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The paper deals with topological classes of statically determinate beams with an arbitrary
number of pin supports. The beams carry piece-wisely distributed loads which are placed
in such a way that bending moment values are extreme at any section. For such loads, it is
sufficient to consider only two load cases with alternate spans uniformly loaded. Each beam
with a fixed topology is subjected to geometrical optimization with the absolute maximum
moment as the objective function. Exact formulas for optimal values of geometrical para-
meters are found for all topologies. An equality criterion between minimum values of the
objective function is used as an equivalence relation. On the basis of this relation, the set of
all topologies is divided into equivalence topological classes. Typical features of these classes
are found and discussed.
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Notations

cE , cH , cS , cT – number of external, internal cantilevers, number of segments lS , lT
g – number of optimal geometry variants
h, s – coordinates of hinges and of supports
l, lE , lH , lS , lT , L – lengths of optimal beam segments and length of beam, see Fig. 2
m – number of optimal envelopes of moment diagrams
Mi,M

n
i – optimal moment value of topology ti and class T

n
i

n, p – number of supports and of topological classes, respectively
q – maximum intensity of arbitrarily distributed gravitational load
{rn} – sequence of class moment ratios
R – equivalence relation of beam topologies
ti, t
n
i – beam topology, i = 1, 2, . . . , |Tn| or i = 1, 2, . . . , |T2:n|

ti – topological code of support i, i = 1, 2, . . . , n
Tn,T2:n – set of all topologies with n supports and with two to n supports
Tni ,T

2:n
i – topological class with n supports and with two to n supports

|Tn|, |T2:n| – number of topologies in set Tn, T2:n

{Tnk} – sequence of topological classes
x – axial coordinate
yi – dimensionless length of cantilever i = 1, 2, . . . , n
zi – dimensionless length of span i = 1, 2, . . . , n− 1
(·)n, (·)2:n, (·)ni – quantities in set Tn, T2:n and class Tni
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1. Introduction

Beams are encountered all around us in many engineering applications. Statically determinate
beams are also widely used in engineering structures due to their many advantages. Their short
members are well suited for prefabrication, transportation and installation. In these beams, no
stresses are produced by changes of temperature, settlement of supports and imperfections of
assembly. Statically determinate beam cases are the basis of solid mechanics (Pedersen and
Pedersen, 2009). They have not been fully explored yet and still attract attention of researchers
(Golubiewski, 1995; Choi et al., 2004; Pennock and Alwerdt, 2007; Liu et al., 2009).

Topology optimization is a rapidly expanding research area of structural mechanics (Kirsch,
1989; Rozvany et al., 1995; Bojczuk and Szteleblak, 2006). Topological optimization of beams is
an important part of this area and can be found, among others, in articles of Mróz and Rozvany
(1975), Imam and Al-Shihri (1996), Wang and Chen (1996), Bojczuk and Mróz (1998), Won
and Park (1998), Mróz and Bojczuk (2003), Wang (2004, 2006), Friswell (2006), Jang et al.
(2009). These papers, however, do not concern multispan hinged beams and the assignment of
supports to bars. Topological optimization of statically determinate multispan hinged beams
with arbitrary many supports was the subject of the author’s earlier articles (Rychter and
Kozikowska, 2009; Kozikowska, 2011). The topology in these papers is understood as the way
how supports are connected to bars. The first paper introduces the space of these beams and a
genetic algorithm for their topology and geometry optimization. The second presents topological
classes of these beams. In both articles, the beams carry stationary loads which remain in a
fixed position. In many practical situations, however, beams are subjected to a load whose
position may vary. Such optimization tasks usually come down to problems with multiple load
cases. There is a limited number of papers about beam optimization involving multiple loading
conditions (Mayeda and Prager, 1967; Karihaloo and Kanagasundaram, 1988; Rozvany et al.,
1988; Bryant and Heinlein, 1994). Therefore, this article deals with topology and geometry
optimization of statically determinate beams under the worst piece-wisely distributed load. It is
assumed that the beams under consideration are loaded so slowly that the load may be regarded
as quasi-static. In order to determine the most unfavourable arrangements of this load, influence
lines are used. Since the beams primarily must resist bending due to action of transverse loads,
the absolute maximum bending moment was chosen as the objective function to rank beam
topologies, like in Wang (2006) and Xing and Wang (2012). According to influence lines, the
maximum possible value of this function in each cross-section of the beam corresponds to only
two quasi-static load cases with a distributed load, which covers all odd or all even spans.

