k2j
k2
+ ln k2j

) 1

k2 − 1
]

σ′r
σy
=
1√
3

[k2j
k2
− 1 + ln (r/ri)

2

k2j
−
(
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k2j
k2
+ ln k2j

) 1

k2 − 1
(
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(r/ri)2

)]

σ′θ
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1√
3

[k2j
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+ 1 + ln

(r/ri)
2
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−
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) 1

k2 − 1
(

1 +
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(r/ri)2

)]

(2.1)
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Therefore, the equivalent residual stress at a general radius location within the plastic zone
is (Yu, 1990)

σ′e
σy
=

√
3

2

(σ′θ
σy
− σ

′
r

σy

)

= 1−
k2 − k2j + k2 ln k2j
(k2 − 1)(r/ri)2

(2.2)

where σ′z, σ
′
r, σ
′
θ are axial, radial and hoop residual stress, respectively; ri, rj , ro are inside radius,

elastic-plastic juncture radius, outside radius, respectively; k is the radius ratio or ratio of the
outside to inside radius, k = ro/ri; kj is depth of the plastic zone, or plastic depth, kj = rj/ri;
σy is yield strength; σ

′
e is equivalent residual stress; σ

′
e/σy is relative equivalent residual stress;

subscript i represents the internal surface, subscript j represents the elastic-plastic juncture.
The residual stresses at a general location within the elastic zone are as follows (Zhu, 2008)
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) 1
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(2.3)

Therefore, the equivalent residual stress at a general radius location within the elastic zone
is (Yu, 1990)

σ′e
σy
=

√
3

2

(σ′θ
σy
− σ

′
r

σy

)

=
k2(k2j − 1− ln k2j )
(k2 − 1)(r/ri)2

(2.4)

3. Discussion about plastic depth or overstrain

When the equivalent stress of total stress (residual stress plus the stresses caused by the operation
pressure p) at the elastic-plastic juncture reaches the yield strength, or σej = σy, the relation
for p, the pressure a cylinder can contain, σy, k and kj is as follows(Yu, 1990)

p

σy
=
k2 − k2j + k2 ln k2j√

3k2
(3.1)

Zhu (2008) showed that when radius ratio is greater than critical radius ratio, or k > kc =
2.218 457 489 916 7 . . ., if kj ¬ kj∗ , where kj∗ is determined by k2 ln k2j∗ − k2 − k2j∗ + 2 = 0, the
absolute value of equivalent stress of residual stress at the internal surface |σ′ei| ¬ σy, when
kj = kj∗ , |σ′ei| = σy and

p

σy
= 2
k2 − 1√
3k2
= 2
pe
σy

when k < kc, kj = k (entire yielded), |σ′ei| < σy and a cylinder can bear the entire yield loading,
py/σy = (ln k

2)/
√
3. Then

p

σy
=
py
σy
=
ln k2√
3
=
k2 ln k2

k2 − 1
pe
σy
= η
pe
σy

(k < kc) (3.2)

where η = k2 ln k2/(k2 − 1), pe is the initial yield pressure of an unautofrettaged cylinder,
pe/σy = (k

2 − 1)/(
√
3k2); η is called the reinforcing coefficient and reflects the level of increase



362 R. Zhu, Q. Li

in the load-bearing capacity. When k > kc, to reflect the level of increase in the load-bearing
capacity, letting p = λpe, then

p

σy
= λ
k2 − 1√
3k2
= λ
pe
σy

(k > kc) (3.3)

where λ is also called the reinforcing coefficient. Substituting Eq. (3.3) into Eq. (3.1), one obtains

k2 ln k2jλ − (λ− 1)k2 − k2jλ + λ = 0 (3.4)

where kj is written as kjλ to indicate that the safe plastic depth kj is related with λ.

