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This paper employs an analytical method to analyze the buckling of piezoelectric coupled
plates with different boundary conditions on the basis of the first order shear deformation
plate theory. The structure is composed of a host isotropic plate and two bonded piezoelectric
layers. Convergence study is performed in order to verify the numerical stability of the
presented method. Also, the present analysis is validated by comparing the results with
those in the literature, and then the critical buckling load of the piezoelectric coupled plates
is presented in tabular and graphical forms for different plate aspect ratios, thickness of the
piezoelectric, actuator voltage and boundary conditions.
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1. Introduction

Piezoelectric materials have strongly attracted the attention of many research groups due to
their unique electromechanical coupling characteristics which produce mechanical deformations
under application of electrical loads and electrical fields under application of mechanical loads.
The main advantages of these types of smart materials are high precision, low weight and
high sensibility. Smart structures (e.g., piezoelectric coupled plates) may be used as sensors
or/and actuators in various engineering applications including vibration control, acoustic noise
suppression, active damping and so on. They are commonly used as an embedded layer on host
structures. As a result, a thorough understanding of the interaction between the host structure
and piezoelectric layer is helpful in order to effectively utilize this combination in different
applications.
Shape or vibration control of laminated plates with integrated piezoelectric sensors and ac-

tuators has been identified as an important field of study in recent years. However, relatively
few works have been done on the compressive and/or thermal buckling of plates containing pie-
zoelectric layers. Oh et al. (2000) investigated postbuckling and vibration analysis considering
large thermopiezoelastic deflections for fully symmetric and partially eccentric piezolaminated
composite plates. The non-linear finite element equations based on the layerwise displacement
theory were formulated for piezolaminated plates subject to thermal and piezoelectric loads. The
Newton-Raphson iteration method was used to solve the non-linear equation. Shen (2001a,b)
analyzed compressive and thermal postbuckling of shear deformable laminated plates with fully
covered or embedded piezoelectric actuators subjected to combined mechanical, electrical and
thermal loads. A higher order shear deformation plate theory was adopted and the initial geo-
metric imperfection of plates was accounted. It was found that the control voltage had a small
effect on the postbuckling load-deflection relationship of shear deformable piezolaminated pla-
tes with immovable unloaded edges, and almost no effect on the postbuckling load-deflection
relationships of the same plate with movable edges.
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Coupled multi-field generalized non-linear mechanics together with an associated plate finite
element for analyzing the buckling and postbuckling response of active and sensory piezoelectric-
composite laminated plates including non-linear effects due to large rotations and stress stiffening
were presented by Varelis and Saravanos (2004). The discrete coupled equations of motion of the
smart structure were finally linearized and solved using an incremental-iterative method based
on the Newton-Raphson technique. Kapuria and Achary (2006, 2008) employed 3D elasticity
and zigzag theory for linear compressive and thermal buckling of laminated plates containing
piezoelectric layers. Akhras and Li (2008) extended the finite layer method to thermal buckling
analysis of rectangular simply supported symmetrical cross-ply piezoelectric composite plates.
Using this method, the three-dimensional analysis was transformed into one-dimensional analysis
by virtue of the orthogonal properties of trigonometric interpolation functions.
Buckling optimization of laminated plates with integrated piezoelectric actuators can be fo-

und in Correia et al. (2003). Assessment of third order smeared and zigzag theories for buckling
and vibration of symmetrically laminated hybrid angle-ply plates containing piezoelectric layers
can be found in Dumir et al. (2009). Shariyat (2009) studied dynamic buckling of laminated pla-
tes with piezoelectric sensors and actuators under thermo-electro-mechanical loads using a finite
element formulation based on a higher-order shear deformation theory. A nine-node second order
Lagrangian element, an efficient numerical algorithm for solving the resulted highly non-linear
governing equations, and an instability criterion already proposed by the author were employed.
Shen and Zhu (2011) investigated compressive postbuckling under thermal environments and
thermal postbuckling due to a uniform temperature rise for a shear deformable laminated plate
with piezoelectric fiber reinforced composite (PFRC) actuators based on a higher order shear
deformation plate theory that includes thermo-piezoelectric effects.
In the present research, buckling analysis of a three-layered rectangular plate with piezoelec-

tric layers is investigated. Based on the first order shear deformation plate theory, the equilibrium
and stability equations are obtained. Introducing a new analytical method, the coupled stability
equations are converted into independent partial differential equations. It is assumed that the
plate is simply supported on two opposite edges and has arbitrary boundary conditions along
the other edges. By using the Levy solution, these equations are converted into two ordinary
differential equations, one of which has variable coefficients. For solving the equations accura-
tely, the power series method of Frobenius (see Wylie and Barrett, 1951) is used. To examine
accuracy of the present formulation and procedure, several convergence and comparison studies
are investigated. Also, the effects of some parameters of the plate and piezoelectric layers on the
critical buckling load are studied.

