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A simple engineering method to determine dynamic mechanical parame-
ters of a rigid-plastic material with linear strain hardening is presented
in this paper. For this purpose, Taylor’s impact test, i.e., perpendicular
impact of a long rod on a flat rigid target has been used. The rod is made
of the tested material. The transcendental equations which explicitly de-
terminate the dynamic yield stress and the plastic strain of the rod have
been derived. The general trend of the obtained results is observation
of the appearance of higher strengths at higher impact velocities, which
is in agreement with expectations. The applied in literature approxima-
tion of dynamic properties of metals with strain hardening by means of a
perfectly plastic material is far-reaching simplification disagreeing with
reality.
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1. Introduction

Beginning from the second half of the last century, there has been much inte-
rest in dynamic initial boundary-value problems of the theory plasticity. Those
problems were thoroughly addressed in monographs by Kolsky (1953), Bro-
berg (1956), Goldsmith (1960), Shewmon and Zackay (1961), Rakhmatulin
and Demyanov (1961), Zukas (1962), Perzyna (1966), Cristescu (1967), Lin-
dholm (1968), Kinslow (1970), Nowacki (1974), Kaliski et al. (1992), Meyers
(1994). The investigations were necessary in order to obtain reliable operation
of various machine elements and special objects which are exposed to impact
loadings in extreme conditions. The important place in such problems occupies
the Taylor test.
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Taylor published his theory in 1948 (Taylor, 1948). Originally, one-
dimensional analysis of Taylor was used by Whiffin (1948) to estimate the
dynamic yield stress of specimens. There has been much interest in impact
testing and estimating dynamic yield stress since then. A selective review of
the literature with respect to the Taylor impact test is in the papers by Jones
et al. (1987, 1997), and is not necessary to be discussed in this paper.

The present opinion seems to be that Taylor’s theory fails to provide re-
liable yield stress estimates, especially for tests conducted at higher velocities
(Jones et al., 1987, 1997). For this reason, many investigators correlate their
results with sophisticated computer analyses which are capable of utilizing
several complex forms of constitutive eqations. These programs can match
geometry of the post-test specimen with very high accuracy and give very re-
liable estimates for material properties. The drawback is that these programs
are expensive and often require substantial amounts of time to execute.
The Taylor impact test is a useful experiment for estimating material be-

haviour at high strain rates (Meyers, 1994). The test is reproducible and is
reasonably economical after the initial investment has been made.

Jones et al. (1987) assert that simple engineering theories, such as that
given by Taylor, still have considerable value. Such theories frequently give
investigators insight into the interaction of physical parameters and their re-
lationship with the outcome of the event. Most often, these interactions are
difficult to ascertain from complex computer outputs. As a result, simple en-
gineering theories often provide the basis for the design of experiments and
are frequently used to refine the areas in which computing is to be done.

Bearing in mind the above-mentioned facts, the Taylor problem, for a rigid-
plastic material with linear strain hardening, loaded by an impact has been
solved in a closed form in this paper. The engineering transcendental equations
which explicitly determine the dynamic yield stress and plastic strain have
been derived.

2. Formulation of the problem

The corrected Taylor theory represented by Jones et al. (1987, 1997) has been
used in this paper.

Consider a uniform rod of the initial dimensions: length L and cross-
sectional area A0, which impacts against a rigid boundary. Let x denote a
Lagrangian coordinate aligned with the axis of the rod and having its origin
at the end of the rod opposite to the impacted end. The initial velocity of
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the rod is denoted by V . Assuming that V is large enough, a portion of the
rod will deform plastically. Let X represent the time-dependent extent of the
plastic zone measured relative to the original configuration of the rod, Fig. 1a,
S be the time-dependent displacement of the back end of the rod, as shown
in Fig. 1b, and h – the time-dependent extent of the plastic zone measured
relative to the deformed configuration of the rod. Define l as L −X so that
l +X = S + l + h = L.

