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We present the numerical study of hydromagnetic (MHD) flow and heat transfer characte-
ristics of a viscous incompressible electrically conducting micropolar fluid in a channel with
one wall shrinking and the other at rest in the presence of a transverse applied magnetic
field. Different from the classical shooting methodology, we employ a combination of a di-
rect and an iterative method (SOR with optimal relaxation parameter) for solving the sparse
systems of linear algebraic equations arising from the FD discretization of the linearized self
similar nonlinear ODEs. Effects of some physical parameters on the flow and heat transfer
are discussed and presented through tables and graphs. The present investigation may be
beneficial to the flow and thermal control of polymeric processing.

Keywords: channel flow, shrinking/stationary walls, couple stress, quasi-linearization, Joule
heating, viscous dissipation

1. Introduction

Flows through channels have attracted the research community due to their applications in
the fields of binary gas diffusion, microfluidic devices, surface sublimation, ablation cooling,
filtration, grain regression (as in the case of combustion in rocket motors) and the modeling
of air circulation in the respiratory system (see Ashraf et al., 2009b). Laminar air-flow systems
have been used by the aerospace industry to control particulate contamination. Furthermore,
the laminar flow cabinets have been used in the maintenance of negative pressure and in the
adjustment of the fans to exhaust more air. Therefore, the Navier Stokes equations, which are the
governing equations for these problems, have attracted the interest of the researchers. An exact
solution of Navier Stokes equations for motion of an incompressible viscous fluid in a channel
with different pressure gradients was presented by Suton and Barto (2008). Their solutions were
helpful in verifying and validating computational models of complex unsteady flows to guide
the design of fuel injectors and controlled experiments. Numerical simulation of flow through
microchannels with design roughness was presented by Rawool et al. (2006). Recently, Hajipour
and Dehkordi (2012) studied the transient behavior of fluid flow and heat transfer in vertical
channels partially filled with a porous medium including the effects of inertial term and viscous
dissipation.

All the studies cited above are limited to classical Newtonian fluids. There are many fluids
which are important from the industrial point of view, and display non-Newtonian behavior. Due
to the complexity of such fluids, several models have been proposed but the micropolar model
is the most prominent one. Hoyt and Fabula (1964) experimentally predicted that the fluids
which could not be characterized by Newtonian relationships indicated significant reduction in
shear stress near a rigid body and could be well explained by the micropolar model introduced by
Eringen (1964). MHD flow and heat transfer of a non-Newtonian fluid over a stretching/shrinking
surface is important due to its engineering and industrial applications. For example, in the
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extrusion of a polymer sheet from a dye, the sheet is sometimes stretched, whereas the properties
of the end product depend considerably on the rate of cooling. The micropolar fluid is a hot
area of research and therefore many investigators have studied the related flow and heat transfer
problems. For example, Shangjun et al. (2006), Kelson et al. (2003), Naccache and Souza (2011),
Ashraf et al. (2009a,b, 2011) and Ashraf and Batool (2013).
In the present paper, the hydromagnetic flow and heat transfer characteristics of a visco-

us electrically conducting incompressible micropolar fluid in a channel with a shrinking and
a stationary wall are presented. Viscous dissipation and Joule heating effects have also been
taken into account. A similarity transformation is used to convert the governing Navier-Stokes
equations into a set of nonlinear ODEs, which are numerically solved using a computational
procedure based on the quasi-linearization and finite difference discretization. The effects of the
governing parameters on the flow and heat transfer aspects of the problem are discussed.

2. Mathematical formulation

We consider two dimensional hydromagnetic steady laminar viscous flow and heat transfer of an
incompressible micropolar fluid in a parallel plate channel with the lower wall shrinking and the
upper at rest, in the presence of a transverse applied magnetic field. The induced magnetic field
is assumed to be negligible as compared with the imposed field. The magnetic Reynolds number
which is the ratio of the product of characteristic length and fluid velocity to the magnetic
diffusivity is assumed to be small. It is used to compare the transport of magnetic lines of the
force in a conducting fluid, with the leakage of such lines from the fluid. For a small magnetic
Reynolds number, the magnetic field will tend to relax towards a purely diffusive state. It is
also assumed that there is no applied polarization and hence no electric field. The body couple
is assumed to be absent. The two walls of the channel are located at y = −a and y = a, where
2a is the channel width. We, therefore, may express the velocity v and the microrotationυ,
respectively, in the following form

v = (u(x, y), v(x, y), 0) υ = (0, 0, φ(x, y)) (2.1)

where φ is the component of the microrotation normal to the xy-plane.

