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In this paper, a dynamical model of a spring-mass system with a single degree of freedom is
proposed, which can be designed as a nonlinear supporting system for GVT of large scale air-
craft and vibration isolation owing to stable-quasi-zero-stiffness (SQZS). The SQZS structure
is constructed by a positive stiffness component and a pair of inclined linear springs provi-
ding negative stiffness, which is typical for an irrational restoring force due to geometrical
configuration. The unperturbed analysis demonstrates complex equilibrium bifurcations and
stabilities for this peculiar system, based upon which parameter optimizations are performed
for SQZS and the maximum interval of low frequency. Furthermore, the dynamics analysis
of the perturbed system near the optimized parameters reveals complicated behaviour of
KAM structures, period doubling, chaos crisis, coexistence of multiple solutions, intermit-
tency chaos, chaos saddle, etc. All those presented herein provide a better understanding for
the complicated dynamics of SQZS nonlinear system.
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1. Introduction

Much attention has been paid on the low frequency design for GVT (ground vibration test) of
large scale aircraft (Molyneux, 1957), isolation and other applications (Lorrain, 1974; Denoyer
and Johnson, 2001; Winterflood, 2001; Ibrahim, 2008; Arafat et al., 2010). For GVT, a low
frequency supporting system is required to provide a free-free mode, where the ratio of the
support natural frequency and the fundamental frequency of the aircraft to be tested should
be lower than 1:3 (Green, 1945). As we have known that the fundamental frequency of a large
thin-wing aircraft can be low to 1Hz even to 0.7 Hz, which requires the supporting frequency
to be lower than 0.3Hz (Xing et al., 2005). Even the earlier efforts has been made to achieve
the lower frequency supporting, the conventional isolation design cannot achieve such a required
low frequency, such as an undercarriage support (with 2Hz), linear spring support (with 1Hz),
pneumatic support (with 0.5Hz) (Molyneux, 1957; Xing et al., 2005). The first conceptual design
of low frequency was proposed by Molyneux (1957) with a spring geometrical arrangement to
provide a zero or very low stiffness. Blair et al. (2002) considered ultra low frequency isolation
applied to laser interferometers for gravitational wave detection. Platus (1992) adopted the
negative stiffness mechanism for isolation against sub-Hertz vibrations. Zhang et al. (2004)
utilized an isolator comprising elastic component and Euler’s column providing a frequency
low to 0.5Hz. Alabuzhev et al. (1989) introduced a class of vibration protection designs with
quasi-zero stiffness consisting of load-bearing elastic elements with constant positive stiffness as
well as devices with negative stiffness. Carrella et al. (2007) and Kovacic et al. (2008) studied
the force transmissibility of a quasi-zero-stiffness isolator by using the Duffing system. Most
of the investigations are focused on the static design and the experiment of a low frequency
system. Until recent years, Cao et al. (2006) proposed a model called the SD oscillator, which
consists of a lump mass and a pair of inclined linear elastic springs. Several studies have been
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published recently including strange attractors, Hopf bifurcation, co-dimension bifurcations and
the analytical solutions (Cao et al., 2008a,b; Tian et al., 2010; Lai and Xiang, 2010; Cao et al.,
2012). These investigations showed the intrinsic characteristic of negative stiffness of the SD
oscillator due to its geometrical structure, which can be applied to the dynamic design of a low
frequency system.
The motivation of this paper is to propose a dynamical model for GVT nonlinear supporting

system with low frequency which comprises a vertical linear spring providing a high positive
stiffness as a supporting component and a SD oscillator contributing a negative stiffness. More-
over, this paper aims at the dynamical analysis to explore the complex nonlinear phenomena of
the presented system, based upon which the optimum design with a maximum interval of low
frequency can be achieved.
This paper is organized as follows. In Section 2, the dynamical model is proposed and for-

mulated mathematically. In Section 3, the unperturbed dynamics of the system is presented
for the complex equilibrium bifurcations. In Section 3, parameter optimization of the model is
carried out for parameters µ, λ and α, γ, respectively. In the following, Section 4, dynamical
analysis and numerical simulations are carried out for the system at the optimized parameters
µ = 1, λ = 0 to show the complex dynamical behaviour and reveal the mechanical nature of the
system. This paper is ended with our conclusions and discussions.

