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The differential equation governing the transverse motion of an elastic rectangular plate of
non-linear thickness variation with thermal gradient has been analyzed on the basis of classi-
cal plate theory. Following Levy’s approach, i.e. the two parallel edges are simply supported,
the fourth-order differential equation governing the motion of such plates of non-linear vary-
ing thickness in one direction with exponentially temperature distribution has been solved by
using the quintic splines interpolation technique for two different combinations of clamped
and simply supported boundary conditions at the other two edges. An algorithm for com-
puting the solution of this differential equation is presented for the case of equal intervals.
The effect of thermal gradient together with taper constants on the natural frequencies of
vibration is illustrated for the first three modes of vibration.
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1. Introduction

In this era of science and technology, plates of various shapes and variable thickness may be
regarded as a first approximation to wings and blades and occur as panels in many forms of
engineering structures. Thus knowledge of their natural frequencies is of considerable importance
at the design stage in order to avoid resonances excited by internal or external forces. Therefore,
their design requires an accurate determination of their natural frequencies and mode shapes.

With the advancement of technology, plates of variable thickness are being extensively used
in civil, electronic, mechanical, aerospace and marine engineering applications. Nowadays, it
becomes very necessary to study the vibration behavior of plates to avoid resonance excited by
internal or external forces. Modern engineering structures are based on different types of design,
which involve various types of anisotropic and non-homogeneous materials in the form of their
structure components. Depending upon the requirement, durability and reliability, materials are
being developed so that they can be used to give better strength and efficiency. In the recent
past, there has been a phenomenal increase in the development of elastic materials due to high
demand for lightweight, high strength, corrosion resistance and high-temperature performance
requirements in modern technology. Plates of composite materials are widely used in many
engineering structures and machines.

A number of researchers have worked on free vibration analysis of plates of different shapes
and variable thickness. Rectangular plates of non-linear varying thickness are widely used in
various structures; however, they have been poorly studied, unlike linearly varying thickness.
Rectangular plates of non-linear varying thickness with thermal gradient find various applica-
tions in the construction of modern high speed air craft. The vibration characteristics of such
plates are of interest to the designer.
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An extensive review of the work up to 1985 on linear vibration of isotropic/anisotropic plates
of various geometries was given by Leissa (1969). The studies on vibration of rectangular plates
with uniform/non-uniform thickness with various edge conditions after 1985 were carried out by
a number of researchers and were reported by Leissa (1977, 1978, 1981, 1987).

Here, a quintic splines procedure is developed for obtaining the natural frequencies of a rec-
tangular plate of nonlinear varying thickness with the thermal gradient effect. The consideration
of the present type of thickness variation was taken earlier by Gupta et al. (2006) for a circular
plate. The plate type structural components in aircraft and rockets have to operate under ele-
vated temperatures which causes non-homogeneity in the plate material, i.e. elastic constants
of the material become functions of the space variables. In an up-to-date survey of literature,
authors have come across various models to account for non-homogeneity of plate materials
proposed by researchers dealing with vibration.

Gupta et al. (2010a) studied the thermal gradient effect on vibration of a non-homogeneous
orthotropic rectangular plate having bi-direction linearly thickness variation. Gupta et al.
(2011a) did the vibration analysis of a visco-elastic orthotropic parallelogram plate with linear-
ly thickness variation in both directions. Lal et al. (1997) studied the transverse vibrations of
non-uniform orthotropic rectangular plates by Quintic splines method. Gupta and Kaur (2008)
studied the effect of thermal gradient on free vibration of clamped visco-elastic rectangular pla-
tes with linearly thickness variation in both directions. Gupta and Khanna (2007) studied the
vibration of a visco-elastic rectangular plate with linearly thickness variations in both directions.
Gupta et al. (2007) observed the thermal effect on vibration of a non-homogeneous orthotropic
rectangular plate having bi-directional parabolically varying thickness. Tomar and Gupta (1983,
1985) studied the effect of thermal gradient on frequencies of an orthotropic rectangular plate of
variable thickness in one and two directions. Gupta et al. (2010c, 2011b) studied the thermal ef-
fect on vibration of a parallelogram plate of linearly varying thickness and bi-directional linearly
varying thickness. Gupta et al. (2010b) did the vibration study of a visco-elastic parallelogram
plate of linearly varying thickness.