Taking the viscous dissipation and Joule heating effects into consideration, the governing
equations of the flow and heat transfer for the problem are
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where ρ is the density, p is the pressure, µ is the dynamic viscosity, κ is the vortex viscosity,
σ is the electrical conductivity, B0 is the strength of the magnetic field, j is the micro-inertia
density, γ is the spin gradient viscosity, cp is the specific heat at constant pressure, κ0 is the
thermal conductivity and T is the temperature of the fluid. The boundary conditions for the
velocity, microrotation and temperature fields for the present problem are
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u(x,−a) = −bx u(x, a) = 0 v(x,±a) = 0

ϕ(x,±a) = 0 T (x,−a) = T1 T (x, a) = T2
(2.3)

where b > 0 is the shrinking rate of the channel wall, and T1 and T2 (with T1 > T2) are
fixed temperatures of the lower and upper channel walls, respectively. We define the following
similarity variables to convert governing partial differential Eqs. (2.2) into ordinary differential
equations

η =
y

a
u = bxf ′(η) v = −abf(η)

ϕ = −
b

a
xg(η) θ(η) =

T − T2
T1 − T2

(2.4)

The above proposed velocity field is compatible with continuity Eq. (2.1) and, therefore, repre-
sents the possible fluid motion. After eliminating the pressure term from Eqs. (2.2)2 and (2.2)3,
we introduce the above similarity transformation to the resulting equation to get

(1 + C1)f
iν − C1g

′′ = Re(f ′f ′′ − ff ′′′) +Mf ′′ (2.5)

whereas Eqs. (2.2)4 and (2.2)5, in view of Eq. (2.4), are

C3g
′′ + C1C2(f

′′ − 2g) = f ′g − fg′ θ′′ + PrRefθ′ + EcPr(f ′′
2
+Mf ′

2
) = 0 (2.6)

Here C1 = κ/µ is the vortex viscosity parameter, C2 = µ/(ρjb) is the microinertia density pa-
rameter, C3 = γ/(ρja

2b) is the spin gradient viscosity parameter, Re = ρa2b/µ is the Reynolds
number, Ec = (bx)2/[cp(T1 − T2)] is the Eckert number, Pr = µcp/κ0 is the Prandtl number
and M = a2σB20/µ is the magnetic parameter. Boundary conditions (2.3), in view of Eq. (2.4),
in dimensionless form are reduced to

f(±1) = 0 f ′(−1) = −1 f ′(1) = 0

g(±1) = 0 θ(−1) = 1 θ(1) = 0
(2.7)

3. Numerical solution

A usual approach is to write the nonlinear ODEs in form of a first order initial value problem
as follows:
Setting: f ′ = p, f ′′ = q, f ′′′ = r, g′ = s, θ′ = t in Eqs. (2.5) and (2.6), we have

f ′ = p, p′ = q q′ = r

r′ =
1

1 + C1
(Repq − Refr +Mq) +

C1
(1 + C1)C3

(pg − fs− C1C2q + 2C1C2g)

g′ = s s′ =
1

C3
(pg − fs− C1C2q + 2C1C2g)

θ′ = t t′ = −PrRetf − EcPr(q2 +Mp2)

(3.1)

with the following required boundary conditions

f(−1) = 0 p(−1) = −1 g(−1) = 0 θ(−1) = 1

q(−1) = α1 r(−1) = α2 s(−1) = α3 t(−1) = α4
(3.2)

Here, α1, α2, α3, α4 (that is f
′′(−1), f ′′′(−1), g′(−1), θ′(−1)) are the unknown initial conditions.

Therefore, a shooting methodology is incorporated to solve the above system, which may be a
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combination of the Runge Kutta method (to solve the 1st order ODEs) and a four dimensional
zero finding algorithm (to find the missing conditions). It is worthy to note that the missing
initial conditions are computed so that the solution satisfies the boundary conditions f(1) = 0,
p(1) = 0, g(1) = 0, θ(1) = 0, of the original boundary value problem.

A serious shortcoming of the shooting is the blowing up of the solution, before the initial
value problem is completely integrated, and this happens quite often even with very accurate
guesses for the initial conditions. This phenomenon is due to the instability of the differential
equations and also because of the inherent strong dependence of the solution on the initial
conditions of the problem. On the other hand, a finite difference method (FDM) does not suffer
from this short-coming, and does have a chance as it tends to keep a firm hold on the entire
solution at once.