2. Governing equation

Consider a novel model, as shown in Fig. 1, which comprises a lump massm linked by three
linear springs: a vertical spring of stiffness K1 and the equilibrium length of H, and a pair
of inclined springs of stiffness K2 and the equilibrium length of L. The springs are capable of
tension and compression pinned to each rigid support.

Fig. 1. Dynamical model for the mechanism of a supporting system with low frequency comprising a
vertical and a pair of oblique springs

The governing equation of motion is obtained as

mZ̈ +
[

K1 + 2K2
(

1− L√
a2 + Z2

)]

Z −K1(h+ d) +mg = 0 (2.1)

where Z is the mass displacement with respect to point O, h + d the equilibrium end of the
vertical spring and a the half distance between the inclined rigid supports of the springs.
The dimensionless form of system (2.1) can be obtained by letting X = Z/L, τ = ω0t,

ω20 = (K1 + 2K2)/m, α = a/L (α ∈ [0,∞)), γ = 2K2/(K1 + 2K2) (γ ∈ [0, 1]) and
η = [K1(h+ d)−mg]/ml1ω20, written as
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Ẍ +X − γX√
α2 +X2

− η = 0 (2.2)

which behaves both smooth (α > 0) and discontinuous (α = 0), in this case, system (2.2)
becomes

Ẍ +X − γ sgn (X)− η = 0 (2.3)

Again, for α > 0, system (2.1) can be rewritten in the following form by letting x = X/α,
µ = γ/α, λ = η/α

ẍ+ x− µx√
1 + x2

− λ = 0 (2.4)

The equivalent form of the first-order differential equations can be obtained and written as the
following by letting ẋ = y,

ẋ = y ẏ = −x+ µx√
1 + x2

+ λ (2.5)

with the potential

V (x) =
1

2
x2 − µ

√

1 + x2 − λx (2.6)

and the Hamiltonian

H(x, y) =
1

2
x2 +

1

2
y2 − µ

√

1 + x2 − λx (2.7)

3. Unperturbed dynamics

In this Section, the unperturbed dynamics analysis of the bifurcations and stabilities of system
(2.4) are presented with the equilibria, the stabilities and also the bifurcations. The equilibrium
surface of system (2.4) can be obtained as

{(x, µ, λ)| F (x, µ, λ) = f(x, µ)− λ = 0} (3.1)

To understand the complex structure of the equilibrium surface, F (x, µ, λ) = 0, marked pink in
Fig. 2a, we introduce two groups of planes µ = const and λ = const to cut the equilibrium
surface, respectively. The sections of F (x, µ, λ) = 0 with µ < 1, µ = 1 and µ > 1 can been seen
in Fig. 2a, marked blue, which are also plotted in Fig. 2b in (λ, x) plane. While the sections of
F (x, µ, λ) = 0 with λ < 0, λ = 0 and λ > 0 are marked in Fig. 2a with white, black and green,
respectively, which are also presented in Fig. 2c in (µ, x) plane.
Furthermore, to classify the nonlinear behaviour of the system, we define the generalized

transition sets of double parameters (µ, λ) as following

Σg = B ∪H ∪ S, (3.2)

where

B =
{

(µ, λ)| ∃x, µ ∈ R, s.t., F (x, µ, λ) = Fx(x, µ, λ) = 0, µ  0, λ ∈ R

}

H =
{

(µ, λ)| ∃x, λ ∈ R, s.t., F (x, µ, λ) = Fx(x, µ, λ) = Fxx(x, µ, λ) = 0, µ  0, λ ∈ R

}

S =
{

(µ, λ)| ∃x, µ ∈ R, s.t., F (x, µ, λ) = 0, ∀δ > 0, xa = x− δ, xb = x+ δ,

Fx(xa) = Fx(xb), µ  0, λ ∈ R

}

(3.3)
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Fig. 2. (a) The equilibrium surface (pink) in space (x, µ, λ), (b) the sections cut by µ = 0.5, 1, 3, (c) the
sections cut by λ = −1.5, 0, 1.5 (colours online: http://www.ptmts.org.pl/volume.xsl?vol=52&no=1)

Here B, H and S are the bifurcation set, hysteresis set and the symmetric set, respectively,
which is obtained and written as