2. Stability equations

Consider a three-layered rectangular plate, made of an isotropic substrate of thickness h and
piezoelectric films of thickness ha that are perfectly bonded on its top and bottom surfaces as
actuators, as shown in Fig. 1. The length and the width of the plate are a and b, respectively.
Rectangular Cartesian coordinates (x, y, z) are assumed for derivations in this study.
The displacement components of the plate based on the first-order shear deformation plate

theory are considered as (Reddy, 1984, 2004)

u(x, y, z) = u0(x, y) + zψx(x, y) v(x, y, z) = v0(x, y) + zψy(x, y)

w(x, y, z) = w0(x, y)
(2.1)

where u, v and w represent the displacement of the plate in the x, y and z directions, respecti-
vely, u0 and v0 are the displacements of the mid-plane, w0 is the transverse displacement, and
ψx and ψy show rotation terms about y and x axes, respectively. The parameters u0, v0, w0,
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Fig. 1. Coordinate system and geometry of a rectangular plate integrated with piezoelectric layers

ψx and ψy are all functions of x and y variables. In this theory, the transverse normal do not
remain perpendicular to the mid-surface after deformation. This amounts to including transver-
se shear strains in the theory. The inextensibility of the transverse normal requires that w not
be a function of the thickness coordinate z (Reddy, 2004).
Using the non-linear form of strain-displacement relations, the following strain components

are obtained (Reddy, 2004)
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(2.3)

Subscript ( , ) denotes derivation with respect to the coordinates. The constitutive law for hybrid
rectangular plates, taking into account the piezoelectric effect, is given by Liew et al. (2003)
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(2.4)

where Qij (i, j = 1, . . . , 6) is the elastic stiffness of the layers given by

Q11 = Q22 =
E

1− υ2
Q12 = Q21 =

υE

1− υ2
Q44 = Q55 = Q66 =

E

2(1 + υ)
(2.5)

The piezoelectric stiffness e31, e32, e15 and e24 can be expressed in terms of the dielectric
constants d31, d32, d15 and d24. The elastic stiffness Q

a
ij (i, j = 1, . . . , 6) of the piezoelectric

actuator layers as

e31 = (d31Q
a
11 + d32Q

a
21) e32 = (d31Q

a
12 + d32Q

a
22)

e24 = d24Q
a
44 e15 = d15Q

a
55

(2.6)
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As only the transverse electric field component Ez is dominant in the plate type piezoelectric
material, it is assumed that
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(2.7)

where Va is the voltage applied to the actuators in the thickness direction.

The equilibrium equations under mechanical load may be derived on the basis of the statio-
nary potential energy. The equilibrium equations of a plate can be obtained using the principle
of minimum total potential energy (Reddy, 1984)

Nxx,x +Nxy,y = 0 Nxy,x +Nyy,y = 0

Mxx,x +Mxy,y −Qxz = 0 Mxy,x +Myy,y −Qyz = 0

Nxxw,xx + 2Nxyw,xy +Nyyw,yy +Qxz,x +Qyz,y = 0

(2.8)

Equations (2.8) are non-linear equilibrium equations based on the first-order shear deformation
plate theory. In Eqs. (2.8), the terms N , Q and M are stress and moment resultants. Using the
constitutive relations, the stress and moment resultants are defined as

Nxx =

h

2
+ha
∫

−
h

2
−ha

σxx dz = A1ε
(0)
xx +A3ε

(0)
yy +B1ψx,x +B3ψy,y − 2Va(d31Q

a
11 + d32Q

a
21)