As the thickness variation is not perfectly linear and the same for quadratic, therefore non-
linear variation in thickness is very useful for scientists and engineers to study vibration of the
plate and find modes of vibrations.

Since there is no work available on the non-linear thickness variation on thermally induced
vibration of rectangular plates, in this paper, the thermal effect on vibration of a rectangular
plate with non-linear varying thickness is studied. Here, vibration of a rectangular plate with
non-linear varying thickness under a steady exponential temperature distribution is examined.
The effect of temperature on the modulus of elasticity is assumed to vary exponentially along
the x-axis. The non-linear thickness variation is taken as a combination of linear and parabo-
lical variation factor. The differential equation of motion has been solved by the quintic spline
interpolation technique. The two edges parallel to the x-axis (y = 0 and y = b) are assumed
to be simply supported. Different sets of boundary conditions have been imposed at the other
two edges. The frequency parameters for the first three modes of vibrations for C-S-C-S- and
S-S-S-S- boundary conditions and for various values of taper constants, thermal constant and a
fixed value of length-to-breadth ratio, are obtained. The results are presented in tabular form.

2. Analysis and equation of motion

Let us consider a rectangular plate which is subjected to an exponential temperature distribution
along the length, i.e. in the x-direction

T = T0
e− eX

e− 1
(2.1)
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where T denotes the temperature excess above the reference temperature at any point at the
distance X = x/a and T0 denotes the temperature excess above the reference temperature at
the end, i.e. x = a or X = 1.
The temperature dependence of the modulus of elasticity for most of engineering materials

is given by Nowacki (1962)

E(T ) = E0(1− γT ) (2.2)

where E0 is the value of Young’s modulus at the reference temperature, i.e. T = 0, and γ is
the slope of the variation of E with T .
Taking as the reference temperature, the temperature at the end of the plate, i.e. at X = 1,

the modulus variation in view of (2.1) and (2.2) becomes

E(X) = E0
(

1− α
e− eX

e− 1

)

(2.3)

where α = γT0 (0 ¬ α < 1) is a constant known as the temperature constant.
The differential equation governing the free transverse motion of an elastic rectangular plate

of the length a, breadth b, thickness h and density ρ is

D∇4w + 2
∂D

∂x

∂

∂x
∇2w + 2

∂D

∂y

∂

∂y
∇2w +∇2D∇2w

+ (ν − 1)
(∂2D

∂x2
∂2w

∂y2
− 2
∂2D

∂x∂y

∂2w

∂x∂y
+
∂2D

∂y2
∂2w

∂x2

)

+ ρh
∂2w

∂t2
= 0

(2.4)

where w is the transverse displacement.
Assume now that the two opposite edges of the plate y=0 and y=b are simply supported.

Further, let thickness vary non-linearly in the x-direction only. Thus, the thickness h and flexural
rigidity D of the plate become a function of x only. For harmonic vibration, w can be expressed
as

w(x, y, t) =W1(x) sin
(mπy

b

)

eipt (2.5)

where p is the circular frequency and m is a positive integer.
Substitution of equation (2.5) into (2.4) gives

DW1,xxxx + 2D,xW1,xxx +
(

−
2m2π2

b2
D +D,xx

)

W1,xx +
(

−
2m2π2

b2
D,x
)

W1,x

+
(m4π4

b4
D −
νm2π2

b2
D,xx
)

W1 = ρhp
2W1

(2.6)

A comma followed by a suffix denotes partial differentiation with respect to that variable.
Thus equation (2.6) reduces to a form independent of y and on introducing the non-

dimensional variables

H =
h

a
W =

W1
a

X =
x

a
D1 =

D

a3
(2.7)

differential equation (2.6) reduces to

D1W,XXXX + 2D1,XW,XXX + (D1,XX − 2r
2D1)W,XX − 2r

2D1,XW,X

+ r2(r2D1 − νD1,XX)W = ρHa
2p2W

(2.8)

where r2 = (mπa/b)2.