Fig. 1. Schematic illustration of the rod impacting a rigid boundary: (a) original
configuration of the rod; (b) deformed configuration of the rod

Assume that the rod material is rigid-plastic with linear strain hardening,
Fig. 2a, and is incompressible. The rigid-perfectly plastic material, Fig. 2b, was
considered in papers by Taylor (1948) and Jones et al. (1987). The material
model shown in Fig. 2a sufficiently approximates dynamic mechanical proper-
ties of some metals, e.g. alloy steels, especially chromium-nickel steels (Ashby
and Jones, 1993; Lee and Tupper, 1951).
The influence of transverse strain and friction force between the target

surface and the impacted end of the rod upon its longitudinal motion are
neglected.
Consider the motion of the undeformed section of the rod. At some ti-

me t, during the deformation, suppose that the undeformed section length is
L − X(t) and suppose that Ṡ(t) = υ(t) is its speed, see Fig. 3a. As shown
in Fig. 3b, the undeformed section has lost an increment ∆X to plastic de-
formation at some later time t + ∆t. This increment has undergone plastic
deformation and now has a new cross-sectional area A1. The mass of the pla-
stic element, however, remains ρA0∆X, where ρ is the material density which
is assumed to be constant throughout the deformation process. The speed of
this element is denoted by u, which will generally be different from υ +∆υ,
i.e. the speed of the remaining rigid end. The forces that act on this new pla-
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Fig. 2. Stress-strain curves for ductile materials: (a) rigid-plastic material with linear
strain hardening; (b) rigid-perfectly plastic; (c) true curve for chromium-nickel steel

Fig. 3. Schematic illustration of the rear portion of the rod. The undeformed section
shown in (a) has transferred some mass to the deformed section after a time

interval ∆t, as indicated in (b)

stic element are in interaction with the underformed section, denoted by F in
Fig. 3b, and its interaction with the previously deformed material denoted as
P +∆P in the same figure.

The change in linear momentum of the system from configuration 3a to 3b
must equal the net impulse. Thus

ρA0∆Xu+ ρA0(L−X −∆X)(υ+∆υ)− ρA0(L−X)υ =
2P +∆P

2
∆t (2.1)
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where (2P+∆P )/2 denotes the mean value of forces P and P+∆P . Dividing
both sides of this equation by ∆t and neglecting small quantities of higher
order, and taking limits (∆t→ 0), gives

(L−X)υ̇ − Ẋ(υ − u) = P
ρ
A0 (2.2)

where the superposed dots denote derivatives with rispect to time. However

P = σA1 = σ(εp)
A0
1 + εp

(2.3)

where σ and εp are, respectively, the engineering stress and strain at the
deformed cross section. Combining Egs. (2.2) and (2.3), gives

(L−X)υ̇ − Ẋ(υ − u) = 1
ρ
f(εp) (2.4)

where

f(εp) =
σ(εp)

1 + εp
(2.5)

In terms of the undeformed section length l, Eq. (2.4) becomes

lυ̇ + l̇(υ − u) = 1
ρ
f(εp) (2.6)

where Ẋ = −l̇.
This expression is the equation of motion of the undeformed (rigid) section

of the rod. This equation has been solved in the following considerations.

3. General solution to simplified (u=0) equation of motion (2.6)

Previously, it was assumed that the rod material is rigid-plastic with linear
strain hardening. This rod impacts the rigid target with a large enough spe-
ed V . At such a condition, the plastic wave is generated in the rod during
the impact process. This wave propagates along the rod from the rigid target
towards of its free end. The velocity of the wave is determined by the formula

a1 =

√

E1
ρ

(3.1)

where E1 is the modulus of strain hardening.
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It follows from experimental results and numerical calculations (Lee and
Tupeer, 1951) as well as from analytical solutions (Włodarczyk and Jackowski,
2010) that the modulus E1 is poorly dependent on the impact speed and one
can assume that the velocity a1 ≈ const .
The plastically deformed portion of the rod is placed between the rigid

target and plastic wave front. That portion of the rod is motionless. The
elastic strain is equal to zero (εs = 0) in the rigid plastic model, Fig. 2a, and
for that reason the velocity u = 0 in the deformed plastically portion of the
rod contacting with rigid target.
For u = 0, from Eq. (2.6), we obtain

d(lυ)

dt
=
f(εp)