The overstrain is defined as

ε =
rj − ri
ro − ri

=
kj − 1
k − 1 (3.5)

Substituting kj from Eq. (3.5) into Eq. (3.4), one obtains

k2 ln[ελ(k − 1) + 1]2 − (λ− 1)k2 − [ελ(k − 1) + 1]2 + λ = 0 (3.6)

If ε and k meet Eq. (3.6), where ε is written as ελ, and a cylinder contains pressure
determined by Eq. (3.3), σej/σy = 1, |σ′ei| ¬ σy. When λ = 1, σ′ei = −σy. ελ determined by Eq.
(3.6) is called the optimum overstrain, and kjλ determined by Eq. (3.4) is called the optimum
plastic depth. They are plotted in Fig. 1.

Fig. 1. The optimum plastic depth and optimum overstrain; (a) the optimum plastic depth,
(b) the optimum overstrain

It can be known that from Eq. (3.4), Eq. (3.6) and Fig. 1 that:

(1) If λ ¬ 1 (curves 1-3), k < kj and ελ  1. This is meaningless in the engineering.
(2) If λ  1 (curves 4-9), the curves for Eq. (3.4) or (3.6) are divided into two branches, for
the left of which, k < 1 and ελ < 0, which is meaningless in the engineering. For the right
of the two branches, the line k = kj or ελ = 1 divides the curves into two parts: above
the line, k < kj or ελ > 1, this is meaningless in application; below the line, k > kj and
ελ < 1. So, it is the part below the line k = kj or ελ = 1 that is of significance.

When k < kc, letting kjλ = k (= kcλ) in Eq. (3.4) or ελ = 1 in Eq. (3.6) one obtains the
critical radius ratio kcλ or the radius ratio when the whole wall is yielded while |σ′ei| ¬ σy
under a certain λ, which is

k2cλ ln k
2
cλ − λ(k2cλ − 1) = 0 or λ =

1

k2cλ − 1
k2cλ ln k

2
cλ (3.7)
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When k < kcλ, kj can be k, i.e. the entire yield autofrettage. When k > kcλ, kj should be
determined by Eq. (3.4). Equation (3.7) is the same as the above η in form. The prerequisite
to kj = k is k < kc. Thus we obtain the reinforcing coefficient η for k < kc by a different
method. η in Eq. (3.2) is the greatest reinforcing coefficient when kj = k (entire yielded
autofrettage cylinder) in the case that k < kc. In the case that k < kc, kj = k is not
always required, if a shallower plastic zone is feasible, a lesser reinforcing coefficient λ
can be determined by Eq. (3.4). Then, Eq. (3.4) can be regarded as embodying Eq. (3.2)
and Eq. (3.7). In the case that k > kc, the greatest reinforcing coefficient is λ ≡ 2. So,
integrating Eq. (3.2), we obtain the greatest reinforcing coefficient for any k (1 ¬ k ¬ ∞),
as shown in Fig. 2.

(3) kj and ελ decrease with k increasing on the right of the two branches.

Thus, discussion about the autofrettage is not significant unless λ > 1. Since compressive
yield occurs when λ > 2 (when λ > 2, ελ is higher than the value on curve 8 on which
σ′ei = −σy), curve 9 in Fig. 1a is meaningless. Besides, curves 1-3 and the left of curves 4-8
in Fig. 1 are meaningless. The abscissa can be taken as the curve with λ = 1 (ε = 0).
Thus, significant and possible plastic depth lies in a trapezoid surrounded by the abscissa
(λ = 1), the slanting straight line k = kj and the curve k

2 ln k2−k2−k2jλ+2 = 0 (curve 8
in Fig. 1a for λ = 2). The coordinates of four vertexes of this quasi-infinite area (m, o, v, n)
are shown in Fig. 1a. The significant and possible overstrain lies in a trapezoid surrounded
by the horizontal line ε = 0 (λ = 1), the vertical line (k = 1), the horizontal line ε = 1
and the curve k2 ln[ελ(k − 1) + 1]2 − k2 − [ελ(k − 1) + 1]2 + 2 = 0 (curve 8 in Fig. 1b for
λ = 2). The coordinates of five vertexes of this quasi-infinite area (m,u, o, v, n) are shown
in Fig. 1b. When k →∞, points n and v coincide.