Given the complexity of topology design spaces, topological optimization is usually not car-
ried out in the full domain. Since the whole space of statically determinate beam topologies
is known (Rychter and Kozikowska, 2009), exhaustive examination of all possibilities can be
performed and a division of this space into topological equivalence classes can be found. This
partition is based on the equivalence relation defined as an equality criterion between values
of the absolute maximum moment of beams with optimal geometry. Geometry optimization of
each beam with a fixed topology was carried out by a modified version of the genetic algorithm,
which was presented in Rychter and Kozikowska (2009). Typical features of optimal geometries
and exact formulas for optimal locations of supports and hinges are shown. A comparison of
topological classes for a uniform load and the most unfavourably distributed load is reported.

2. Beam topology and geometry

In this paper, we study all statically determinate beams resting on a fixed number of pin supports
or on a number of pin supports varying within a certain interval. Such beams were analysed
in Rychter and Kozikowska (2009) and Kozikowska (2011). To find the topology of a beam, we
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start with the simply supported beam with all supports at the ends of the bars. Then we regard
each support as topologically moveable: it can be moved inside its associated bar (first and last
support) or inside any of its two associated bars (intermediate supports). The topology of a
n-support statically determinate beam is a vector of these support shifts relative to the ends of
bars: move left (code 1), move right (code 2), and no move (code 0)

tni = [t1, . . . , tn] (2.1)

The geometry of the beam is represented by a set of n−1 dimensionless lengths of spans be-
tween neighbouring supports (parameters zi), two dimensionless lengths of external cantilevers
(parameters y1 and yn) and n − 2 ratios of internal cantilever lengths to span lengths (para-
meters yi for i ∈ {2, . . . , n− 1}). The size |Tn| of the set Tn of all n-support beam topologies
and the size |T2:n| of the set T2:n of all topologies of beams with two to n supports are given
in Kozikowska (2011).

3. Equivalence relation of beam topologies

3.1. Geometry optimization of the beam with a fixed topology

The beams considered in Kozikowska (2011) were subjected to stationary loading. In this
article, as in many practical situations, beams carry piece-wisely distributed loads that can
occupy different positions. The maximum intensity of the arbitrarily distributed gravitational
load is q. It is assumed that the rate of load changes is slow enough so that the load can be
considered as a quasi-static. The effects of such loads are studied by means of influence lines in
Fig. 1.

Fig. 1. A beam with the two most unfavourable cases of piece-wisely distributed load:
(a) and (b) influence lines for the bending moment at the section A and B, (c) the load that causes the
maximum possible value of bending moment with the top in tension in all sections of odd bars and with
the bottom in tension in all sections of even bars, (d) the load that causes the maximum possible value
of bending moment with the bottom in tension in all sections of odd bars and with the top in tension in

all sections of even bars

We observe that the bending moment reaches the maximum value with the top or the bottom
in tension when piece-wisely distributed loads occupy all the spans of the beam, over which the
influence line does not change sign. Furthermore, the most unfavourable load out of loads of any
distribution is uniform of maximum intensity q. The most dangerous loads can be extended to
some spans of the beam where the ordinates of the influence line are equal to zero. This gives
the two most unfavourable load cases with the load on all odd or all even spans, regardless of
the topology of the beam and the place where the bending moment is calculated, as shown in
Fig. 1. The first load case from Fig. 1c creates the largest possible moment values with the top
in tension in all sections of odd bars and with the bottom in tension in all sections of even bars.
The second load case from Fig. 1d produces the largest possible moment values on the opposite
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side of he beam: for odd bars tension appears at the bottom fibres and for even bars at the top
fibres.
We consider a beam of unit length, with a fixed topology. The beam is optimized with respect

to geometrical variables for both the most unfavourable load cases. This optimization problem
may be formulated as follows

Minimize max
x∈[0,1]

|M(zi, yj, x)|

Subject to











0 < zi < 1 i = 1, 2, . . . , n− 1
0 < yj < 1 for tj 6= 0 j = 1, 2, . . . , n
y1 + z1 + z2 + . . .+ zn−1 + yn = 1