Nyy =

h

2
+ha
∫

−
h

2
−ha

σyy dz = A3ε
(0)
xx +A1ε

(0)
yy +B3ψx,x +B1ψy,y − 2Va(d31Q

a
12 + d32Q

a
22)

Nxy =

h

2
+ha
∫

−
h

2
−ha

σxy dz = A2γ
(0)
xy +B2γ

(1)
xy

Qxz = k
2

h

2
+ha
∫

−
h

2
−ha

σxz dz = Cγ
(0)
xz Qyz = k

2

h

2
+ha
∫

−
h

2
−ha

σyz dz = Cγ
(0)
yz

Mxx =

h

2
+ha
∫

−
h

2
−ha

σxxz dz = B1ε
(0)
xx +B3ε

(0)
yy +D1ψx,x +D3ψy,y

Myy =

h

2
+ha
∫

−
h

2
−ha

σyyz dz = B3ε
(0)
xx +B1ε

(0)
yy +D3ψx,x +D1ψy,y

Mxy =

h

2
+ha
∫

−
h

2
−ha

σxyz dz = B2γ
(0)
xy +D2γ

(1)
xy

(2.9)

where the constants Ai, Bi, Di, Ti, C in Eqs. (2.9) are
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(A1, B1,D1) =

h

2
+ha
∫

−
h

2
−ha

Q11(1, z, z
2) dz (A2, B2,D2) =

h

2
+ha
∫

−
h

2
−ha

Q44(1, z, z
2) dz

(A3, B3,D3) =

h

2
+ha
∫

−
h

2
−ha

Q12(1, z, z
2) dz C = k2

h

2
+ha
∫

−
h

2
−ha

Q44(1, z, z
2) dz

(2.10)

In Eq. (2.10)4, k
2 is the shear correction factor. Equations (2.8) are five coupled equilibrium

equations, which are non-linear in terms of the displacement components. In order to obtain the
stability equations, the adjacent equilibrium criterion is used (Brush and Almroth, 1975), and
the stability equations are obtained as

N1xx,x +N
1
xy,y = 0 N1xy,x +N

1
yy,y = 0

M1xx,x +M
1
xy,y −Q

1
xz = 0 M1xy,x +M

1
yy,y −Q

1
yz = 0

N0xxw
1
,xx + 2N

0
xyw
1
,xy +N

0
yyw
1
,yy +Q

1
xz,x +Q

1
yz,y = 0

(2.11)

where N0xx, N
0
xy and N

0
yy are the pre-buckling force resultants.

3. Decoupling the stability equations

In order to obtain the governing equations, the equivalent form of Eqs. (2.9) in terms of neigh-
boring state displacements is substituted into Eqs. (2.11). Therefore, the stability equations in
terms of the displacement components are obtained as follows

A2(u
1
0,yy + v

1
0,xy) +B2(ψ

1
x,yy + ψ

1
y,xy) +A3v

1
0,xy +A1u

1
0,xx +B3ψ

1
y,xy +B1ψ

1
x,xx = 0

A2(u
1
0,xy + v

1
0,xx) +B2(ψ

1
x,xy + ψ

1
y,xx) +A3u

1
0,xy +A1v

1
0,yy +B3ψ

1
x,xy +B1ψ

1
y,yy = 0

B1u
1
0,xx +B3v

1
0,xy +D1ψ

1
x,xx +D3ψ

1
y,xy +B2(u

1
0,yy + v

1
0,xy) +D2(ψ

1
x,yy + ψ

1
y,xy)

− C(ψ1x + w
1
0,x) = 0

B2(u
1
0,xy + v

1
0,xx) +D2(ψ

1
x,xy + ψ

1
y,xx) +B3u

1
0,xy +B1v

1
0,yy +D3ψ

1
x,xy +D1ψ

1
y,yy

− C(ψ1y + w
1
0,y) = 0

N0xxw
1
0,xx + 2N

0
xyw
1
0,xy +N

0
yyw
1
0,yy + C(ψ

1
x,x + w

1
0,xx) + C(ψ

1
y,y + w

1
0,yy) = 0

(3.1)

Based on Eqs. (2.10), the coefficients A3, B3 and D3 can be rewritten as

(A3, B3,D3) = (A1, B1,D1)− 2(A2, B2,D2) (3.2)

Equations (3.1) are five coupled equations in terms of the neighboring displacement components.
To decouple governing stability equations (3.1), four new functions are introduced as