Due to these features, it is desirable to incorporate the FDM in the computational procedure.
Therefore, in our earlier works (Ashraf et al., 2009a,b, 2011; Ashraf and Batool, 2013), we
followed an approach different from the usual shooting method and involving the FDM, which
we describe as follows:

An inspection of Eq. (2.5) reveals that it can be readily integrated, and becomes

(1 + C1)f
′′′ − C1g

′ −Re(f ′
2
− ff ′′) = β (3.3)

where β is the constant of integration to be determined.

We consider this third order equation as the following system of coupled 1st and 2nd order
ODEs

f ′ = p (1 + C1)p
′′ − C1g

′ − Re(p2 − fp′) = β (3.4)

We solve these equations along with Eqs. (2.6), subject to the boundary conditions

f(±1) = 0 p(−1) = −1 p(1) = 0

g(±1) = 0 θ(−1) = 1 θ(1) = 0
(3.5)

For the numerical solution of the present problem, we first discretize Eqs. (2.6) and (3.4)2 at a
typical grid point η = ηi by employing central difference approximations for the derivatives. The
resultant algebraic system is solved iteratively by the SOR method, subject to the appropriate
boundary conditions given in Eq. (3.5). On the other hand, Eq. (3.4)1 is integrated numerically
by employing the 4th order Runge Kutta method, after every SOR iteration.

It is important to mention that the boundary condition fn = 0 is used in finding the constant
of integration β which is the only unknown as compared to the four missing initial conditions
in the shooting approach. In our earlier work, we used the trial and error method to find β but
some one dimensional zero finding algorithms may also be employed for the purpose. However,
the sensitivity of β with respect to the governing parameters makes it difficult to find it, and
some manual effort is always required in every simulation to obtain its desired value. That is
why we need some alternative approach which does not require finding any unknown and is
entirely based on the FDM. In this paper, we discuss an alternative approach based on the
quasi-linearization of nonlinear ODEs.

3.1. Quasi-linearization method

In the quasi-linearization, we construct sequences of vectors {f (k)}, {g(k)}, {θ(k)} which
converge to the numerical solutions of Eqs. (2.5) and (2.6), respectively. To construct {f (k)},
we linearize Eq. (2.5), by retaining only the first order terms, as follows:
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We set
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Now Eqs. (3.6) gives a system of linear differential equations with fk being the numerical
solution vector of the k-th equation. To solve the ODEs, we replace the derivatives with their
central difference approximations, giving rise to the sequence {f (k)}, generated by the following
linear system

Af (k+1) = B with A = A(f (k)) and B = B(f (k), g(k)) (3.7)

where n is the number of grid points. The matrices An×n and Bn×1 are initialized as follows

A1,1 = 1 B1 = 0

A2,1 = −4(1 + C1) + hRef1 −Mh
2
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and for 2 < i < n− 1
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An−1,n = −4(1 + C1)− hRefi+1 −Mh
2 (3.10)

Bn−1 = h
2C1(gi+1 − 2gi + gi−1) +

hRe

2
fi(−fi−2 + 2fi−1 − 2fi+1 + fi+2)

−
hRe

2
(fi+1 − fi−1)(fi+1 − 2fi + fi−1)

An,n = 1 Bn = 0

(the superscripts have been dropped for simplicity and clarity).
On the other hand, Eqs. (2.6) are linear in g and θ, respectively. Therefore, in order to

generate the sequences {g(k)} and {θ(k)}, these equations may be written as

C3g
(k+1)′′ + C1C2(f

(k+1)′′ − 2g(k+1)) = f (k+1)
′

g(k+1) − f (k+1)g(k+1)
′

θ(k+1)
′′

+ PrRef (k+1)θ(k+1)
′

+ EcPr(f (k+1)
′′2
+Mf (k+1)

′2
) = 0

(3.11)

Importantly, f (k+1) is considered to be known in the above equations. We outline the compu-
tational procedure as follows:

• Provide the initial guess f (0), g(0) and θ(0), satisfying the boundary conditions given in
Eq. (2.7)

• Solve the linear system given by Eq. (3.7) to find f (1)

• Use f (1) to solve the linear system arising from the FD discritization of Eqs. (3.11) to get
g(1) and θ(1)

• Take f (1), g(1) and θ(1) as the new initial guesses and repeat the procedure to generate
the sequences {f (k)}, {g(k)} and {θ(k)} which, respectively, converge to f , g and θ (the
numerical solutions of Eqs. (2.5) and (2.6))