18 A.K. Gupta, J. Mamta

Since the thickness varies non-linearly in the x-direction only, therefore, one can assume

H = H0(1 + β1X + β2X
2) (2.9)

where β1 and β2 are taper constants such that |β1| ¬ 1, |β2| ¬ 1 and β1 + β2 > −1, H0 is the
thickness at X = 0.

Considering equation (2.3) and (2.9) with the help of (2.7), the expression for rigidity D1
comes out as

D1 = D0
(

1− α
e− eX

e− 1

)

(1 + β1X + β2X
2)3 (2.10)

where D0 = E0H
3
0/[12(1 − ν

2)].

Using equations (2.8) to (2.10), one obtains the equation of motion as

(

1− α
e− eX

e− 1

)

(1 + β1X + β2X
2)2W,XXXX + 2

[

α
eX

e− 1
(1 + β1X + β2X

2)2

+ 3
(

1− α
e− eX

e− 1

)

(1 + β1X + β2X
2)(β1 + 2β2X)

]

W,XXX

+
[

α
eX

e− 1
(1 + β1X + β2X

2)2 + 6α
eX

e− 1
(1 + β1X + β2X

2)(β1 + 2β2X)

+ 6
(

1− α
e− eX

e− 1

)

(β1 + 2β2X)
2 + 6

(

1− α
e− eX

e− 1

)

(1 + β1X + β2X
2)β2

− 2r2
(

1− α
e− eX

e− 1

)

(1 + β1X + β2X
2)2
]

W,XX

− 2r2
[

α
eX

e− 1
(1+β1X+β2X

2)2 + 3
(

1− α
e− eX

e− 1

)

(1+β1X + β2X
2)(β1 + 2β2X)

]

W,X

+ r2
[

r2
(

1− α
e − eX

e− 1

)

(1 + β1X + β2X
2)2 − να

eX

e− 1
(1 + β1X + β2X

2)2

+ 6α
eX

e − 1
(1 + β1X + β2X

2)(β1 + 2β2X) + 6
(

1− α
e− eX

e− 1

)

(β1 + 2β2X)
2

+ 6
(

1− α
e− eX

e− 1

)

(1 + β1X + β2X
2)β2
]

W = λ2W

(2.11)

where

λ2 =
p2a2

E0/ρ

12(1 − ν2)

H20
(2.12)

is a frequency parameter.

3. Method of solution

Let f(X) be a function with continuous derivatives in the range (0, l). Choose (n + 1) points
X0,X1,X2, . . . ,Xn, in the range 0 ¬ X ¬ l such that 0 = X0 < X1 < X2 < X3 < . . . < Xn = 1.

Let the approximating function W (X) for f(X) be a quintic spline with the following
properties:

(a) W (X) is a quintic polynomial in each interval (Xk,Xk+1),

(b) W (Xk) = f(Xk), k = 0(1)n,

(c) W ′(X), W ′′(X), W ′′′(X) and W iv(X) are continuous.
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By definition, the quintic spline takes the form

W (X) = a0 +
4
∑

i=1

ai(X −X0)
i +
n−1
∑

j=0

bj(X −Xj)
5
+ (3.1)

where

(X −XJ )+ =

{

0 if X < XJ

X −XJ if X  XJ
(3.2)

It is also assumed, for simplicity, that the knots Xi are equally spaced in (0, l) with the spacing
interval ∆X, so that

∆X =
l

n
Xi = i∆X i = 0, 1, 2, . . . , n (3.3)

The number of unknown constants in equation (3.1) is (n+5). Satisfaction of differential equation
(2.11) by collocation at the (n + 1) knots in the interval (0, l) together with the boundary
conditions (to be explained in the next section) gives precisely the requisite number of equations
for the determination of unknown constants.
Substitution of W (X) from equation (3.1) into equation (2.11), for satisfaction at the m-th

knot, gives

B4a0 + [B4(Xq −X0) +B3]a1 + [B4(Xq −X0)
2 + 2B3(Xq −X0) + 2B2]a2

+[B4(Xq −X0)
3 + 3B3(Xq −X0)