ρ
(3.2)

In turn, the continuity of the Lagrangian component of displacement across
the rigid-plastic interface gives

U(X, t) = −S

Differentiating this equation with respect to time, leads to

−εpẊ + u = εp l̇ + u = Ṡ = υ (3.3)

where

εp =
∂U

∂X
u =
∂U

∂t

For u = 0, from (3.3), we have

dl

dt
=
υ

εp
(3.4)

Next, according to Fig. 1, there is

S + l + h = L

and after differentiation, we obtain

Ṡ + l̇ + ḣ = 0 (3.5)

or

l̇ =
dl

dt
= −(a1 + υ) (3.6)

where ḣ = a1 and Ṡ = υ, a1 > 0.
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From Eqs. (3.4) and (3.6), it follows that the plastic strain εp can be
determined by means of the formula

εp = −
υ

a1 + υ
(3.7)

Combining Egs. (3.2), (3.4) and (3.7), gives

d(lυ)

dl
= −f [−υ/(a1 + υ)]

ρ(a1 + υ)
(3.8)

Equation (3.8) has separable variables and can be immediately integrated,
leading to an explicit dependence of l upon υ, namely

ln
l

L
= −

υ
∫

V

a1 + y

y(a1 + y) +
1
ρ
f [−y/(a1 + y)]

dy (3.9)

or

l = l(υ) = L exp

(

V
∫

υ

a1 + y

y(a1 + y) +
1
ρ
f [−y/(a1 + y)]

dy

)

(3.10)

4. Dynamic mechanical parameters of the rigid-plastic material
with linear strain hardening

According to Fig. 2a, we have

σ = σs + E1εp = σs + ρa
2
1εp (4.1)

and then the function f(εp) has the form

f(εp) =
σ(εp)

1 + εp
=
σs + ρa

2
1

(

− υ
a1+υ

)

1− υ
a1+υ

or

f
(

− υ

a1 + υ

)

=
σs(a1 + υ)

a1
− ρa1υ (4.2)

where σs and εp denote, respectively, the yield stress and longitudinal plastic
strain of the rod.
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In order to simplify the quantitative analysis of particular dynamic mecha-
nical parameters of the deformed rod, the following dimensionless quantities
have been introduced

α =
ρV

σs
α∗ =

ρV 2

YW
β∗ =

a1
V

γ =
υ

V
ξ =
l

L
ξf =

lf
L

ξp =
hf
L

ξL =
Lf
L

(4.3)

where the symbols YW and lf denote, respectively, the dynamic yield stress
of the rigid-plastic material with linear strain hardening, and the final length
of the undeformed portion of the rod; Lf is the final overall length of the
specimen and hf is the final length of the deformed portion of the rod.
Substituting function (4.2) into Eq. (3.9) and using dimensionless quanti-

ties (4.3), we get

ln ξ =

1
∫

γ

β∗ + γ1

γ21 +
1
αβ∗
γ1 +

1
α

dγ1 (4.4)

The right-hand side of Eq.(4.4) can be expressed by the following functions:
— for ∆ > 0

F1(α, γ) =
1√
∆

(

β∗ − 1

2αβ∗

)

ln

∣

∣

∣

∣

∣

(

2 + 1
αβ∗
−
√
∆

2 + 1
αβ∗
+
√
∆

)(

2γ + 1
αβ∗
+
√
∆

2γ + 1
αβ∗
−
√
∆

)∣

∣

∣

∣

∣

+

(4.5)

+
1

2
ln

∣

∣

∣

∣

∣

1 + 1
αβ∗
+ 1
α

γ2 + 1
αβ∗
γ + 1

α

∣

∣

∣

∣

∣

— for ∆ < 0

F2(α, γ) =
1√
−∆

(

2β∗ − 1
αβ∗

)

arctan
2γ + 1

αβ∗√
−∆

+
1

2
ln
∣

∣

∣γ2+
1

αβ∗
γ +
1

α

∣

∣

∣ (4.6)