Fig. 2. The greatest reinforcing coefficient

4. Discussion about residual stresses and their equivalent stress under kjλ

If kj is determined by Eq. (3.4) or kj = kjλ and k  kcλ, with the help of Eq. (3.4), Eqs.
(2.1)-(2.4) become

σ′z
σy
=
1√
3
(lnx2 − λ+ 1) σ′r

σy
=
1√
3

(

lnx2 +
λ

x2
− λ
)

σ′θ
σy
=
1√
3

(

lnx2 − λ
x2
− λ+ 2

) σ′e
σy
= 1− λ

x2

(4.1)

where x = r/ri, the same below. When λ ¬ 1 +
√
3/2, |σ′θi/σy| ¬ 1; when λ ¬ 2, |σ′ei/σy| ¬ 1.

σ′z, σ
′
r, σ
′
θ and σ

′
e have nothing to do with kj and k within the plastic zone, which means that

for some λ, the curves of residual stress in whichever direction (axial, radial and hoop direction),
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and the equivalent residual stress (i.e. σ′z, σ
′
r, σ
′
θ and σ

′
e) for various plastic depth kjλ and the

radius ratio k coincide

σ′z
σy
≡ 1√
3k2
(k2jλ − λ)

σ′r
σy
=
(

1− k
2

x2

)σ′z
σy

σ′θ
σy
=
(

1 +
k2

x2

)σ′z
σy

σ′e
σy
=
1

x2
(k2jλ − λ)

(4.2)

The curves of residual stresses at a general location for k = 3, λ = 1.2 and 1.8 when kj = kjλ
are plotted in Fig. 3. In this three cases, |σ′ei| < σy for kj = kjλ and λ < 2.

Fig. 3. Curves of residual stresses and their equivalent stress at a general location;
(a) k = 3, λ = 1.2, kjλ = 1.106693, (b) k = 3, λ = 1.8, kjλ = 1.539944,

(c) k = 5, λ = 1.8, kjλ = 1.50584

The three curves of residual stress (σ′z/σy, σ
′
r/σy and σ

′
θ/σy) at a general location collect at

a fixed point within plastic zone: [
√
λ, (ln λ+1− λ)/2] for any k, kj and λ, and the coordinate

of the intersection is not related with k and kj but only with λ. If kj 6= kjλ, this situation
does not happen, the coordinate of the intersection is related not only with λ but also with k
and kj .
The equivalent stress of residual stress at the internal surface is the most dangerous, and

when λ  1, σ′ei ¬ 0, which implies compressive stress; when λ ¬ 2, σ′ei  −σy. Since
kj 
√
λ (kj  e(λ−1)/2 at the same time), then, when λ ¬ 1, k2j−λ > 0 within the elastic zone, or

equivalent stress of residual stress σ′e > 0 (tension) within the elastic zone. At the elastic-plastic
juncture, where x = kjλ, the equivalent stress of residual stress is the maximum (algebraic
value, not absolute value) within the whole elastic zone, or σ′ej/σy = (k

2
jλ−λ)/k2jλ = 1−λ/k2jλ.

Obviously, 0 < σ′ej/σy < 1.

From Eq. (3.4), when k = ∞, kjλ = e(λ−1)/2 = k∞jλ, then from Eqs. (4.2), within the whole
elastic zone

σ′z
σy
≡ e
λ−1 − λ√
3k2

σ′r
σy
=
(

1− k
2

x2

)σ′z
σy

σ′θ
σy
=
(

1 +
k2

x2

)σ′z
σy

σ′e
σy
=
eλ−1 − λ
x2
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x = e(λ−1)/2 ∼ ∞ within the elastic zone, therefore

σ′z
σy
≡ e
λ−1 − λ√
3k2

σ′r
σy
=
(

1− k
2

eλ−1

)σ′z
σy
∼ 0

σ′θ
σy
=
(

1 +
k2

eλ−1

)σ′z
σy
∼ e
λ−1 − 2λ
k2

σ′e
σy
= 1− λ

eλ−1
∼ 0

The distribution of σ′e/σy within the whole wall for λ = 1.8 and different k and kjλ is shown
in Fig. 4.