ϕ1 = u
1
0,x+v

1
0,y ϕ2 = u

1
0,y−v

1
0,x ϕ3 = ψ

1
x,x+ψ

1
y,y ϕ4 = ψ

1
x,y−ψ

1
y,x (3.3)

Using the functions introduced in relations (3.3), the stability Eqs. (3.1) can be expressed as

A1ϕ1,x+B1ϕ3,x+A2ϕ2,y +B2ϕ4,y = 0 A1ϕ1,y +B1ϕ3,y −A2ϕ2,x−B2ϕ4,x = 0 (3.4)

and

B1ϕ1,x +D1ϕ3,x +B2ϕ2,y +D2ϕ4,y − k
2A2(ψ

1
x + w

1
0,x) = 0

B1ϕ1,y +D1ϕ3,y −B2ϕ2,x −D2ϕ4,x − k
2A2(ψ

1
y + w

1
0,y) = 0

(3.5)
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and

k2A2(ϕ3 +∇
2w10) +N

0
xxw
1
0,xx + 2N

0
xyw
1
0,xy +N

0
yyw
1
0,yy = 0 (3.6)

where ∇2 is the two-dimensional Laplace operator. It should be pointed out that the coefficients
B1 and B2 are exactly equal to zero when the laminated plate is symmetric. By differentiation
of Eqs. (3.5) with respect to the variables x and y, respectively, and simplifying the resulting
equations, the function ϕ3 is related to the transverse displacement w as follows

D1∇
2ϕ3 − k

2A2(ϕ3 +∇
2w10) = 0 (3.7)

From Eq. (3.6), ϕ3 can be obtained as

ϕ3 = −
1

k2A2
(N0xxw

1
0,xx + 2N

0
xyw
1
0,xy +N

0
yyw
1
0,yy)−∇

2w10 (3.8)

Substituting Eq. (3.8) into Eq. (3.7) yields

−
D1
k2A2

∇
2(N0xxw

1
0,xx + 2N

0
xyw
1
0,xy +N

0
yyw
1
0,yy)−D1∇

2
∇
2w10

+ (N0xxw
1
0,xx + 2N

0
xyw
1
0,xy +N

0
yyw
1
0,yy) = 0

(3.9)

Following the same procedure as was done to formulate Eq. (3.9), the following equation can be
obtained in terms of function ϕ4 as follows

D2∇
2ϕ4 − k

2A2ϕ4 = 0 (3.10)

Equations (3.9) and (3.10) are two decoupled equations in terms of the transverse displace-
ment w0 and function ϕ4, respectively. Using Eqs. (3.5), and (3.8), the rotation functions ψx
and ψy can be expressed in terms of w0 and ϕ4 as

ψ1x =
D1
k2A2

[

−
k2A2
D1

w10 −
1

k2A2
(N0xxw

1
0,xx + 2N

0
xyw
1
0,xy +N

0
yyw
1
0,yy)−∇

2w10

]

,x
+

D2
k2A2

ϕ4,y

ψ1y =
D1
k2A2

[

−
k2A2
D1

w10 −
1

k2A2
(N0xxw

1
0,xx + 2N

0
xyw
1
0,xy +N

0
yyw
1
0,yy)−∇

2w10

]

,y
−

D2
k2A2

ϕ4,x

(3.11)

4. Boundary conditions

It is assumed that two opposite edges of the plate at x = 0 and x = a are simply supported (S)
and have arbitrary boundary conditions at the other two edges. The arbitrary boundary con-
ditions along the other edges, y = 0 and y = b can be clamped-clamped (CC), free-free (FF),
simply supported-simply supported (SS), free-clamped (FC), free-simply supported (FS) and
clamped-simply supported (CS). Each boundary may have the following conditions:

— Simply Supported

v0 = w0 = ψx = 0 (4.1)

— Clamped

w0 = ψx = ψy = 0 (4.2)
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— Free

Myy =Mxy = Qyz +N
0
xyw
1
0,x +N

0
yyw
1
0,y = 0 (4.3)

The stress and moment resultants Qyz, Myy and Mxy can be defined as

Myy = D1(ψx,x + ψy,y)− 2D2ψx,x Mxy = D2(ψx,y + ψy,x)

Qyz = k
2A2(ψy + w0,y)

(4.4)

which are functions of the rotation functions ψx and ψy and the transverse displacement w0.