— for ∆ = 0

F3(α, γ) =
1

2
ln

∣

∣

∣

∣

∣

1 + 1
αβ∗
+ 1
α

γ2 + 1
αβ∗
γ + 1

α

∣

∣

∣

∣

∣

− β∗

1 + 2αβ∗γ
+

β∗

1 + αβ∗
(4.7)

where

∆ =
( σs
ρV 2

)2( V

a1

)2

− 4σs
ρV 2
=
( 1

αβ∗

)2

− 4
α

(4.8)
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In the investigated problem, the parameter α is negative (α < 0), and in
accordance with expression (4.8) the quantity ∆ is positive (∆ > 0). In this
context, in the following considerations only the function F1(α, γ) will be used.
Relationships (4.4) and (4.5) lead to an explicit dependence of l(ξ = l/L)

upon υ(γ = υ/υ0) for a rigid-plastic material with linear strain hardening,
namely

ln ξ =
1

2
ln

∣

∣

∣

∣

∣

1 + 1
αβ∗
+ 1
α

γ2 + 1
αβ∗
γ + 1

α

∣

∣

∣

∣

∣

+

(4.9)

+
1√
∆

(

β∗ − 1

2αβ∗

)

ln

∣

∣

∣

∣

∣

(

2 + 1
αβ∗
−
√
∆

2 + 1
αβ∗
+
√
∆

)(

2γ + 1
αβ∗
+
√
∆

2γ + 1
αβ∗
−
√
∆

)∣

∣

∣

∣

∣

or

ξ =

∣

∣

∣

∣

∣

1 + 1
αβ∗
+ 1
α

γ2 + 1
αβ∗
γ + 1

α

∣

∣

∣

∣

∣

1

2
∣

∣

∣

∣

∣

2 + 1
αβ∗
−
√
∆

2 + 1
αβ∗
+
√
∆

2γ + 1
αβ∗
+
√
∆

2γ + 1
αβ∗
−
√
∆

∣

∣

∣

∣

∣

1√
∆

(

β∗− 1

2αβ∗

)

(4.10)

At the end of the impact process, l = lf (ξ = ξf ) and υ = 0 (γ = 0). Then
Eq. (4.10) reduces to

ξf = Φ(α) =
∣

∣

∣1 + α+
1

β∗

∣

∣

∣

1

2

∣

∣

∣

∣

∣

2 + 1
αβ∗
−
√
∆

2 + 1
αβ∗
+
√
∆

1
αβ∗
+
√
∆

1
αβ∗
−
√
∆

∣

∣

∣

∣

∣

1√
∆

(

β∗− 1

2αβ∗

)

(4.11)

Thereby, we obtain a transcendental equation which uniquely determinates
the value of the parameter α = α∗, see Fig. 4. In accordance with expression
(4.3)2, we have

YW =
ρV 2

|α∗| (4.12)

A similar equation for rigid perfectly plastic materials, Fig. 2b, was derived
in te paper by Jones et al. (1987), namely

ξp =
βJ(1− ξf )2
1 + βJ(1− ξf )

−
[ βJξf (1− ξf )
1 + βJ(1− ξf )2

]

ln
βJξf
1 + βJ

(4.13)

and

αJ =
1− ξf
βJ

YJ =
ρV 2

αJ
(4.14)

The value of the parameter βJ is found from Eq. (4.13).
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Fig. 4. Schematic illustration of determination of the parameter α∗

Taylor derived an approximate formula (Taylor, 1948) to calculate the
dynamic yield stress for the rigid perfectly plastic material in the following
form

YT =
1− ξf
2(1− ξf )

1

ln(1/ξf )
ρV 2 (4.15)

Values of the parameters YW , YJ and YT calculated by means of Eqs.
(4.11), (4.13) and (4.15) are presented in the next section.
Let us now consider the plastic strain εp. This parameter is determined

by the formula

εp(ξ) = −
υ(ξ)

a1 + υ(ξ)
= − γ(ξ)