• The three sequences are generated until

max
{

‖f (k+1) − f (k)‖L∞ , ‖g
(k+1) − g(k)‖L∞ , ‖θ

(k+1) − θ(k)‖L∞} < 10
−6

It is important to note that the matrix A (in Eqs. (3.10)) is pentadiagonal and not diagonally
dominant, and hence the SOR method may fail or work very poorly. Therefore, some direct
method like LU factorization or Guassian elimination with full pivoting (to ensure stability)
may be employed.
On the other hand, Eqs. (3.11) will give rise to the diagonally dominant algebraic system

when discretized using the central differences. Therefore, we are in position to use the SOR
method for these two equations. In this case, we also optimize the relaxation parameter ω
by following Nakamura (1981). Instead of giving the details, we just outline the optimization
procedure as follows:
— The SOR procedure is started with an initial guess for the value of the relaxation parameter ω
to iteratively solve the linear system on some suitable basic grid.
— After each relaxation sweep except the first one, the quantities given by

µ(t)ω =

√

N (t)

N (t−1)
µ
(t)
J =

µ
(t)
ω + ω − 1

ω

√

µ
(t)
ω

(3.12)

are computed, where

N (t) =
∑

i

(U
(t)
i − U

(t−1)
i )2 (3.13)

Note that the upper index t stands for the relaxation sweep and the lower index i represents
the grid point.
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— The optimal relaxation parameter is then estimated from

ω
(t)
opt =

2

1 +
√

1− (µ
(t)
J )
2

(3.14)

— The process of optimization is stopped once the criterion

|µ(t)ω − µ
(t−1)
ω | < TOLωopt (3.15)

is satisfied subject to t > 1 and µ
(t)
ω < 1. The iterative process is continued with ω = ωopt

until convergence is achieved. TOLωopt is chosen to lie in the range 10
−5 ¬ TOLωopt ¬ 10

−3

depending upon the density of the grid points. For a coarse grid, larger values result in rapid
convergence while for a fine grid, smaller values may be chosen for better estimation of ωopt.
We may improve the order of accuracy of the solution by solving the problem again on the

grid with step h/2 and h/4, and then using the Richardson extrapolation which have been
carried out at not only the common grid points but also at the skipped points, by following
Roache and Knupp (1993). Any extrapolation scheme (Deuflhard, 1983) may be used for this
purpose but we have used the polynomial extrapolation.
Moreover, a good initial guess for the solution on the finer grid can be obtained by injecting

the previous coarse grid solution. Many operators may be found for this purpose but we have
used the following linear operator which is simpler and easier to implement

W2i−1 ← U
c
i W2i ←

1

2
(U ci + U

c
i+1) (3.16)

where U c represents the coarse grid solution and W is the required initial guess.

4. Results and discussion

The physical quantities of our interest are the shear stresses, the couple stresses and the heat
transfer rates at the channel walls which are, respectively, proportional to the values of f ′′, g′, θ′

at the two walls. The parameters of the problem are the Reynolds number Re, the magnetic
parameter M , the Prandtl number Pr, the Eckert number Ec and the micropolar parameters
C1, C2 and C3. These parameters are all dimensionless groups of material and flow properties,
and/or geometric dimensions of the domain. The traditional way (e.g., Lok et al., 2007) of stu-
dying flow and thermal characteristics of the fluid dynamics problems is to specify the values of
these dimensionless groups rather than specifying the particular fluid properties and the doma-
in dimensions. Obviously, the results obtained in this way are applicable to the flow problems
with particular values of material properties and the dimensions of the domain, falling in the
ranges considered in the studies. In the present work we have computed our results for the fol-
lowing values of the governing parameters: M = 0, 10, 20, 30, 40, 50, Re = 1, 5, 10, 20, 30, 40, 50,
Ec = 0, 1, 2, 3, 4 and Pr = 0.1, 0.5, 1, 2, 2.5.
We shall study the effects of the parameters on f ′′(±1), g′(±1) and θ′(±1) as well as on the

velocity profiles f(η), f ′(η), the microrotation profile g(η) and the heat profile θ(η).
All the cases of the micropolar parameters in the present work are shown in Table 1, whereas

the first case corresponds to the Newtonian fluid. Table 2 shows the convergence of our numerical
results as the step-size decreases, which gives us confidence on our computational procedure.
The magnetic field exerts a force, called the Lorentz force, which tends to drag the fluid

towards the shrinking wall, which not only results in increasing the shear stress at the wall
but also causes greater spinning of the micro fluid particles, and hence increases the couple
stress as well (clear from Table 3). Moreover, the frictional force raises the temperature of the
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Table 1. Five cases of values of micropolar parameters C1, C2 and C3