Fig. 4. Distribution of σ′e/σy within the whole wall for λ = 1.8 and various k and kjλ

Figure 4 is explained as follows:

• Curve BAA: k = 1.93322 . . ., kjλ = k = kcλ = 1.93322 . . .. Within the plastic zone or point
B to A, x varies from 1 to kjλ, σ

′
e/σy varies from −0.8 to 0.51837 . . .; within elastic zone

(no elastic zone) or point A to A, x varies from 1.93322 . . . (kjλ) to 1.93322 . . . (k), σ
′
e/σy

varies from 0.51837 . . . to 0.51837 . . ..

• Curve BCD: k = 2, kjλ = 1.736906 . . .. Within the plastic zone or point B to C, x varies
from 1 to kjλ, σ

′
e/σy varies from −0.8 to 0.40335 . . .; within the elastic zone or point C

to D, x varies from kjλ to k, σ
′
e/σy varies from 0.40335 . . . to 0.304211 . . ..

• Curve BEF: k = kc or kcλ when λ = 2, kjλ = 1.624631 . . .. Within the plastic zone or
point B to E, x varies from 1 to kjλ, σ

′
e/σy varies from −0.8 to 0.318043 . . .; within the

elastic zone or point E to F, x varies from kjλ to k, σ
′
e/σy varies from 0.318043 . . . to

0.170561 . . ..

• Curve BGH: k = 3, kjλ = 1.539944 . . .. Within the plastic zone or point B to G, x varies
from 1 to kjλ, σ

′
e/σy varies from −0.8 to 0.240964 . . .; within the elastic zone or point G

to H, x varies from kjλ to k = 3, σ
′
e/σy varies from 0.240964 . . . to 0.063492 . . ..

• Curve BMN: k =∞, kjλ = e0.4. Within the plastic zone or point B to M, x varies from 1
to kjλ = e

0.4 = 1.491825 . . ., σ′e/σy varies from −0.8 to 1− λ/e0.8 = 0.191208 . . .; within
the elastic zone or point M to N (far infinitely), x varies from kjλ = e

0.4 to k =∞, σ′e/σy
varies from 1− λ/e0.8 = 0.191208 . . . to 0.

From Fig. 4 and Eq. (4.1)4, it is known that all curves of equivalent residual stresses for any k
and kjλ within the plastic zone are located on the identical curve AB and pass through the same
point (1.80.5, 0), except that a different curve for different k and kjλ is located on a different
section of curve AB. Saying, the above curves for the plastic zone, BA, BC, BE, BG, BM, are
all on curve BA, or they coincide with each other. However, if kj 6= kjλ, or relation between
kj and k does not satisfy Eq. (3.4), the above conclusion is untenable, even |σ′ei/σy| > 1. This
case is illustrated in Fig. 5 (λ = 1.8), where curve 1 and 2 coincide with each other in the
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plastic zone and both pass through the point (1.80.5, 0) for kj = kjλ, but curve 3 and 4 do
not coincide with each other in the plastic zone and neither pass through the point (1.80.5, 0),
and they do not coincide with curve 1 and 2 for kj 6= kjλ. When k = 3, kj = 1.9 > kjλ,
σ′ei/σy = −1.11792 < −1; when k = 3, kj = 1.4 < kjλ, σ′ei/σy = −0.63706 > −1, but the
equivalent stress of total stress σei may exceed σy.

Fig. 5. A comparison of the equivalent residual stress

To know these phenomena and laws about the autofrettage of cylinders well is beneficial to
design, manufacturing and academic research on pressure vessels.
When kj = kjλ = kcλ (entire yielded), distributions of σ

′
e/σy and , σ

′
θ/σy within the plastic

zone for various λ are shown in Figs. 6a and 6b, respectively.