B = {(µ, λ)| µ = (λ2/3 + 1)3/2, λ ∈ R}
H = {(µ, λ)| µ = 1, λ ∈ R}
S = {(µ, λ)| µ ∈ R, λ = 0}

(3.4)

Meanwhile, the bifurcation set can be classified as

B = B0 ∪ B1 ∪ B2 (3.5)

where

B0 = {(µ, λ)| µ = 1, λ = 0}
B1 = {(µ, λ)| µ = (λ2/3 + 1)3/2, λ > 0}
B2 = {(µ, λ)| µ = (λ2/3 + 1)3/2, λ < 0}

(3.6)

Here B1 and B2 are a pair of saddle-centre (Diminnie and Haberman, 2000) bifurcation sets.
Hence, the generalized transition can be described as

Σg = B0 ∪ B1 ∪ B2 ∪H ∪ S (3.7)

which bifurcates at the catastrophe point A(µ, λ) = (1, 0) and divides the parameter plane
(µ, λ) into six persistent regions marked by IA, IIA, IIIA, IB, IIB, IIIB, as shown in Fig. 3Σg.
In each of these persistent regions, the system is structurally stable, while on Σg the system is
structurally unstable. The corresponding phase portraits (black closed curves), restoring forces
F (x, µ, λ) = f(x, µ) − λ (f(x, µ) and λ marked blue and red, respectively) and the poten-
tials V (x) (marked green) are plotted in Figs. 3IA and 3B0, respectively. The stability of the
equilibrium of system (2.4) can be observed from the previous analysis Figs. 3IA and 3B0, in
which the stable equilibrium points (centers) correspond to the potential ‘well’ bottoms while
the unstable ones (saddles or saddle-centres) correspond to the potential ‘obstacle’ summits.
It is worth noticing that the complex equilibrium bifurcations and the transitions are shown

in Fig. 3 when the parameters vary over the parameter space, (µ, λ) plane, seen in Fig. 3Σg. It is
found that system (2.4) behaves as a pair of saddle-centre bifurcations from a single stable system
into an asymmetrical bi-stable system via a saddle-centre bifurcation when the parameter point
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Fig. 3. Diagrams for the generalized transition set (Σg), and the related phase portraits, the centres
marked with black bullets, the saddles marked with black hollow circles and the saddle-centres with
grey bullets, with the corresponding restoring forces f(x) (blue curves), λ (red lines) and the

potentials V (x) (green curves) (colours online: http://www.ptmts.org.pl/volume.xsl?vol=52&no=1)

(µ, λ) moves from region IIA into IIIA, or symmetrically from IIB into IIIB, crossing bifurcation
the set B1, B2, respectively. A pitchfork bifurcation occurs when the parameter point (µ, λ)
moves along the symmetric set S from µ < 1 to µ > 1 passing the catastrophe point A, seen
in Figs. 3B0 and 3AD.

4. Parameter optimizations

In this Section, the SQZS and the maximum interval of the low frequency of the proposed model
are obtained by parameter optimization, respectively.

4.1. Stable-quasi-zero-stiffness optimization

The stiffness of system (2.4) can be written as

K(x) = 1− µ
√

(1 + x2)3
(4.1)

which is plotted in Fig. 4a for different values of the parameter µ. The zero stiffness equilibrium
points and the respective parameters can be obtained when K(x) = 0, F (x) = 0, that is,
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x = 0, µ = 1, λ = 0; x = −
√

µ2/3 − 1, µ > 1, λ =
√

(µ2/3 − 1)3; x =
√

µ2/3 − 1, µ > 1,
λ = −

√

(µ2/3 − 1)3, as shown in Figs. 3B0, 3B1 and 3B2, respectively. It can be seen from the
stabilities shown in Figs. 3B0, 3B1 and 3B2 that x = 0, µ = 1, λ = 0 is the unique SQZS
equilibrium.