(3.1)

where maxx∈[0,1] |M(zi, yj, x)| is the objective function representing the maximum of the absolute
bending moment for both load cases, zi denote lengths of spans, yj represent nonzero lengths of
internal and external cantilevers with nonzero topological codes and x is the axial coordinate.
The total number of design variables is equal to the sum of the number of spans and the number
of nonzero external and internal cantilever lengths.
Optimization of geometrical parameters for all topologies ti for both load cases was made

using a modified version of the genetic algorithm (Rychter and Kozikowska, 2009). Chromosomes
representing a beam with a fixed topology are vectors of real genes zi and yi. Such chromosomes
are compact and suitable for genetic transformations, particularly crossover, which operation is
hard to design for statically determinate beams. The minimal value of the absolute maximum
bending moment Mi is a result of geometry optimization of each beam with topology ti for
both load cases.

3.2. Definition of equivalence relation of beam topologies

T is the set of beam topologies: Tn or T2:n. We define an equivalence relation R on the
set T. Any two topologies ti and tj of the set T are equivalent with respect to the relation R
if the values of the optimal moments Mi and Mj of these topologies are equal

ti ≡R tj if Mi =Mj (3.2)

The relation R creates a decomposition of the set Tn into disjoint equivalence classes of beam
topologies or topological classes Tni and the set T

2:n into topological classes T2:ni , respectively.
Parameters from the class Tni have the superscript n and subscript i.

4. Topological classes for a fixed number of supports

4.1. Optimal envelope of bending moment diagrams for a fixed topology

A beam of length L from the class Tni , with optimal geometry for a fixed topology, is shown
in Fig. 2. The beam is found with two unique bending moment diagrams, drawn with a solid
line or dashed line, for both the most unfavourable load cases. The optimal envelope of the two
moment diagrams has the same local extreme moment values equal to Mni . These values occur
at the bottom of the beam at mid spans or close to them, over all supports which were moved
away from the ends of bars and over whole spans which were created by moving away both
supports from the ends of bars towards the middle of the bars. Both moment diagrams are never
on the same side of the beam. The envelope may have portions with non-zero values only on
one side of the beam. Such portions are cantilevers at the end of the beam and spans with two
zero moment points inside or at the end (such as hinges and/or ends of the beam). Zero values
of the envelope occur only in hinges and at both ends of the beam. Unsupported hinges can



Topological classes of statically determinate beams... 261

not change their locations without changing the moment diagrams like in the case of stationary
loading (Kozikowska, 2011) and the optimal envelope of moment diagrams is equivalent to only
one topology.

Fig. 2. A beam with optimal geometry for a fixed topology from the class Tni

The paper provides exact formulas that allow one to calculate the optimal geometry for any
topology, under the most unfavourably distributed load. To get the values of the parameters lni ,
lnE,i, l

n
H,i, l

n
S,i and l

n
T,i (see Fig. 2) we need to solve the system of equations given below

(n − cnS,i − cnT,i − 1)lni + cnE,ilnE,i + cnH,ilnH,i + cnS,ilnS,i + cnT,ilnT,i = L
1

2
lni − lnE,i = 0 (lni )

2 − 4lni lnH,i − 4(lnH,i)2 = 0

lnS,i =
1

2
lni +
1

2

√

(lni )
2 − lni lnH,i lnT,i =

√

(lni )
2 − lni lnH,i

(4.1)

where lnE,i and l
n
H,i denote the lengths of nonzero external and internal cantilevers, respectively,

lni , l
n
S,i and l

n
T,i are the lengths of optimal beam segments between two closest supports and/or

hinges with a parabolic moment diagram at the bottom of the beam for one of the two load
cases. Zero moment values for this load case occur at both ends of the segment lni , at only one
end of the segment lnS,i and do not occur at any point of the segment l

n
T,i. The first equation

in (4.1) describes the total length of the beam. The parameters cnE,i, c
n
H,i, c

n
S,i, c

n
T,i are the

numbers of the segments lnE,i, l
n
H,i, l

n
S,i and l

n
T,i, respectively. The second equation represents

the comparison between the lengths of a cantilever and a simply supported beam with the same
values of the absolute maximum moment. The maximum bending moment value of the simply
supported beam of the length lni +2l

n
H,i equals twice this value of the simply supported beam of

the length lni in accordance with the third equation. The forth and the last equations in (4.1) are
computed from the system of equations (4.2) and (4.3) and are explained graphically in Fig. 3
and Fig. 4, respectively

lnS,i = l
n
i − lX

lnH,i
MX
=
lni
Mni

MX =
1

2
qlni lX −

1

2
q(lX)