Fig. 6. Distribution of σ′e/σy (a) and σ
′

θ/σy (b) for various λ

The top dash curve in Fig. 6b is the maximum hoop residual stress σ′θm/σy under the critical
radius ratio kcλ and different λ, the equation of which is

σ′θm
σy
=
2√
3

(

1− ln k
2
cλ

k2cλ − 1
)

(4.3)

d(σ′
θm
/σy)

dkcλ
= 4√

3
λ−1

kcλ(k
2

cλ
−1)  0 for λ  1, and kcλ increases with λ increasing, when λ = 2, kcλ

gets the maximum kc, thereby σ
′
θm/σy gets the maximum

σ′θm
σy
=
2√
3

(

1− ln k
2
c

k2c − 1
)

(4.4)

From Zhu (2008), it is known that k
2
c lnkc
k2c−1

= 1, then,
σ′
θm

σy
= 2√

3

(

1 − 2
k2c

)

. From Eq. (4.4),

when kc < 2
√

2 +
√
3 = 3.86, σ′θm/σy < 1. So the hoop residual tension is safe. However, when
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λ > 1 +
√
3/2, the hoop residual compressive stress is not safe. When λ ¬ 2, the equivalent

residual stress σ′e is invariably safe.
σ′e = 0 at x =

√
λ, which is just the abscissa of intersection of the three curves of residual

stress at a general location. Generally, in Eq. (2.2), letting 1− k
2−k2

j
+k2 ln k2

j

(k2−1)(r/ri)2
= 0, one obtains

x =

√

k2 − k2j + k2 ln k2j
k2 − 1 =

√

σ′ei
σy
+ 1 < kj (4.5)

On the other hand, the solution of letting σ′z = σ
′
r, σ
′
r = σ

′
θ and σ

′
θ = σ

′
z within the plastic

zone (Eqs (2.1)) is also Eq. (4.5). This shows that under the general condition (kj = kjλ is not
required), the three curves of the residual stress at a general radial location also collect at one
point within the plastic zone and the abscissa of intersection is just Eq. (4.5), where σ′e/σy = 0.
If kj = kjλ, or kj and k are in conformity with Eq. (3.4), Eq. (4.5) just becomes x =

√
λ.

5. Discussion about stresses caused by internal pressure p and total stresses

At a general location, the stresses caused by internal pressure p are

σpz
σy
=

1

k2 − 1
p

σy

σpr
σy
=
(

1− k2

(r/ri)2

)σpz
σy

σpθ
σy
=
(

1 +
k2

(r/ri)2

)σpz
σy

(5.1)

The equivalent stress of the stresses caused by p is

σpe
σy
=

√
3

2

(σpθ
σy
− σ

p
r

σy

)

=

√
3k2

k2 − 1
p

σy

( r

ri

)−2
(5.2)

If p = λpe, Eqs (5.1), (5.2) become

σpz
σy
=
1√
3
λ
1

k2
σpr
σy
=
1√
3
λ
( 1

k2
− 1
x2

) σpθ
σy
=
1√
3
λ
( 1|
k2
+
1

x2

)

σpe
σy
= λ
1

x2

(5.3)

Equations (5.3) are plotted in Fig. 7 for k = 3 and λ = 1.8. Clearly, at the internal surface,
σpei/σy > 1 when λ > 1 if a cylinder is not treated with the autofrettage and p > pe.

Fig. 7. Stresses caused by p at a general location

From Eqs (5.3) and Fig. 7, when x 
√√
3− 1k, σpe/σy ¬ σpθ/σy.

The total stresses σ/σy include the residual stresses and the stresses caused by p, or

σz = σ
′
z + σ

p
z σr = σ

′
r + σ

p
r σθ = σ

′
θ + σ

p
θ (5.4)
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The equivalent stress of total stress is

σe =

√
3

2
(σθ−σr) =

√
3

2
[(σ′θ+σ

p
θ)−(σ′r+σpr )] =

√
3

2
(σ′θ−σ′r)+

√
3

2
(σpθ−σpr) = σ′e+σpe (5.5)

For k = 3, λ = 1.8, p = λpe, kj = 1.4 < kjλ as mentioned above (see Fig. 5),
σ′ei/σy = −0.63706, σpei/σy = 1.8, then the equivalent stress of total stress at the internal
surface σei = σ

′
ei + σ

p
ei = 1.1629 > 1. So, for p = λpe, kj must be determined by Eq. (3.4),

i.e. kj = kjλ (in this example, kjλ = 1.539944 . . . > 1.4). If kj < kjλ, the total stresses will be
dangerous; if kj > kjλ, the residual stresses will be dangerous. The greater the λ, the higher the
load-bearing capacity, but the deeper the plastic zone, leading to a more difficult autofrettage
treatment; conversely, the less the λ, the lower the load-bearing capacity, but the shallower the
plastic zone, leading to an easier autofrettage treatment. This finding helps us to weigh the
advantages and disadvantages in the design of pressure vessels.