5. Buckling analysis

To find the critical buckling load, the pre-buckling forces should be found. Thus, using the same
procedure developed by Duc and Tung (2010), the pre-buckling force resultants are found to be

N0xx = −
Px
b

N0xy = 0

N0yy = −
A3
A1

Px
b
+
A1 −A3
A1

[−2Va(d31Q
a
12 + d32Q

a
22)]

(5.1)

where Px is the uniformly distributed load along the edges x = 0, a. Substituting relations (5.1)
into Eq. (3.9), yields

−D1∇
2
∇
2w10 −

D1
k2A2

∇
2
[

−
Px
b
w10,xx

+
(

−
A3
A1

Px
b
+
A1 −A3
A1

[−2Va(d31Q
a
12 + d32Q

a
22)]
)

w10,yy

]

+
[

−
Px
b
w10,xx +

(

−
A3
A1

Px
b
+
A1 −A3
A1

[−2Va(d31Q
a
12 + d32Q

a
22)]
)

w10,yy

]

= 0

(5.2)

To analyze the buckling behavior, decoupled stability equations (3.10) and (5.2) should be
solved. As mentioned before, the edges of the plate in the x direction are assumed to be simply
supported. Using the series solutions in the x direction, the functions w10 and ϕ4 are expressed
as

w10 =
∞
∑

m=1

f(y) sin
mπx

a
ϕ4 =

∞
∑

m=1

g(y) cos
mπx

a
(5.3)

where m is the number of half-waves in the x direction. Series solutions (5.3) satisfy the simply
supported boundary conditions in the x direction. Substituting relation (5.3) into Eqs. (3.10)
and (5.2), yields two ordinary differential equations in terms of the functions f(y) and g(y) as
follows

D1
(

−
A3
A1

Px
b
+
A1 −A3
A1

[−2Va(d31Q
a
12 + d32Q

a
22)] + k

2A2
)d4f(y)

dy4

+
{

−2D1
(mπ

a

)2[

−
1

2

Px
b
+ k2A2 +

1

2

(

−
A3
A1

Px
b
+
A1 −A3
A1

[−2Va(d31Q
a
12 + d32Q

a
22)]
)]

− k2A2
(

−
A3
A1

Px
b
+
A1 −A3
A1

[−2Va(d31Q
a
12 + d32Q

a
22)]
)}d2f(y)

dy2

+
[

D1
(mπ

a

)4(

−
Px
b
+ k2A2

)

−

(mπ

a

)2
k2A2

Px
b

]

f(y) = 0

D2
[

−g(y)
(mπ

a

)2
+
d2g(y)

dy2

]

− k2A2g(y) = 0

(5.4)



820 H. Yaghoobi, I. Rajabi

Equation (5.4)1 is an ordinary differential equation with variable coefficients. In order to solve
this equation, the power series solution method of Frobenius (Wylie and Barrett, 1951) is utilized.
To this end, the function f(y) is written in the following form

f(y) =
∞
∑

j=0

Cjy
j (5.5)

where Cj are arbitrary constant coefficients. Substituting proposed solution (5.5) into Eq. (5.4)1,
and shifting the indices, yields

D1
(

−
A3
A1

Px
b
+
A1 −A3
A1

[−2Va(d31Q
a
12 + d32Q

a
22)] + k

2A2
)

·

∞
∑

j=0

[(j + 4)(j + 3)(j + 2)(j + 1)Cj+4y
j] +
{

−2D1
(mπ

a

)2[

−
1

2

Px
b
+ k2A2

+
1

2

(

−
A3
A1

Px
b
+
A1 −A3
A1

[−2Va(d31Q
a
12 + d32Q

a
22)]
)]

− k2A2
(

−
A3
A1

Px
b
+
A1 −A3
A1

[−2Va(d31Q
a
12 + d32Q

a
22)]
)}

∞
∑

j=0

[(j + 2)(j + 1)Cj+2y
j]

+
[

D1
(mπ

a

)4(

−
Px
b
+ k2A2

)

−

(mπ

a

)2
k2A2

Px
b

]

∞
∑

j=0

(Cjy
j) = 0

(5.6)