2 + 6B2(Xq −X0) + 6B1]a3

+[B4(Xq −X0)
4 + 4B3(Xq −X0)

3 + 12B2(Xq −X0)
2 + 24B1(Xq −X0) + 24B0]a4

(3.4)

+
n−1
∑

i=0

[B4(Xq −Xi)
5 + 5B3(Xq −Xi)

4 + 20B2(Xq −Xi)
3 + 60B1(Xq −Xi)

2

+120B0(Xq −Xi)]bi = 0

where

B0 =
(

1− α
e− eXq

e− 1

)

(1 + β1Xq + β2X
2
q )
2

B1 = 2
[

α
eXq

e− 1
(1 + β1Xq + β2X

2
q )
2 + 3

(

1− α
e− eXq

e− 1

)

(1 + β1Xq + β2X
2
q )(β1 + 2β2Xq)

]

B2 =
[

α
eXq

e− 1
(1 + β1Xq + β2X

2
q )
2 + 6α

eXq

e− 1
(1 + β1Xq + β2X

2
q )(β1 + 2β2Xq)

+6
(

1− α
e− eXq

e− 1

)

(β1 + 2β2Xq)
2 + 6

(

1− α
e− eXq

e− 1

)

(1 + β1Xq + β2X
2
q )β2

−2r2
(

1− α
e− eXq

e− 1

)

(1 + β1Xq + β2X
2
q )
2
]

B3 = −2r
2
[

α
eXq

e− 1
(1+β1Xq + β2X

2
q )
2 + 3

(

1−α
e− eXq

e− 1

)

(1+β1Xq + β2Xq2)(β1+ 2β2Xq)
]

B4 = r
2
[

r2
(

1−α
e − eXq

e− 1

)

(1 + β1Xq + β2X
2
q )
2 − ν

(

α
eXq

e− 1
(1 + β1Xq + β2X

2
q )
2 + 6α

eXq

e− 1

)

·(1 + β1Xq + β2X
2
q )(β1 + 2β2Xq) + 6

(

1− α
e− eXq

e− 1

)

(β1 + 2β2Xq)
2

+6
(

1− α
e− eXq

e− 1

)

(1 + β1Xq + β2X
2
q )β2
]

− λ2
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Thus, one obtains a homogeneous set of equations in terms of the unknown constants
a0, a1, a2, a3, a4, b0, b1, . . . , bn−1, which, when written in matrix notation, takes the form

BC = 0 (3.5)

where B is an (n+ 1)× (n + 5) matrix and C is an (n+ 5)× 1 matrix.

4. Boundary conditions and frequency equations

The frequency equations for clamped (C) and simply supported (S) rectangular plates have been
obtained by employing the appropriate boundary conditions.

4.1. C-S-C-S-plates

For a rectangular plate clamped at both the edges X = 0 and X = 1 (and simply supported
at the remaining two edges)

W
∣

∣

∣

X=0,1
=
∂W

∂X

∣

∣

∣

∣

X=0,1

= 0 (4.1)

Applying boundary conditions (4.1), to deflection function (3.1), at the two edges X = 0 and
X = 1, one obtains a set of four homogeneous equations in terms of the unknown constants,
which can be written as

A1C = 0 (4.2)

where A1 is an 4× (n+ 5) matrix and C is an (n+ 5)× 1 matrix.
Equation (4.2) taken together with equation (3.5) gives a complete set of (n+ 5) equations

for a C-S-C-S-plate. These can be written as

[B/A1]C = 0 (4.3)

For a non-trivial solution of equation (4.3), the characteristic determinant must vanish

|B/A1| = 0 (4.4)

This is the frequency equation for a C-S-C-S-plate.