Fig. 4. Graphs for the dimensionless stiffness and restoring forces: (a) stiffness of system (2.4) for
parameter µ = 0, 0.5, 1.0, 1.5, 2.0, (b) total stiffness of system (2.2), marked k(X), and the

corresponding restoring force, marked G(x), comprising the components of vertical and oblique springs,
marked g1(X) with stiffness 1− γ and g2(X), respectively, for α = γ = 0.5443

4.2. Maximum interval of low frequency

Even the optimized parameters µ = 1 and λ = 0 have been achieved for SQZS, it could not
suggest the range of lower frequency. To obtain the maximum interval of lower frequency, further
optimization is necessary for the parameter γ(= α). To do this, we will refocus our attention
on system (2.2) with all the concern of the parameters µ = γ/α in the following analysis, the
dimensionless stiffness of which can be written as

k(X) = 1− α2γ
√

(α2 +X2)3
(4.2)

and the stiffness for the vertical spring denoted as k1 = 1− γ correspondingly.
Consider the following control inequality

k(X) = 1− α2γ
√

(α2 +X2)3
¬ εk1 (4.3)

where ε ∈ [0, 1] is the standard ratio. The excursion from X = 0 satisfying (4.3) can be obtained
as

Xd = γ

√

n−2/3 − 1 (4.4)

where n = 1− ε(1 − γ), and the derivative of Xd with respective to γ can be obtained as

X ′d(γ) =

√

n−2/3 − 1− εγ

3n5/3
√

n−2/3 − 1
(4.5)

from which γ ∈ [0, 1] can be optimized to maximize the lower frequency interval of Xd by letting
X ′d(γ) = 0.
Figure 4b plots the restoring forces, G(X) and g1(X), and the corresponding stiffness, k(X)

and k1, in system (2.2) and the maximum dimensionless excursion Xd at the optimum value
γ = 0.5443 when ε = 1.0. The details of the symbols can be seen in the above discussions and
the corresponding captions.
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5. Perturbed dynamics

In this Section, we investigate nonlinear dynamical phenomena for system (2.4) near the optimi-
zed parameter µ = 1, λ = 0 when the system is subjected to a viscous damping and an external
harmonic excitation with a amplitude f and frequency ω, written as the following

ẍ+ 2ζẋ+ x− µx√
1 + x2

− λ = f cos(ωτ). (5.1)

5.1. Hamiltonian dynamics

Herein this subsection, the resonance behaviour of system (5.1) without damping (ζ = 0) is
investigated by the Hamiltonian

Hf (x, y, τ) =
1

2
x2 +

1

2
y2 − µ

√

1 + x2 − fx cos(ωτ) (5.2)

which is one and a half degree of freedom system and time τ is regarded as a parameter.
To construct an extended phase space (x, y,E, τ), E = −Hf is treated as another additional

coordinate, acting as the conjugate momentum of τ , while the flow in the extended space is
described by an auxiliary parameter ξ playing the role of time (Lichtenberg and Lieberman,
1992; Cao et al., 2011).
The new Hamiltonian HE can be obtained via the generating function F2(1)(x, y,E, τ) =

xy + Eτ and written as in following form

HE(x, y,E, τ) =
1

2
x2 +

1

2
y2 +E − µ

√

1 + x2 − fx cos(ωτ) = E (5.3)

which is dynamically similar to a two-degree-of-freedom autonomous system and still non-
-integrable owing to the lack of other first integral besides (5.3) E = const (Freitas and Viana,
2004).
The first two terms in the above extended Hamiltonian denote a harmonic oscillator for which

a pair of action and angle variables J , θ with the definition x =
√
2J sin θ and y =

√
2J cos θ

can be introduced, and Hamiltonian (5.3) is written as

Ha(J,E; θ, τ) = J + E − µ
√

1 + 2J sin2 θ − f
√
2J sin θ cos(ωτ) (5.4)

To obtain the dynamical torus, we introduce another canonical transformation by means of
the generating function F2(2)(Jθ, Jϕ; θ, ϕ) = ωϕτJϕ+ θJθ, such that the phase space (J, θ,E, τ)
is transformed into Jθ, Jϕ, θ, ϕ defined by Jθ = J , θ = θ, Jϕ = E/ω and ϕ = ωτ (Cao et al.,
2011).
The new Hamiltonian in action-angular space (Jθ, Jϕ, θ, ϕ) can be written as

H(Jθ, Jϕ; θ, ϕ) = H0(Jθ, Jϕ) +H1(Jθ, Jϕ; θ, ϕ)

= ωθJθ + ωϕJϕ − µ
√

1 + 2Jθ sin
2 θ − f0

√
2J sin θ cosϕ

(5.5)

which describes motions of the system on the extended torus.
For convenience, it is assumed that ϕ = ωϕτ mod 2π and ϕ = 0 is equivalent to T = 2π/ω.