Collecting the coefficients of similar powers of j in Eq. (5.6), from the coefficient of y0, it can
be obtained

C4 = −
1

24D1
(

−
A3
A1

Px
b
+ A1−A3

A1
[−2Va(d31Qa12 + d32Q

a
22)] + k

2A2
)

·

{

{

−2D1
(mπ

a

)2[

−
1

2

Px
b
+
1

2

(

−
A3
A1

Px
b
+
A1 −A3
A1

[−2Va(d31Q
a
12 + d32Q

a
22)]
)

+ k2A2
]

−k2A2
(

−
A3
A1

Px
b
+
A1 −A3
A1

[−2Va(d31Q
a
12 + d32Q

a
22)]
)}

C2 (5.7)

+
[

D1
(mπ

a

)4(

−
Px
b
+ k2A2

)

−

(mπ

a

)2
k2A2

Px
b

]

C0

}

Also, the coefficient of yj gives

Cj+4 = −
1

D1
(

−
A3
A1

Px
b
+ A1−A3

A1
[−2Va(d31Qa12 + d32Q

a
22)] + k

2A2
)

(j+ 4)(j+ 3)(j+ 2)(j+ 1)

·

{

{
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D1
(mπ

a

)4(

−
Px
b
+ k2A2

)

−

(mπ

a

)2
k2A2

Px
b

]

Cj

}

Equations (5.7) and (5.8) are recursion relationships, and relation (5.8) is valid for j  0. It
should be noted that the coefficients Ci (i = 0, 1, 2, 3) are arbitrary coefficients on account
of which the other coefficients Cj (j  4) would be obtained just from recurrence formulas
expressed in terms of them selves.
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For solving Eq. (3.10), substituting proposed series solution (5.3)2 into Eq. (3.10), and solving
the resulted ordinary differential equation, yields

g(y) = C−1 sinh(λy) + C−2 cosh(λy) (5.9)

where

λ =

√

(mπ

a

)2
+
k2A2
D2

(5.10)

Imposing the boundary conditions at the edges of the plate in the y direction, a system of six
homogeneous algebraic equations is obtained. Setting the determinant of the coefficients equal
to zero, the buckling load of the hybrid plate is determined. Needless to say that the lowest
value among all of these Px for each m is known as the critical buckling load Pxcr.

6. Results and discussion

Numerical results for buckling analysis of a three-layered rectangular plate with piezoelectric
layers for different boundary conditions are computed. The material properties are shown in
Table 1. This table shows the characteristics of PZT-5A as the piezoelectric and aluminum as
the host plate. Moreover, for all numerical results which are reported here, the following values
of variables are used unless otherwise indicated by tables or graphs

a

b
= 1

b

t
= 100 ha = 0.001m h = 0.01m Va = 500V k2 =

5

6

Table 1. Material properties of the aluminum and PZT-5A layers

Aluminum PZT-5A

Elastic modulus E [GPa] 70 63

Poisson’s ratio ν 0.3 0.3

Piezoelectric constant d31 [10
−10m/V] – 2.54

Piezoelectric constant d32 [10
−10m/V] – 2.54

In this Section, firstly, the convergence rate of the power series is checked. Secondly, compa-
rison with the previously published related article is employed in order to verify the accuracy
of the proposed method. Finally, the critical buckling load of the piezoelectric coupled pla-
tes are presented in tabular and graphical forms for different plate aspect ratios, thickness of
piezoelectric, actuator voltage and boundary conditions.
To guarantee the accuracy of the buckling load obtained by the procedure described above,

it is necessary to conduct a convergence study to determine the number of terms required in
the power series solution. Since in real calculations a series solution will have to be truncated
somewhere according to a pre-determined error bound, an exact solution really implies that the
results can be obtained to any desired degree of accuracy. Therefore, the series expansion, Eq.
(5.5), will have to be truncated in numerical calculations. Accordingly, to calculate a sufficient
number of terms (N), a special case for all kinds of boundary conditions was studied.
Table 2 shows the convergence of Pxcr for six different boundary conditions. From this

table, it is clearly visible that for the SSSS case, more than 18 terms are needed to obtain the
value of Pxcr, accurately to six significant digits. Also, it is seen that if the SCSC is chosen as a
boundary condition, at least 24 terms are required to obtain an extremely accurate value of Pxcr.
The bold numbers in the table are those beyond which the sixth digit does not change as N
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Table 2. Convergence test of the critical buckling load, Pxcr [KN], with different combinations
of boundary conditions