4.2. S-S-S-S-plates

For a rectangular plate simply supported at both the edges X = 0 and X = 1 (and simply
supported at the remaining two edges), the following holds

W
∣

∣

∣

X=0,1
=
∂2W

∂X2

∣

∣

∣

∣

X=0,1

= 0 (4.5)

Employing boundary conditions (4.5) to deflection function (3.1) at the two edges X = 0 and
X = 1, one gets the boundary equations for a S-S-S-S-plate as

A2C = 0 (4.6)

where A2 is an 4× (n+ 5) matrix and C is an (n+ 5)× 1 matrix.
Hence the frequency equation comes out for S-S-S-S-plate as

|B/A2| = 0 (4.7)
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5. Results and discussion

Frequency equations (4.4) and (4.7) are transcendental equations in λ2 from which infinitely
many roots can be obtained. The frequency parameter λ corresponding to the first three modes
of vibration of C-S-C-S- and S-S-S-S-rectangular plates have been computed for m = 1 and
various values of aspect ratio (a/b), thermal constant (α) and taper constants (β1, β2). The
value of Poisson’s ratio ν has been taken as 0.3.

To choose the appropriate interpolation interval ∆X, a computer program has been deve-
loped for the evaluation of the frequency parameter λ and run for n = 10(5)60. The numerical
values show consistent improvement with the increase of the number of knots. In the compu-
tation, the authors have fixed n = 50, since further increase in n does not improve the results
except for the fifth or sixth decimal places. These results are presented in Tables 1 to 3.

Table 1 shows the variation of the frequency parameter (λ) with the thermal constant (α)
for different combinations of taper constants (β1, β2) and the fixed aspect ratio (a/b = 1.5)
corresponding to the first three modes of vibration for C-S-C-S- and S-S-S-S-plates. The value
of the frequency parameter decreases with the increase of the thermal constant for both boundary
conditions considered here. Furthermore, it can be seen that the frequency parameter, for both
boundary conditions, decreases gradually in the third mode of vibrations in comparison to the
first two modes of vibration.

Table 1. Values of the frequency parameter (λ) for different thermal constants (α) with different
combinations of the taper constant (β1, β2) and a fixed aspect ratio (a/b = 1.5) for C-S-C-S-
and S-S-S-S-plates for the first three modes of vibrations

C-S-C-S-plate S-S-S-S-plate
β1, β2 α First Second Third First Second Third

mode mode mode mode mode mode

β1 = −0.5 0.0 29.3011 63.0984 111.0257 21.4941 53.0078 91.1043
β2 = −0.5 0.1 28.3908 61.1005 107.6504 20.4906 50.7688 87.9017

0.2 27.4901 58.8310 102.9045 19.4041 48.4050 84.8101
0.3 26.4212 56.8112 99.4052 18.3100 46.1205 81.7032
0.4 25.3101 54.7283 95.3142 17.1794 43.9503 78.6021
0.5 24.2465 52.4450 91.1528 15.8906 41.9390 75.2167

β1 = −0.5 0.0 36.0132 72.5490 127.4781 27.3761 63.7524 108.1562
β2 = 0.5 0.1 35.1001 70.2441 122.8791 26.2001 61.1533 104.7054

0.2 34.0002 68.1961 118.7376 25.3550 58.9641 101.1645
0.3 32.9982 66.0348 114.7082 24.2611 56.8300 97.9410
0.4 31.8908 63.8503 110.5314 23.1530 54.6306 94.7502
0.5 30.7983 61.7406 106.5164 22.0029 52.3858 91.4213

β1 = 0.5 0.0 49.4210 106.8851 191.4330 39.7562 97.2203 171.4612
β2 = 0.5 0.1 48.4301 104.4254 187.3517 38.5401 94.8203 169.7908

0.2 47.4209 102.1481 184.3200 37.5304 92.8103 164.7800
0.3 46.3211 99.8605 181.0769 36.5041 90.6234 161.5073
0.4 45.1899 97.6103 177.0027 35.4801 88.5328 158.4087
0.5 44.0277 95.6025 172.6536 34.4327 86.3658 155.1998

The results presented in Table 2 show a marked effect of variation of the taper constant
(β1) on the frequency parameter for the taper constant (β2 = 0.5), two values of the thermal
constant (α = 0.0, 0.4) and a fixed aspect ratio (a/b = 1.5) corresponding to the first three
modes of vibration. It is observed that the frequency parameter increases with the increase of
the taper constant for both boundary conditions considered here.
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Table 2. Values of the frequency parameter (λ) for different taper constants (β1) with different
combinations of the thermal constant (α) and a fixed aspect ratio (a/b = 1.5) for C-S-C-S- and
S-S-S-S-plates for the first three modes of vibrations; β2 = 0.5