2 Mni =
1

8
q(lni )

2 (4.2)

Fig. 3. Graphic explanation of equations (4.2)

The first equation in (4.2) specifies the difference of the segment lengths lni and l
n
S,i (see

Fig. 3). The second equation is obtained from the similarity of the right angle triangles with
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the bases lnH,i and l
n
i . The bending moment values MX and M

n
i are calculated for the simply

supported, uniformly loaded beam of the length lni : MX at the distance lX from the end of this
beam and Mni in the middle of this beam (the third and the last equation)

lnT,i = l
n
i − 2lX

lnH,i
MX
=
lni
Mni

MX =
1

2
qlni lX −

1

2
q(lX)

2 Mni =
1

8
q(lni )

2

(4.3)

Fig. 4. Graphic explanation of equations (4.3)

The first equation in (4.3) determines the length of the segment lnT,i (see Fig. 4). The other
equations in (4.3) are the same as in (4.2).
The solution to system (4.1) is

lni =
L

dni
lnE,i =

L

2dni
lnH,i = (

√
2− 1) L

2dni

lnS,i =

(

√

3
2 −

√
2
2 + 1

)

L
2dn
i

lnT,i =
√

3
2 −

√
2
2
L
dn
i

(4.4)

where

dni = n+
1

2

(

cnE,i + (
√
2− 1)cnH,i

)

+

(

√

3

2
−
√
2

2
− 1
)

(1

2
cnS,i + c

n
T,i

)

− 1

The lengths of two-hinged spans of the optimal beam are equal to lni + 2l
n
H,i. One-hinged

spans have the lengths of lni + l
n
H,i or l

n
S,i + l

n
H,i. The lengths of spans without hinges are equal

to lni or l
n
S,i or l

n
T,i. The values of the parameters c

n
E,i, c

n
H,i, c

n
S,i, c

n
T,i can be calculated from the

beam topology tni (see Eq. (2.1)). The value of the parameter c
n
E,i is equal to the number of

non-zero elements in the first and last position of the code tni . The value of the parameter c
n
H,i

is the number of non-zero elements in positions 2 through n−1 of the code tni . The value of the
parameter cnS,i equals the number of pairs of neighbouring code elements equal to 11 or 22 (where
for example 111 denotes two pairs) excluding pairs in the sequence 2211. The parameter cnT,i
can be calculated as the number of the sequences 2211 in the topological code tni . Algorithms
to calculate the coordinates of supports and hinges (on the basis of the beam topology and the
lengths lni , l

n
E,i, l

n
H,i, l

n
S,i, l

n
T,i and L) are given by a pseudo code in Appendix.

4.2. Features of beam topologies in a topological class

All optimal bending moment diagram pairs from a topological class, under the most dange-
rous piece-wisely distributed load, are shown in Fig. 5.
All topologies in the topological class Tni have the same value of moment M

n
i , which is

dependent on the length lni , in accordance with Eqs. (4.2) and (4.3). According to Eq. (4.4),
the length lni depends on the number of supports and the values of the parameters c

n
E,i, c

n
H,i,
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Fig. 5. All optimal envelopes of moment diagrams in the class T510: (a)-(d) c
5
E,10 = 1, c

5
H,10 = 3,

c5S,10 = 2, c
5
T,10 = 0, (e)-(f) c

5
E,10 = 1, c

5
H,10 = 3, c

5
S,10 = 0, c

5
T,10 = 1

cnS,i and c
n
T,i. In addition, the parameter c

n
S,i = 2 is equivalent to the parameter c

n
T,i = 1 (see

Fig. 5). Thus for two topologies ti and tj of the set T
n under the most dangerous piece-wisely

distributed load, the equivalent condition from Eq. (3.2) can be expressed as

ti ≡R tj if cE,i = cE,j ∧ cH,i = cH,j ∧ cS,i + 2cT,i = cS,j + 2cT,j (4.5)

where cE,i, cH,i, cS,i, cT,i, cE,j, cH,j, cS,j, cT,j are the numbers of appropriate segments for the
topology ti and tj, respectively.