N
Boundary conditions

SCSC SSSC SSSS SFSC SSSF SFSF

10 423.4500 346.6509 251.0307 118.7528 108.3371 77.6299

12 551.1659 357.9866 253.8557 120.6816 106.5636 81.2094

14 524.5552 355.9793 253.5745 120.9698 106.2536 82.1316

16 530.1927 356.1081 253.5927 120.9983 106.2160 82.2540

18 529.9826 356.0962 253.5918 121.0004 106.2127 82.2646

20 530.0266 356.0965 253.5918 121.0005 106.2125 82.2653

22 530.0258 356.0965 253.5918 121.0005 106.2125 82.2653

24 530.0259 356.0965 253.5918 121.0005 106.2125 82.2653

26 530.0259 356.0965 253.5918 121.0005 106.2125 82.2653

28 530.0259 356.0965 253.5918 121.0005 106.2125 82.2653

30 530.0259 356.0965 253.5918 121.0005 106.2125 82.2653

increases. As more terms are taken, Pxcr converges to its exact value. Therefore, the numerical
results from the power series approach which are presented in the calculations were obtained by
taking sufficient terms N to converge to the number of digits shown in the tables.
In order to verify the accuracy of the present formulations, the buckling load obtained from

the present method is compared with those available in the literature. In Table 3, comparison
of the non-dimensional critical buckling loads for isotropic plates is made between the results
obtained by the present method and those reported by Hosseini-Hashemi et al. (2008). For all
boundary conditions, good agreements can be observed, and it is concluded that our formulation
is completely trustful. After verifying the merit and accuracy of the present accurate solution,
the following new results for the three-layered rectangular plate with piezoelectric actuators can
be used as the benchmark for future research studies.

Table 3. Comparison of non-dimensional critical buckling loads (Pcr = Pxa
2/D1) for an isotro-

pic rectangular plate with different boundary conditions for uniaxial compressive loading in the
x direction

a

b
h

a

Boundary conditions
SCSC SSSC SSSS SFSC SSSF SFSF

0.5 0.1 [6] 18.055467 16.247894 14.915722 10.642566 10.408425 9.325573
Pr. 18.05546694 16.24789354 14.91572216 10.64256680 10.40842450 9.32557275

0.2 [6] 15.851026 14.573567 13.580179 9.769217 9.590606 8.632796
Pr. 15.85102641 14.57356705 13.58017889 9.76921715 9.59060641 8.63279575

1 0.1 [6] 63.404106 51.727083 37.447690 15.394207 13.257101 9.112050
Pr. 63.40410565 51.72708294 37.44768979 15.39420741 13.25710052 9.11205022

0.2 [6] 43.567623 41.394657 32.441432 13.627190 12.054586 8.434126
Pr. 43.56762327 41.39465731 32.44143157 13.62719035 12.05458573 8.43412622

2 0.1 [6] 168.416063 151.127293 129.765726 46.387846 24.457914 8.891002
Pr. 168.41606196 151.12729228 129.7657263 46.38784629 24.45791485 8.89100235

0.2 [6] 80.032333 78.916068 76.902078 36.692284 21.430636 8.248819
Pr. 80.03233149 78.91606516 76.90207522 36.69228453 21.43063569 8.24881884

[6] – Hosseini-Hashemi et al. (2008); Pr. – present

The variation of the critical buckling load versus the plate aspect ratio for three various
voltage actuators are shown in Table 4 and Fig. 2. The primary conclusion tabulated from
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Table 4 is that the critical buckling load diminishes as the plate aspect ratio increases. Moreover,
the percentage decrease is about 89% for the SFSF plate and about 15% for the SCSC one from
a/b = 0.5 to a/b = 1.5 under the same actuator voltage Va = −500. It is worth mentioning that
increasing the constraints on boundary conditions results in an increase in the critical buckling
load, i.e. for a fixed value of variables, the SCSC and SFSF have the highest and lowest Pxcr,
respectively. Figure 2 illustrates the effect of a/b for three various voltage actuators, i.e. 500, 0
and −500 on the Pxcr for the SFSC plate. It is apparent from this figure that the Pxcr can be
increased by applying a negative voltage on the actuator layers, and the effect of Va becomes
more significant at higher plate aspect ratios.