In the unperturbed Hamiltonian of system (5.5), there exist two frequencies

ωϕ =
∂Ha0
∂Jϕ

= ω ωθ =
∂Ha0
∂Jθ

(5.6)

where ωϕ, ωθ are the external frequency and the natural frequency of the system, respectively.
The behaviour of the forced system is restricted in a torus with both action and angular variables
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ωϕ and ωθ, which can be described by the definition of the winding number α = ωθ/ωϕ. Here
ωθ and ωϕ are the rotating frequencies along the cycles of latitude and cycles of longitude
along the torus while Jθ and Jϕ retain two constants corresponding to ωθ and ωϕ for a given
initial value in (5.5), respectively. The most interesting case of the behaviour is the resonance
which happens when mωθ − nωϕ = 0, where m and n are a pair of related prime integers. The
behaviour is harmonic resonance if m = n = 1, sub-harmonic resonance of m order if m > 1,
n = 1, super-harmonic resonance of n order if m = 1, n > 1, and super-sub-harmonic resonance
if m > 1, n > 1 (Lichtenberg and Lieberman, 1992). The winding number α = m/n can be
observed in that m and n are corresponding to the number of fixed points and the number
of twists of the trajectories dividing by their greatest common factor in the Poincaré section,
respectively. In addition, if the winding number α is irrational, the trajectory never closes on
itself filling a torus densely, for which the map in the Poincaré section exhibits a generic KAM
curve, namely a quasi-periodic motion. The following numerical simulations are presented in the
form of Poincaré sections taken at zero phase angle by a stroboscopic time-T map of T = 2π/ω
for different initial values and trajectories on the phase plane for the optimized system depicted
by Eq. (5.2).
Figure 5a demonstrates the Poincaré section calculated for ζ = 0, µ = 1, λ = 0, f = 0.5

and ω = 1.086, which presents the complex KAM structure (Cao et al., 2008b; Lichtenberg and
Lieberman, 1992). A peculiar orbit identified as a chaotic sea or stochastic web can be found,
which fills the finite area and connects the isolated islands encircling the associated series of fixed
points (one prime resonant period 1 solution, marked purple, with the secondary resonances of
period 3, marked grey; a pair of period 2, marked black and dark red, with the corresponding
secondary resonances of period 6, marked light blue and green, respectively; one period 5, marked
cyan and a pair of period 3, marked light green and orange, with the corresponding secondary
resonances of period 6, marked light blue and dark green, respectively). As can be seen from this
figure, there exist KAM curves and a series of fixed points outside of the finite region (period 13
closed to the chaotic sea, a pair of period 4 of the outmost resonances, marked green and
red, respectively, and a series period 7 fixed points) with the associated quasi-periodic islands
connected by chaotic orbits. As for examples, Fig. 5b-5g plot some of the resonant trajectories
and the corresponding Poincaré section given in Fig. 5a: Figs. 5b,c,d and 5e for prime resonances
of period 1, period 2, period 5 and period 3 solutions, respectively, and, Figs. 5f and 5g for
the secondary resonances of period three and period six associated period one and period two
resonances, respectively.

Fig. 5. (a) Global KAM structure (ζ = 0, µ = 1, λ = 0, f = 0.50, ω = 1.086); (b)-(e) the resonant fixed
points and the corresponding trajectories of period 1, 2, 5 and period 3, respectively, (f) and (g) the
secondary resonances of period 3 and period 6 associated with the period 1 and period 2 plotted in (b)

and (c), respectively (colours online: http://www.ptmts.org.pl/volume.xsl?vol=52&no=1)

Figure 6 demonstrates the existence of invariant curves with hyperbolic fixed points surro-
unding the elliptic fixed points (Guckenheimer and Holmes, 1999), which results in the sudden
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change to chaotic sea when the parameter varies. Figure 6a presents the complex KAM struc-
ture with KAM curves, hyperbolic fixed points connecting invariant curves of homoclinic and
heteroclinic types surrounding the elliptic fixed points for µ = 1, ζ = 0, λ = 0, f = 0.40,
ω = 0.50. While Fig. 6b plots the KAM structure, for µ = 1, ζ = 0, λ = 0, f = 0.45, ω = 0.50,
with a chaotic sea burst from the broken of the invariant curves and one period one and two
pairs of period two resonances preserved from the former KAM structure, which implies a very
complicated bifurcation procedure for further investigation.