4.3. Comparison of topological classes

The whole set of three-support topological classes, under the most unfavourably distributed
load, with all optimal envelopes of moment diagrams is presented in Fig. 6. The better topological
classes are, the more cantilevers and the less one-hinged spans their beams have. In other words,
better classes have larger values of the parameters cnE,i and c

n
H,i and smaller values of the

parameters cnS,i and c
n
T,i. The values of the parameters c

n
E,i, c

n
H,i, c

n
S,i and c

n
T,i for the classes

from Fig. 6 are given in Table 1. The best topologies in the first class Tn1 with an odd number of
supports have only one one-hinged span (see Fig. 6a and Fig. 7a). The number of topologies in
the best classes with the odd number of supports is equal to n− 1. The best topological classes
with an even number of supports have only one topology, which does not have any one-hinged
spans (see Fig. 7b).

Table 1. Values of the parameters cnE,i, c
n
H,i, c

n
S,i and c

n
T,i in tree-support topological classes

T3i T31 T
3
2 T

3
3 T

3
4 T

3
5 T

3
6 T

3
7

cnE,i 2 2 1 1 1 0 0

cnH,i 1 0 1 1 0 1 0

cnS,i 1 0 0 1 0 0 0

cnT,i 0 0 0 0 0 0 0

Information about the ways of hinge placement in statically determinate multispan beams
can be found in many books on structural mechanics (Darkov and Kuznetsov, 1970; Nowacki,
1976; Kolendowicz, 1993; Hartsuijker and Welleman, 2006; Gambhir, 2009, 2011; Karnovsky and
Lebed, 2010). The authors distribute hinges at spans and/or on supports of continuous beams
and then they study properties of generated statically determinate beams. They state that
by choosing an adequate place for the hinges, it is possible to influence the absolute maximum
bending moment positively. They notice that this moment in a multispan beam with hinges away
from supports is smaller than in a series of simple beams with the same spans (when hinges are
on supports). Moreover, some authors recommend the hinge layout with the smallest possible
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Fig. 6. All three-support topological classes with their optimal envelopes of moment diagrams: (a) T31,
(b) T32, (c) T

3
3, (d) T

3
4, (e) T

3
5, (f) T

3
6, (g) T

3
7

Fig. 7. The first five- and six-support topological classes: (a) T51, (b) T
6
1

number of one-support bars (Nowacki, 1976; Gambhir, 2009, 2011). This layout is optimal for the
absolute maximum bending moment under most unfavourably distributed load, but the authors
do not justify their recommendation in this way. They advise to make the number of one-hinged
spans as small as possible because the failure of any part of such a beam does not cause the
entire beam to collapse.
An algorithm which calculates the number of topological classes for any number of support

was written by the author. The sequence of numbers of classes for a growing number of supports
was generated by this algorithm. The closed form of the formula for the total number of classes pn

was found on the basis of this sequence using Mathematica software package

pn =
1

4
[6n2 − 12n + 11 + (−1)n] (4.6)

Let us consider the sequence of real numbers {rn}∞n=2 whose members are ratios of moment
values of extreme classes. Calculating for both classes lni from Eq. (4.4) and M

n
i from Eq. (4.3)

and dividing one moment value by the other, we obtain

rn =
Mnthe last class
Mnthe first class

=
1

(n− 1)2
[

n+
1

2
(
√
2−1)(n−2)+1

2

(

√

3

2
− 1
2

√
2−1
)

(n mod 2)
]2
(4.7)

The sequence {rn} converges to the limit (3+2
√
2)/4, which is smaller than the limit for statio-

nary uniform loading equal to 2 (Kozikowska, 2011). The moment value of the last topological
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class without any cantilevers is the same for both the most unfavourably distributed load and
uniform load. The moment value of the first class is obviously greater for the most unfavourably
distributed load, which was selected from a variety of loads, including uniform over the entire
beam. Therefore, elements of the sequence corresponding to the same value of n and the limit
of the sentence are smaller for the most unfavourable load. The rapprochement between class
moment values with the growing number of supports is also seen in Fig. 8, which compares
moment values Mni of all topological classes for beams with 2, 3, 4 and 5 supports.