Cases C1 C2 C3

1(Newtonian) 0 0 0

2 2 0.7 0.3

3 4 1.5 0.7

4 6 2.0 1.5

5 8 2.5 2.0

Table 2. Dimensionless temperatures θ(η) on three grid sizes and extrapolated values for
C1 = 4, C2 = 1.5, C3 = 0.7, Re = 50, M = 1, Ec = 0.5 and Pr = 0.5

θ(η)

η
1st grid η 2nd grid 3rd grid Extrapolated
(h = 0.02) (h = 0.01) (h = 0.005) values

−0.8 1.015900 1.015916 1.015920 1.015921

−0.6 1.028347 1.028372 1.028379 1.028381

−0.4 1.039211 1.039244 1.039252 1.039255

−0.2 1.048684 1.048721 1.048731 1.048734

0 1.056010 1.056130 1.056137 1.056140

0.2 1.056186 1.056160 1.056153 1.056151

0.4 1.018667 1.018485 1.018439 1.018424

0.6 0.856763 0.856441 0.856361 0.856334

0.8 0.497270 0.497052 0.496996 0.496978

Table 3. The effect of the magnetic field on shear and couple stresses and the heat transfer rate
with C1 = 3, C2 = 0.8, C3 = 1, Re = 20, Ec = 0.5 and Pr = 0.1

M f ′′(−1) f ′′(1) g′(−1) g′(1) θ′(−1) θ′(1)

0 0.297547 −2.871344 1.750801 3.082036 0.080047 −6.683872

10 0.663511 −2.214353 2.239587 2.458181 2.738352 −7.638689

20 1.082883 −1.736506 2.711143 1.970446 5.237685 −8.024192

30 1.509880 −1.412842 3.125411 1.616686 7.576004 −8.148545

40 1.915830 −1.197936 3.472198 1.366667 9.766241 −8.181408

fluid which results in increasing the temperature difference between the channel walls and the
fluid. Therefore, the heat transfer rate at the two walls, which is directly proportional to the
temperature difference, also increases.

Table 4 predicts that the shear and couple stresses as well as the heat transfer rate at the
shrinking wall may decrease as the Reynolds number increases. The increased shrinking rate of
the wall forces the fluid to move rapidly away from the shrinking wall, thus decreasing both the
shear and couple stresses. Also, the fluid carries away heat (generated due to the Joule heating
effect) from the region near the lower wall, thus decreasing the temperature difference and hence
the heat transfer rate at the shrinking wall. On the other hand, the incoming of the heated fluid
towards the upper wall increases not only the shear and couple stresses but also the heat transfer
rate.

It is clear from Table 5 that the micropolar structure of the fluid tends to reduce the shear
stress at the shrinking wall without significantly altering the shear stress at the stationary wall.
This is in accordance with the experimental prediction of Hoyt and Fabula (1964) that the
micro fluid particles cause significant reduction in the shear stress near a moving rigid surface.
Moreover, the particles also cause microrotation in the fluid which is responsible for the couple
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Table 4. The effect of the Reynolds number on shear and couple stresses and the heat transfer
rate with C1 = 3, C2 = 0.8, C3 = 1, M = 5, Ec = 0.5 and Pr = 0.1

Re f ′′(−1) f ′′(1) g′(−1) g′(1) θ′(−1) θ′(1)

1 2.048361 −0.780919 3.566882 1.130933 7.995645 −3.260171

10 1.755744 −0.941748 3.330322 1.306377 5.654433 −4.520490

20 1.431412 −1.174269 3.045316 1.545727 4.325219 −5.211422

30 1.127477 −1.471094 2.752210 1.830289 3.562179 −5.952669

40 0.867088 −1.825513 2.476137 2.143552 3.072278 −6.776226

Table 5. The effect of micropolar coefficients on shear and couple stresses and the heat transfer
rate with Re = 5, M = 20, Pr = 0.5 and Ec = 0.5

Case f ′′(−1) f ′′(1) g′(−1) g′(1) θ′(−1) θ′(1)