Fig. 6. Global KAM structure on Poincaré sections: (a) for ζ = 0, µ = 1, λ = 0, f0 = 0.40, ω = 0.50,
(b) for ζ = 0, µ = 1, λ = 0, f0 = 0.45, ω = 0.50

(colours online: http://www.ptmts.org.pl/volume.xsl?vol=52&no=1)

5.2. Driven system with dissipation

In this subsection, we will focus our attention on the detailed complex behaviour of period
doubling, multiple stability (Freitas and Viana, 2004), chaos crisis (Hong and Hu, 1999, 2004),
saddle-node bifurcation (Nusse et al., 1995) and the transient chaos (Grebogi et al., 1983; Souza
et al., 2004, 2008), etc., by examining the bifurcation diagram of system (5.1). The diagram is
plotted in Fig. 7a for the stroboscopically sampled displacement x versus the control parameter µ
near the optimized parameters µ = 1, λ = 0 with ζ = 0.027, f = 0.40 and ω = 0.26, for which
the corresponding Lyapunov exponent (Wolf et al., 1985) diagram is given in Fig. 7b, while the
corresponding rectangled areas are enlarged in Figs. 7c and 7d, respectively.

5.2.1. Coexisted period doubling bifurcation

It can be seen from Fig. 7a or clearly in Fig. 7c, that a pair of coexisted period doublings
(marked red and blue) bifurcated from a period 1 solution via symmetry-breaking bifurcation
at µ = 0.9302 lead to the corresponding coexisted chaotic attractors, respectively. The corre-
sponding phase portraits for the period doubling marked in blue shown in Fig. 7c are plotted
in Figs. 8a-8d for the period 1, period 2, period 4, and a small chaotic attractors for µ = 0.960,
0.977, 0.980 and 0.984, respectively, while the corresponding coexisted chaotic attractor for
µ = 0.984 is shown in Fig. 8e led by the period doubling marked red.

As the parameter µ increases to 0.9884, the interior crises burst out, which arises from the
collisions between the coexisted chaotic attractors and the saddles within the corresponding
basins of attraction. The corresponding phase portrait with the Poincaré section is plotted
in Fig. 8f. In addition, Fig. 7c also shows the boundary crisis of chaos as µ increases again to
µ = 1.0042, which is originated from the collision between the chaotic attractor and the unstable
periodic attractor on the boundary of its basin.
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Fig. 7. (a) Bifurcation diagram of x versus µ with symmetry-breakings marked with SB for ζ = 0.027,
λ = 0, f = 0.40, ω = 0.26, (b) the corresponding maximum Lyapunov exponent for (a) with initial
condition (2, 0), (c) and (d) the enlarged diagram of the left and right rectangle area in Fig. 7a,

respectively, with period doubling (PD) and saddle-node bifurcations (SN)
(colours online: http://www.ptmts.org.pl/volume.xsl?vol=52&no=1)

Fig. 8. Phase portraits and Poincaré sections of period 1 doubling for ζ = 0.027, λ = 0, f = 0.40,
ω = 0.26, (a) µ = 0.960, (b) µ = 0.977, (c) µ = 0.980, (d) µ = 0.984, showing the period 1, 2, 4, and
chaotic motion corresponding to the blue bifurcation diagram in Fig. 7c, (e) µ = 0.984, (f) µ = 1.000

(colours online: http://www.ptmts.org.pl/volume.xsl?vol=52&no=1)

5.2.2. Multiple stability and saddle-node bifurcation

It can also be seen from Fig. 7a that a period 3 solution (marked black) occurs at µ = 0.9689,
which is coexisted with the above pair of period doublings, bifurcates into a pair of period 3
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solutions at µ = 1.0521 leading to chaos (marked blue and cyan) via period doubling, and then
the interior crises to a larger chaotic attractor at µ = 1.1122.