Fig. 8. Optimal moments in topological classes for a fixed number of supports

The number of different optimal envelopes of moment diagrams mn and the number of
optimal geometry variants gn in all n-support topological classes are equal to the number of
topologies |Tn|, because an optimal envelope corresponds to only one topology and only one
optimal geometry

mn = gn = |Tn| = 4 · 3n−2 (4.8)

The formula for |Tn| is presented in Rychter and Kozikowska (2009).

5. Comparison of topological classes for a fixed number of supports under the
most unfavourably distributed load und stationary uniform load

Statically determinate beams which are optimal for the absolute maximum moment have uni-
formly distributed bending moment diagrams for the stationary load (Kozikowska, 2011), whe-
reas these beams have evenly distributed moment diagram envelopes for the worst piece-wisely
distributed load. Topological classes are usually different for the stationary load than for the
worst distributed load. Two topologies are members of the same class Tni under the stationary
load if they have equal values of the parameters cnE,i and c

n
H,i. For the most unfavourable load

in addition to these parameters, the values of the parameters cnS,i and c
n
T,i also decide on the

membership of topologies in the class Tni . The first two- and three-support topological classes
are the same in terms of topology for both types of loading. But optimal locations of supports
and hinges are different. If n > 3 then the first class for the most unfavourable load with all
supports shifted away from the ends of bars and with the minimal number of one-hinged spans
(one for odd n and zero for even n) is a part of the first class for the stationary loading. But
optimal beams from the first class under the stationary load have all spans of equal lengths,
while span lengths under the most unfavourable load are diverse. Two-hinged spans are the lon-
gest, one-hinged spans are shorter and the lengths of spans without hinges are the smallest. The
optimal lengths of external and internal cantilevers are shorter under the stationary loading.
The last topological classes with all supports under the ends of bars and with equal lengths of
spans for these two loads are identical both in terms of topology and optimal geometry.
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6. Topological classes for a different number of supports

Let us consider the set T2:n of beam topologies with two to n supports and topological classes
T2:ni . The plot in Fig. 9 shows the class moment values M

2:4
i for beams with two up to four

supports under the most unfavourably distributed load. The classes T2:416 and T
2:4
21 contain

topologies with two successive numbers of supports. The remaining classes consist of topologies
with only one number of support.

Fig. 9. Optimal moments in topological classes for a different number of supports

The beams from Fig. 10 belong to the same topological class T2:ni with two up to n  7
supports. For a fixed number of supports, the six-support beams from Fig. 10a are elements of
the topological class T62, the seven-support beams from Fig. 10b are members of the topological
class T744.

Fig. 10. Optimal beams with a different number of supports and equal values of the absolute maximum
moment: (a) two topologies from the class T62, (b) two topologies from the class T

7
44

The two topologies tki and t
k+1
j with the number of supports k and k + 1, where

k ∈ {2, . . . , n− 1}, are members of the same class T2:ni if they satisfy the condition

tki ≡R tk+1j if cE,i = 2 ∧ cE,j = 0 ∧ cH,i = cH,j ∧ cS,i+2cT,i = cS,j+2cT,j (6.1)

where cE,i, cH,i, cS,i, cT,i, cE,j, cH,j , cS,j , cT,j are the numbers of the segments lE , lH , lS , lT for
the topology tki and t

k+1
j , respectively.

7. Conclusions

The paper presents topology and geometry optimization of statically determinate beams. The
beams can have any fixed number of supports or a number of supports from a certain interval.
The objective of the optimization is to minimize the absolute maximum bending moment due
to the most unfavourably distributed load. The maximum possible moment with the top and
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the bottom in tension occurs at any cross-section of a beam when alternate spans are uniformly
loaded. A genetic algorithm is used to optimize the geometry of any beam with a fixed topology
for two load cases. An optimal envelope of two moment diagrams has equal local extreme values
for each beam. Algebraic formulas that determine values of optimal geometrical parameters are
obtained by analyzing properties of the envelope. Beam topologies are sorted into topological
classes according to minimal values of the objective function. The characteristic features of these
classes are described and compared with those for stationary loading.