Table 4. Effect of the plate aspect ratio on the critical buckling load for different boundary
conditions

Va a/b
Boundary conditions

SCSC SSSC SSSS SFSC SSSF SFSF

−500 0.5 620.6445 556.4839 511.1295 379.6773 371.7482 339.1097
1.0 564.8202 389.0031 283.1340 135.4563 117.3006 82.9526
1.5 525.5415 408.0511 270.2732 101.6814 72.9200 36.4562

0 0.5 615.4263 551.5939 506.6638 377.8521 370.1353 338.4924
1.0 547.4352 372.5638 268.3629 128.3953 111.8539 82.6416
1.5 514.6062 397.7806 244.4790 86.9342 61.9961 36.2055

+500 0.5 610.2019 546.6993 502.1981 375.9378 368.4899 337.9531
1.0 530.0259 356.0965 253.5918 121.0005 106.2125 82.2653
1.5 503.6551 387.4945 218.6847 71.3912 50.6116 35.8746

Fig. 2. Effect of the plate aspect ratio on the critical buckling load for the SFSC boundary condition

Figures 3a,b show the critical buckling load for hybrid laminated plates with different bo-
undary conditions subjected to various actuator voltages. The results presented herein reveal
that the minus actuator voltages increase the buckling load, whereas the plus actuator voltages
decrease the buckling load at the same condition. Very high voltages will be able to influence the
buckling response of the hybrid laminated plate. However, such high voltages cannot be applied,
because they lead to breakdown in the material properties. It can also be seen from Fig. 3b that
when the SFSF is chosen as a boundary condition, the effect of voltage actuator on the critical
buckling load is very small. In Table 5, the effect of the ratio of the piezoelectric layer thickness
to thickness of the host layer on the critical buckling load at different boundary conditions is
tabulated. Also, in Fig. 4, this effect for the SSSS boundary condition is depicted. It is seen that
with an increase in the piezo-to-host thickness ratio, the Pxcr increases.
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Fig. 3. Effect of the actuator voltage on the critical buckling load for the SCSC, SSSC and SSSS
boundary conditions (a) and for the SFSC, SSSF and SFSF boundary conditions (b)

Table 5. Effect of the ratio of piezoelectric layer thickness to thickness of the host layer on the
critical buckling load for different boundary conditions

ha/h
Boundary conditions

SCSC SSSC SSSS SFSC SSSF SFSF

0 382.3593 256.3732 182.2478 86.8944 76.3741 59.5945

0.1 530.0259 356.0965 253.5918 121.0005 106.2125 82.2653

0.2 708.1540 476.5520 339.8699 162.2539 142.2768 109.5356

0.3 916.0362 617.2578 440.7347 210.4871 184.4213 141.2979

0.4 1153.2794 777.9461 555.9935 265.6071 232.5654 177.4930

Fig. 4. Effect of the ratio of the piezoelectric layer thickness to thickness of the host layer on the critical
buckling load for the SSSS boundary condition

7. Conclusion

In this article, mechanical buckling analysis has been presented for a three-layered rectangular
plate with piezoelectric actuators subjected to the combined action of mechanical and electric
loads. The derivations were based on the first-order plate theory and by employing an analy-
tical approach, the five coupled governing stability equations are converted into two decoupled
partial differential equations. By using the Levy solution, these equations are converted into
two independent ordinary differential equations, and the power series method of Frobenius is
used for solving these equations accurately. Extensive parametric studies for this structure under
different sets of electric loading and boundary conditions have been carried out. The following
conclusions, from the numerical computations were drawn.
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• The buckling load is decreased by increasing the plate aspect ratio in both negative and
positive actuator voltages and all boundary conditions.

• The application of negative voltage on the actuator layers can improve the mechanical
buckling strength, and the critical buckling load can be controlled by applying a suitable
voltage on the actuator layers.

• The critical buckling load increases with the increase of ratio of the piezoelectric layer
thickness to the thickness of the host layer.

• Increasing the constraints on boundary conditions results in an increase in the critical
buckling load.
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