Basin analysis (Hsu, 1992; Nusse and Yorke, 1994) demonstrates the complex co-existence of
multiple stable solutions using Poincaré sections (coloured bullets), as shown in Fig. 9, and the
coexistence of a pair of period 3 solutions, one stable and the other unstable, which denotes the
burst of a saddle-node bifurcation at µ = 0.9689, as shown in Fig. 7c. The basins (marked cyan
and pink) of a pair of period 1 solutions (red and yellow) are shown for µ = 0.96 in Fig. 9a;
Fig. 9b plots the basins (marked cyan, pink and white, respectively) of a pair period 2 (red and
yellow) and a period 3 (green) solutions when µ = 0.977, on the boundaries of which there exists
an unstable period 3 solution (the hollow black squares) accompanied with the stable one; in the
same way, as shown in Fig. 9c for µ = 0.984, there also occurs the unstable period 3 solution
(the hollow black squares) on the boundaries of basins (cyan, pink and white, respectively) of
the pair of chaotic attractors (red and yellow) led by period doubling from the periodic solutions
and the stable periodic solution (green) above. While Fig. 9d presents the basins (white) of the
chaotic attractor (marked blue), merged from the pair of the small chaotic attractor above, and
the stable period 3 solution (green bullets), where the unstable period 3 attractor (hollow black
squares) still retains on the basin boundary.

Fig. 9. Attraction basins and their corresponding co-existed attractors for ζ = 0.027, λ = 0, f = 0.40,
ω = 0.26: (a) µ = 0.960, (b) µ = 0.977, (c) µ = 0.984, (d) µ = 1
(colours online: http://www.ptmts.org.pl/volume.xsl?vol=52&no=1)

5.2.3. Periodic motions and their transients

Numerical investigations are also carried out for evidencing bifurcation phenomena displayed
in Fig. 7d, which is the enlargement of the right rectangled area in Fig. 7a. At the critical value
µ = 1.1798, there occurs a crisis such that the chaotic attractor disappears suddenly jumping to
a period 7 orbit (the phase portrait for µ = 1.1802 shown in Fig. 10a). The period 7 solution
stops short at µ = 1.1817 via a doubling-period bifurcation cascade (µ = 1.1814) (Thompson
and Stewart, 2002) remaining a pair of coexisted stable period 5 solutions occurring via saddle-
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-node bifurcation (SN) at µ = 1.1804 (Fig. 10b plots the period 5 trajectories with the Poincaré
sections for µ = 1.1812), which leads to a merged chaotic attractor at µ = 1.1851, as shown in
Fig. 10d.

Fig. 10. Trajectories and Poincaré sections for ζ = 0.027, λ = 0, f = 0.40, ω = 0.26: (a) µ = 1.1802,
(b) and (c) µ = 1.1812, transient chaos and period five solutions, and (d) µ = 1.1851, chaotic attractor

(colours online: http://www.ptmts.org.pl/volume.xsl?vol=52&no=1)

A transient chaos is also found at µ = 1.1812 to be a non-attracting chaotic saddle, which
settles down to one of the period 5 motions depending on the initial conditions, as shown in
Fig. 10c. The life of the transient chaos can be demonstrated via the time-series, as shown
in Fig. 11a-c for the initial values (−1.0, 0), (2.1, 0) and (1.0, 0), respectively, with different
durations of the chaotic saddles.

Fig. 11. Time-series of stroboscopic map for discrete displacements x versus time τn
(τn = 2nπ/ω, n = 0, 1, 2, . . .) for µ = 1.1812
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6. Conclusions

In this paper, a novel dynamical model with SQZS has been proposed for GVT of large scale
aircraft or isolations systems. The equilibrium bifurcations and the stabilities of the unperturbed
system are presented to get the SQZS optimization for parameters at µ = 1, λ = 0 and the
maximum low stiffness interval has been achieved for α and γ. Further studies near the optimized
parameters showed complex KAM structures with complicated resonances for the forcing system
and the complex dynamics of the system perturbed by both viscous damping and external
forcing. The results presented herein this paper enable us to get a better understanding of
the mechanism of the dynamical design for the low frequency supporting or isolation systems.
The investigations for the presented model are carried out by the current authors in two main
directions. The first possible direction is to explore further nonlinear dynamics of asymmetry
of Hopf bifurcations and the co-dimension behaviour for the optimized system, and the second
direction is the experimental investigation for further dynamical parameter design.
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