The results obtained here provide valuable guidance for the design of beam structures under
the worst distributed load. Topological classes for the worst combination of distributed loads
with fixed and the most unfavourable positions may be an important area of further research.
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Appendix

Pseudocode for the algorithms to calculate the coordinates of supports and hinges of the optimal
beam in a one-dimensional coordinate system with the origin at the left end of the beam

FUNCTION calculating support coordinates()
INPUT: the topological code of beam: n-element sequence t; the lengths l, lE , lH , lS , lT , L
OUTPUT: n coordinates of supports: n-element vector s
IF t1 is equal to 0 THEN ASSIGN s1 the value zero
ELSE ASSIGN s1 the value lE
END IF
FOR i starts at 2, i < n, increment i DO

IF ti−1 is equal to 0 THEN
IF ti is equal to 0 THEN ASSIGN si the value si−1 + l
ELSE IF ti is equal to 1 THEN
IF ti+1 is equal to 1 THEN ASSIGN si the value si−1 + lS
ELSE ASSIGN si the value si−1 + l
END IF

ELSE ASSIGN si the value si−1 + l + lH
END IF

ELSE IF ti−1 is equal to 1 THEN
IF ti is equal to 0 THEN ASSIGN si the value si−1 + l + lH
ELSE IF ti is equal to 1 THEN
IF ti+1 is not equal to 1 THEN ASSIGN si the value si−1 + l + lH
ELSE ASSIGN si the value si−1 + lS + lH
END IF

ELSE ASSIGN si the value si−1 + l + 2lH
END IF

ELSE
IF ti is equal to 0 THEN
IF (i is greater than 2) and (ti−2 is equal to 2) THEN ASSIGN si the value si−1 + lS
ELSE ASSIGN si the value si−1 + l
END IF

ELSE IF ti is equal to 1 THEN
IF (i is equal to 2) or ((i is greater than 2) and (ti−2 is not equal to 2)) THEN

IF ti+1 is not equal to 1 THEN ASSIGN si the value di−1 + l
ELSE ASSIGN si the value si−1 + lS
END IF

ELSE
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IF ti+1 is equal to 1 THEN ASSIGN si the value si−1 + lT
ELSE ASSIGN si the value si−1 + lS
END IF

END IF
ELSE
IF (i is equal to 2) or ((i is greater than 2) and (ti−2 is not equal to 2)) THEN

ASSIGN si the value si−1 + l + lH
ELSE ASSIGN si the value si−1 + lS + lH
END IF

END IF
END IF

END FOR
IF tn is equal to 0 THEN ASSIGN sn the value L
ELSE ASSIGN sn the value L− lE
END IF
END FUNCTION

FUNCTION calculating hinge coordinates()
INPUT: the topological code of beam: n-element sequence t; n coordinates of supports: n-element

vector s; the length lH
OUTPUT: n− 2 coordinates of hinges: (n− 2)-element vector h
FOR i starts at 1, i < n− 1, increment i DO

IF tn+1 is equal to 0 THEN ASSIGN hn the value sn+1
ELSE IF tn+1 is equal to 2 THEN ASSIGN hn the value sn+1 − lH
ELSE ASSIGN hn the value sn+1 + lH
END IF

END FOR
END FUNCTION

References

1. Bojczuk D., Szteleblak W., 2006, Application of finite variations to topology and shape opti-
mization of 2D structures, Journal of Theoretical and Applied Mechanics, 44, 2, 323-349

2. Bojczuk D., Mróz Z., 1998, On optimal design of supports in beam and frame structures,
Structural Optimization, 16, 47-57

3. Bryant R.H., Heinlein S.J., 1994, Optimal design of beams for moving loads with a deflection
constraint, International Journal of Non-Linear Mechanics, 29, 2, 205-216

4. Choi I., Lee J.S., Choi E., Cho H., 2004, Development of elastic damage load theorem for
damage detection in a statically determinate beam, Computers and Structures, 82, 29/30, 2483-
2492

5. Darkov A., Kuznetsov V., 1970, Structural Mechanics, Gordon and Breach, New York

6. Friswell M.I., 2006, Efficient placement of rigid supports using finite element models, Commu-
nications in Numerical Methods in Engineering, 22, 205-213