If p = λpe and kj = kjλ, the components of total stresses are:

— Within the plastic zone

σz
σy
=
σ′z
σy
+
σpz
σy
=
1√
3

(

lnx2 − λ+ 1 + λ 1|
k2

) σr
σy
=
σ′r
σy
+
σpr
σy
=
1√
3

(

lnx2 − λ+ λ 1
k2

)

σθ
σy
=
σ′θ
σy
+
σpθ
σy
=
1√
3

(

lnx2 − λ+ 2 + λ 1k2
) σe

σy
=
σθ
σy
− σr
σy
≡ 1

(5.6)

Eqation (5.6)4 means that if a cylinder is subject to p = λpe and its plastic depth is determined
by Eq. (3.4), the equivalent stress of total stress everywhere within the plastic zone is σe/σy ≡ 1.
— Within elastic zone

σz
σy
=
σ′z
σy
+
σpz
σy
=
k2
jλ√
3k2

σr
σy
=
σ′r
σy
+
σpr
σy
=
k2jλ√
3

( 1

k2
− 1
x2

)

σθ
σy
=
σ′θ
σy
+
σpθ
σy
=
k2jλ√
3

( 1

k2
+
1

x2

) σe
σy
=
σθ
σy
− σr
σy
=
k2jλ
x2

(5.7)

Equations (5.6) and (5.7) are plotted in Fig. 8 for k = 3, λ = 1.2 and 1.8, respectively.

Fig. 8. Total stresses and their equivalent stress; (a) k = 3, λ = 1.2, (b)) k = 3, λ = 1.8

From Eqs. (5.7)3,4 and Fig. 8, when x 
√√
3− 1k, σe/σy ¬ σθ/σy.

When kj , k are related by Eq. (3.4), at r = rj , the stresses determined by Eqs. (5.6) are
consistent with the corresponding stresses determined by Eqs. (5.7). This testifies reliability of
this paper.

According to Eqs. (5.7), seemingly the total stresses within the elastic zone are not concerned
with λ. Nevertheless, kjλ depends on λ as seen in Eq. (3.4).
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Actually, it is Eq. (3.1) that ensures σe/σy ≡ 1 everywhere within the plastic zone and
σe/σy = k

2
j /x
2 within the elastic zone irrespective of kj and k. Substituting Eq. (3.1) into Eq.

(5.2), results in

σpe
σy
=
k2 − k2j + k2 ln k2j
(k2 − 1)x2 (5.8)

Substituting Eqs. (5.8) and (2.2) into Eq. (5.5), one just obtains σe/σy ≡ 1; substituting
Eqs. (5.8) and (2.4) into Eq. (5.5), one just obtains σe/σy = k

2
j/x
2. Therefore, as long as

p/σy = (k
2 − k2j + k2 ln k2j )/(

√
3k2) (i.e. Eq. (3.1)), the results for σe/σy ≡ 1 within the plastic

zone and for σe/σy = k
2
j /x
2 within the elastic zone have nothing to do with the magnitude

of kj and k. In other words, providing that p/σy = (k
2 − k2j + k2 ln k2j )/(

√
3k2), for any kj

and k, which are not needed to be related by Eq. (3.4), σe/σy ≡ 1 within the plastic zone and
σe/σy = k

2
j/x
2 (0 < k2j /x

2 < 1, for kj ¬ x ¬ k) within the elastic zone are inevitable. However,
kj and k affect the residual stresses. Inadequate kj for a certain k may cause compressive yield
when a cylinder is being treated with the autofrettage, and it is necessary for kj to be less than
the value determined by Eq. (3.4), otherwise the compressive yield occurs.
Generally, from Eqs (2.2), (2.4), (5.2) and (5.5), the equivalent total stresses are:

— within the plastic zone

σe
σy
= 1−

k2 − k2j + k2 ln k2j
(k2 − 1)(r/ri)2

+

√
3k2

x2(k2 − 1)
p

σy
(5.9)

— within the elastic zone

σe
σy
=
k2(k2j − 1− ln k2j )
(k2 − 1)(r/ri)2

+

√
3k2

x2(k2 − 1)
p

σy
(5.10)

At the elastic-plastic juncture (x = kj), Eqs. (5.9) and (5.10) both become

σe
σy
=
k2(k2j − 1− ln k2j )
(k2 − 1)k2j

+

√
2k2p/σy
(k2 − 1)k2j

(5.11)

Letting d(σe/σy)/dkj = 0 in Eq. (5.11), one obtains

p

σy
=
1√
3
ln k2j or kj = exp

(

√
3p

2σy

)

(5.12)

This is the relation between p/σy and kj when σej/σy is the minimum at the elastic-plastic junc-
ture. Combining Eq. (5.11) with Eq. (3.1) results in the entire yield loading py/σy = ln k

2/
√
3.

This means that if σej = σy and concurrently it is the minimum, then p = py = σy ln k
2/
√
3, or

the cylinder is entirely yielded. Nevertheless, only when k ¬ kcλ, this can be realistic. Besides,
letting kj = k in Eq. (3.1), one also obtains the entire yield loading py/σy = ln k

2/
√
3. In

addition, letting kj = 1 in Eq. (3.1), one obtains pe/σy.

6. The effect of λ on kjλ and ε

The effect of λ on kjλ and ε is shown by Eq. (3.4) and (3.6), which is graphed in Fig. 9.
From Eqs. (3.4), (3.6) and Fig. 9, it can be concluded that:

(1) When k ¬ kcλ (kcλmax = kc2max = kc), kjλmax = k = kcλ, ελmax = 1 and λmax = η, when
k  kc, kjλmax < k (kcλ), ελmax ¬ 1, kjλmax is determined by k2 ln k2jλ− k2− k2jλ+2 = 0,
λ = λmax = 2, ελmax = (kjλmax − 1)/(k − 1).
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Fig. 9. Effect of λ on kjλ (a) and ε (b)

(2) For a certain k, the greater the λ, the greater the kjλ and ελ. So, for a pressure vessel to
contain a higher pressure, the plastic depth should be deeper.

(3) The extended dotted (not dash) curves of the corresponding solid curves are nothing but
mathematical results, which are meaningless in practice.

(4) With k getting greater and greater, the curves get closer and closer. For k =∞ (the dash
curve), if λ = 2, k∞j2 =

√
e. The curve showing k = 6 and the curve showing k =∞ almost

coincide.

(5) For various λ and k, the meaningful and possible optimum plastic depth kj is within the
curved triangle OAB, for which the side OA is a linked curve of kcλ, the equation of the
side OA is just Eq. (3.7): k2jλ ln k

2
jλ − λ(k2jλ − 1) = 0, resulting from letting kjλ = k in

Eq. (3.4), the equation of the side OB is kjλ = e
(λ−1)/2 = k∞jλ and the equation of the side

AB is λ = 2. The coordinate of point O is (1, 1), the coordinate of point B is (2,
√
e), the

coordinate of point A is (2, kc). Correspondingly, the meaningful and possible optimum
overstrain is within the rectangle CDEO. The coordinate of four vertexes of this rectangle
are shown in Fig. 9b.

(6) k = kc = 2.218 457 489 916 7 . . . is the solution to the equation k
2 ln k/(k2 − 1) = 1.

(7) Point O can be regarded as a curve for k = 1.

(8) Factually, the dash curve OA in Fig. 9a is the solid curve OA in Fig. 2.

7. Discussion on load-bearing capacity

When k > kc, the load-bearing capacity is p/σy = λpe/σy = λ(k
2 − 1)/(

√
3k2) for a cylinder

with k and kjλ; when k < kc, p/σy = py/σy = ln k
2/
√
3, which is plotted in Fig. 10.