C-S-C-S-plate S-S-S-S-plate
α β1 First Second Third First Second Third

mode mode mode mode mode mode

0.0 −0.5 36.0132 72.5490 127.4781 27.3761 63.7524 108.1562
−0.3 38.3782 78.1352 137.9481 29.4861 69.2189 118.7010
−0.1 40.5601 83.7103 148.5275 31.5908 74.7902 129.0211
0.0 42.5324 89.0914 158.7945 33.3920 79.8053 138.8386
0.1 44.8210 94.5601 169.4642 35.3904 85.2100 149.0842
0.3 47.0572 100.4805 180.3443 37.3026 91.0409 160.0490
0.5 49.4210 106.8851 191.4330 39.7562 97.2203 171.4612

0.4 −0.5 31.8908 63.8503 110.5314 23.1530 54.6306 94.7502
−0.3 34.1304 69.5461 122.0372 25.4328 60.4220 105.6032
−0.1 36.3308 75.3196 133.0619 27.5038 65.6027 116.1181
0.0 38.1510 80.1950 143.6991 29.1401 70.7212 125.8526
0.1 40.4302 86.1491 156.8407 31.1999 76.1082 136.4291
0.3 42.8410 91.9428 165.8413 33.2632 82.2734 147.4841
0.5 45.1899 97.6103 177.0027 35.4801 88.5328 158.4087

In Table 3, the effect of the taper constant (β2) on the frequency parameter for the taper
constant (β1 = 0.5), two values of the thermal constant (α = 0.0, 0.4) and a fixed aspect ratio
(a/b = 1.5) corresponding to the first three modes of vibration for C-S-C-S- and S-S-S-S-plates
is shown. From this table, one can observe that the frequency parameter in the first three modes
of vibration increases with the increase of the taper constant for C-S-C-S- and S-S-S-S-plates.

Table 3. Values of the frequency parameter (λ) for different taper constants (β2) with different
combinations of the thermal constant (α) and a fixed aspect ratio (a/b = 1.5) for C-S-C-S- and
S-S-S-S-plates for the first three modes of vibrations; β1 = 0.5

C-S-C-S-plate S-S-S-S-plate
α β2 First Second Third First Second Third

mode mode mode mode mode mode

0.0 −0.5 37.5320 77.7213 142.9941 27.8301 65.7224 116.9956
−0.3 39.4712 82.2052 151.0998 29.7861 70.8189 126.0010
−0.1 41.4011 86.9910 159.2275 31.7408 75.9702 135.1221
0.0 43.1534 91.1293 167.0042 33.4221 80.7053 143.6186
0.1 45.1210 96.0601 175.1864 35.3090 86.0030 152.7484
0.3 47.1572 101.2805 183.2443 37.3026 91.3409 162.0060
0.5 49.4210 106.8851 191.4330 39.7562 97.2203 171.4612

0.4 −0.5 33.2720 76.0091 126.9418 23.6881 60.1602 105.0480
−0.3 35.1142 79.7146 135.5856 25.6627 64.9400 114.0071
−0.1 37.2008 83.5046 143.9999 27.7293 69.7901 122.9085
0.0 38.8180 86.8696 152.1187 29.4711 74.2420 131.2102
0.1 40.8802 90.5247 160.9991 31.4209 78.9999 140.3121
0.3 43.1101 94.3131 169.1411 33.4382 83.6312 149.3722
0.5 45.1899 97.6103 177.0027 35.4801 88.5328 158.4087
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Moreover, it can be seen in Tables 2 and 3 that the frequency parameter, for both boundary
conditions, increases gradually in the third mode of vibrations in comparison to the first two
modes of vibration.

Also, one can observe from Tables 1 to 3, that the frequency parameter of the C-S-C-S-plate
is higher than that of the S-S-S-S-plate.
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