7. Gambhir M.L., 2009, Fundamentals of Solid Mechanics: A Treatise on Strength of Materials, PHI
Learning, New Delhi

8. Gambhir M.L., 2011, Fundamentals of Structural Mechanics and Analysis, PHI Learning, New
Dehli

9. Golubiewski M., 1995, Directed graphs as the generators of the whole set of Gerber beams,
Mechanism and Machine Theory, 30, 7, 1013-1017

10. Hartsuijker C., Welleman J.W., 2006, Engineering Mechanics: Equilibrium, Kluwer Academic
Publishers, New York



Topological classes of statically determinate beams... 269

11. Imam M.H., Al-Shihri M., 1996, Optimum topology of structural supports, Computers and
Structures, 61, 147-154

12. Jang G.W., Shim H.S., Kim Y.Y., 2009, Optimization of support locations of beam and plate
structures under self-weight by using a sprung structure model, Journal of Mechanical Design, 131,
2, 021005.1-021005.11

13. Karihaloo B.L., Kanagasundaram S., 1988, Optimum design of statically indeterminate struc-
tures subject to strength and stiffness constraints and multiple loading, Computers and Structures,
30, 3, 563-572

14. Karnovsky I.A., Lebed O., 2010, Advanced Methods of Structural Analysis, Springer New York
Dordrecht Heidelberg, London

15. Kirsch U., 1989, Optimal topologies of structures, Applied Mechanics Reviews, 42, 8, 223-239

16. Kolendowicz T., 1993, Structural Mechanics for Architects (in Polish), Arkady, Warsaw

17. Kozikowska A., 2011, Topological classes of statically determinate beams with arbitrary number
of supports, Journal of Theoretical and Applied Mechanics, 49, 4, 1079-1100

18. Liu G.A., Huang Z.M., Gao J.L., 2009, Damage identification based on damage load influence
line to statically determinate beam, Journal of Hunan University (Natural Sciences), 36, 8, 23-27

19. Mayeda R., Prager W., 1967, Minimum-weight design of beams for multiple loading, Interna-
tional Journal of Solids and Structures, 3, 6, 1001-1011

20. Mróz Z., Bojczuk D., 2003, Finite topology variations in optimal design of structures, Structural
and Multidisciplinary Optimization, 25, 153-173

21. Mróz Z., Rozvany G.I.N., 1975, Optimal design of structures with variable support positions,
Journal of Optimization Theory and Applications, 15, 85-101

22. Nowacki W., 1976, Structural Mechanics (in Polish), PWN, Warsaw

23. Pedersen P., Pedersen N.L., 2009, Analytical optimal designs for long and short statically
determinate beam structures, Structural and Multidisciplinary Optimization, 39, 343-357

24. Pennock G.R., Alwerdt J.J., 2007, Duality between the kinematics of gear trains and the
statics of beam systems, Mechanism and Machine Theory, 42, 11, 1527-1546

25. Rozvany G.I.N., Bendsøe M.P., Kirsch U., 1995, Layout optimization of structures, Applied
Mechanics Reviews, 48, 41-119

26. Rozvany G.I.N., Yep K.M., Ong T.G., Karihaloo B.L., 1988, Optimal design of elastic
beams under multiple design constraints, International Journal of Solids and Structures, 24, 4,
331-349

27. Rychter Z., Kozikowska A., 2009, Genetic algorithm for topology optimization of statically
determinate beams, Archives of Civil Engineering, 55, 1, 103-123

28. Wang B.P., Chen J.L., 1996, Application of genetic algorithm for the support location optimi-
zation of beams, Computers and Structures, 58, 797-800

29. Wang D., 2004, Optimization of support positions to minimize the maximal deflection of structu-
res, International Journal of Solids and Structures, 41, 7445-7458

30. Wang D., 2006, Optimal design of structural support positions for minimizing maximal bending
moment, Finite Elements in Analysis and Design, 43, 95-102

31. Won K.M., Park Y.S., 1998, Optimal support positions for a structure to maximize its funda-
mental natural frequency, Journal of Sound and Vibration, 213, 5, 801-812

32. Xing B., Wang X., 2011, The singular function method based on the moving load deformation
of suspension bridge, Advanced Materials Research, 403/408, 3059-3062

Manuscript received October 20, 2012; accepted for print October 8, 2013