In view of some data given in Fig. 10, the load-bearing capacity is explained as follows to
show the application of the figure.

If λ = 1.2, when k ¬ 1.2071 . . . (kcλ), |σ′eiσy| > 1 never occurs irrespective of kj even if
kj = k; when kj = k, p/σy = py/σy = ln k

2/
√
3 (< λ(k2 − 1)/(

√
3k2)). When k  1.2071 . . ., if

kj ¬ kjλ, |σ′eiσy| > 1 never occurs; if kj = kjλ, p/σy = λpe/σy = 1.2pe/σy (< ln k2/
√
3).

If λ = 1.8, when k ¬ 1.93322 . . . (kcλ), |σ′eiσy| > 1 never occurs irrespective of kj even if
kj = k; when kj = k, p/σy = py/σy = ln k

2/
√
3 (< λ(k2 − 1)/(

√
3k2)). When k  1.93322 . . .,

if kj ¬ kjλ, |σ′eiσy| > 1 never occurs; if kj = kjλ, p/σy = λpe/σy = 1.8pe/σy (< ln k2/
√
3).

If λ = 2, when k ¬ kc, |σ′eiσy| > 1 never occurs irrespective of kj even if kj = k; when
kj = k, p/σy = py/σy = ln k

2/
√
3 (< λ(k2 − 1)/(

√
3k2)). When k  kc, if kj ¬ kjλ, |σ′eiσy| > 1
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Fig. 10. Load-bearing capacity of a cylinder

never occurs, if kj = kjλ, p/σy = 2pe/σy (< ln k
2/
√
3). When λ = 2, kjλ is marked as kj∗ by

Zhu (2008).
Substituting Eq. (3.7) into p/σy = λ(k

2 − 1)/(
√
3k2), one obtains p/σy = ln k

2
cλ/
√
3. It is

easy to prove that when k ¬ kcλ, ln k ¬ (k2 − 1)/k2.

8. Conclusions

• The optimum operation conditions are: for any k, the plastic depth is determined by
k2 ln k2jλ−(λ−1)k2−k2jλ+λ = 0, and the load-bearing capacity is determined by p = λpe,
where λ = η = k2 ln k2/(k2−1) when k ¬ kc (λ = η = 1 ∼ 2 calculated by k2 ln k2/(k2−1)
for k = 1 ∼ kc) and λ = 1 ∼ 2 for choosing when k  kc. λ ¬ 2 is required for |σ′ei| ¬ σy.
• When k ¬ kcλ, |σ′eiσy| > 1 never occurs irrespective of kj even if kj = k, if kj = k, the
ultimate load-bearing capacity p/σy = py/σy = ln k

2/
√
3 (< λ(k2−1)/k2). When k  kcλ,

if kj ¬ kjλ, |σ′eiσy| > 1 never occurs, if kj = kjλ, the load-bearing capacity p/σy = λpe/σy
(< ln k2/

√
3). When λ = 2, kjλ and p reach the maxima: k

2 ln k2j − k2 − k2j2 + 2 = 0 and
p/σy = 2pe/σy.

• The possible and optimum plastic depth kj is situated in the quasi-infinite area constructed
of the horizontal axis, the straight line kj = k and the curve k

2 ln k2jλ − k2 − k2jλ + 2 = 0.
• If k ¬ kc (or kcλ for λ = 2), kjλmax = k = kcλ; if k  kc, kjλmax < k (kcλ), kjλmax is
determined by k2 ln k2jλ−k2−k2jλ+2 = 0 (λ = 2). The greater the λ, the greater the kjλ.
• As long as p/σy = (k2−k2j +k2 ln k2j )/(

√
3k2), irrespective of kj , σe ≡ σy within the whole

plastic zone, or σe is even, and the equivalent stress of total stress within the elastic zone
is always lower than σy. However, if kj is outside the quasi-infinite area of the possible
and optimum plastic depth, the compressive yield occurs.

• Due to the equation k2 ln k2jλ − (λ − 1)k2 − k2jλ + λ = 0, the relations between various
parameters and their varying tendency become concise and clearer, and the equations
concerned with the autofrettage are simplified greatly.
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