1 4.516739 −0.711734 0 0 0.759419 −0.738241

2 2.895274 −0.764749 2.720250 0.561054 0.839335 −0.900799

3 2.365865 −0.773087 3.499924 1.040502 0.910777 −0.979324

4 2.149622 −0.774630 3.576582 1.049530 0.953960 −1.029429

5 1.981817 −0.781593 3.871003 1.273793 0.986792 −1.061255

Table 6. The effect of the Eckert number on the heat transfer rate with C1 = 3, C2 = 0.8,
C3 = 1, Re = 10, M = 1 and Pr = 0.1

Ec θ′(−1) θ′(1)

0 −0.393561 −0.581297

1 −0.235738 −0.662955

2 −0.077915 −0.744612

3 0.079908 −0.826269

4 0.237731 −0.907926

Table 7. The effect of the Prandtl number on heat transfer rate with C1 = 3, C2 = 0.8, C3 = 1,
Re = 10, M = 1 and Ec = 3

Pr θ′(−1) θ′(1)

0.1 0.079908 −0.826269

0.5 1.909219 −2.200202

1 3.321423 −3.787488

2 4.990100 −6.302292

2.5 5.615060 −7.350247

stress at the walls. The micropolar structure also tends to increase the heat transfer rate at the
two walls by raising the temperature distribution across the channel. On the other hand, it is
evident from Table 6 that the viscous dissipation may cause thermal reversal near the shrinking
wall only, which is supported by the Prandtl number as predicted in the Table 7.

The streamlines for the present problem are shown in Fig. 1. On the other hand, Figs. 2
and 3 show that the external magnetic field reduces the two velocities (normal and streamwise)
while raising the fluid temperature, whereas it raises the microrotation profiles only in a smaller
region near the shrinking wall. Moreover, it supports the thermal reversal near the shrinking
wall, due to the viscous dissipation and Joule heating effects.

Figures 4 and 5 show that the influence of the Reynolds number on the problem is almost
opposite to that of the magnetic field, with temperature distribution near the upper wall being
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Fig. 1. Streamlines for the problem for C1 = 4, C2 = 1.5, C3 = 0.7, R = 1 and M = 50

Fig. 2. Streamwise (a) and normal (b) velocity profiles for C1 = 4, C2 = 1.5, C3 = 0.7, Re = 50, Ec = 1,
Pr = 2.5 and various M

Fig. 3. Microrotation (a) and temperature (b) profiles for C1 = 4, C2 = 1.5, C3 = 0.7, Re = 50,
Ec = 1,Pr = 2.5 and various M

Fig. 4. Normal (a) and streamwise (b) velocity profiles for C1 = 4, C2 = 1.5, C3 = 0.7, M = 10, Ec = 1,
Pr = 2.5 and various Re
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Fig. 5. Microrotation (a) and temperatue (b) profiles for C1 = 4, C2 = 1.5, C3 = 0.7, M = 10, Ec = 1,
Pr = 2.5 and various Re

Fig. 6. Normal (a) and streamwise (b) velocity profiles for M = 20, Ec = 1, Re = 5, Pr = 2.5 and
various cases of the micropolar parameters

Fig. 7. Microrotation (a) and temperatue (b) profiles for M = 20, Ec = 1, Re = 5, Pr = 2.5 and various
cases of the micropolar parameters

Fig. 8. Temperature profiles for: (a) C1 = 4, C2 = 1.5, C3 = 0.7, Re = 50, Pr = 2.5, M = 20 and
various Ec, (b) C1 = 4, C2 = 1.5, C3 = 0.7, Re = 50, Ec = 1, M = 20 and various Pr
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the only exception. It is clear from Figs. 6 and 7 that the micropolar structure of the fluid
increases the velocity, microrotation and temperature distributions across the channel. Finally,
Fig. 8a shows that the viscous dissipation may cause thermal reversal near the shrinking wall
by significantly raising the temperature profiles, which is supported by the Prandtl number as
predicted by the Fig. 8b.

5. Conclusions

We have numerically studied the problem of a viscous incompressible electrically conducting
micropolar fluid in a channel with one wall shrinking and the other at rest. It has been observed
that the external magnetic field tends to raise the microrotation profiles only in a smaller region
near the shrinking wall. Moreover, it tends to balance the influence of the shrinking channel
wall on the flow and heat transfer characteristics of the problem. The combined effect of viscous
dissipation and Joule heating may raise the temperature distribution to such an extent that
thermal reversal may occur near the shrinking wall, which is supported by both the Prandtl
number and the micropolar structure of the fluid.
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