β∗ + γ(ξ)
(4.16)

where the quantity γ is the real root of the following transcendental equation

ξ =

∣

∣

∣

∣

∣

1 + 1
α∗β∗
+ 1
α∗

γ2 + 1
α∗β∗
γ + 1

α∗

∣

∣

∣

∣

∣

1

2
∣

∣

∣

∣

∣

2 + 1
α∗β∗
−
√
∆∗

2 + 1
α∗β∗
+
√
∆∗

2γ + 1
α∗β∗
+
√
∆∗

2γ + 1
α∗β∗
−
√
∆∗

∣

∣

∣

∣

∣

1√
∆∗

(

β∗− 1

2α∗β∗

)

(4.17)
where

∆∗ =
( 1

α∗β∗

)2

− 4
α∗

ξf ¬ ξ ¬ 1 0 ¬ γ ¬ 1 (4.18)

It seems that value of the expression

ϕ(γ) =

∣

∣

∣

∣

∣

1 + 1
α∗β∗
+ 1
α∗

γ2 + 1
α∗β∗
γ + 1

α∗

∣

∣

∣

∣

∣

1

2

0 ¬ γ ¬ 1 (4.19)

is contained within the interval

1 ¬ ϕ(γ) ¬ δ∗ =
∣

∣

∣1 + α∗ +
1

β∗

∣

∣

∣

1

2
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In turn, δ∗ ≈ 1 with the accuracy of several per cent (see Table 1). Therefore,
with an accuracy sufficient for technical purposes, one may assume that

∣

∣

∣

∣

∣

1 + 1
α∗β∗
+ 1
α∗

γ2 + 1
α∗β∗
γ + 1

α∗

∣

∣

∣

∣

∣

1

2

≈ 1

Then Eq. (4.17) reduces to

γ(ξ) =
1

2

a− bdξ 1c
dξ
1

c − 1
(4.20)

where

a =
1

α∗β∗
+
√
∆∗ b =

1

α∗β∗
−
√
∆∗

c =
1√
∆∗

(

β∗ − 1

2α∗β∗

)

d =
2 + 1

α∗β∗
+
√
∆∗

2 + 1
α∗β∗
−
√
∆∗

(4.21)

Finally, the strain εp can be found by means of the formula

εp(ξ) =
a− bdξ 1c

d(2β∗ − b)ξ 1c + a− 2β∗
(4.22)

ξf ¬ ξ ¬ 1 εp(ξf ) = 0 |εp(1)| = |εpmax| =
1

β∗ + 1

Thereby, we obtain analytical expressions enabling analysis of the dynamic
parameters YW and εp for the rigid-plastic material with linear strain harde-
ning.

5. Example

In the examinations, uniform steel rods of the initial dimensions: length
L = 56mm and diameter D = 8mm were used. The following mechanical
parameters of steel were assumed: density ρ = 7800 kg/m3, modulus of strain
hardening E1 = 5GPa, engineering static yield stress Re = 1255MPa. The
rods were driven by a firing gun to initial speeds contained within the interval
120-210m/s. The rods impacted perpendicularly against a flat rigid target.
Pictures of deformed rods after impact are shown in Fig. 5.
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Fig. 5. Pictures of deformed rods

Fig. 6. Variations of parameters YW , YJ and YT in function of the impact initial
speed V ; YT – dynamic yield stress for rigid perfectly plastic material,
YJ – dynamic yield stress according to the model by Jones et al. (1987),

YW – dynamic yield stress for rigid plastic material with linear strain hardening

Experimental data obtained from the impact tests of the above-mentioned
steel and results of calculations are given in Fig. 6 and listed in Table 1.
The following conclusions result from the obtained data.

• Strain hardening of a material influences to a considerable degree the
dynamic yield stress (see Fig. 6 – YW and Table 1). The general trend of
the obtained results indicate higher strengths at higher impact velocities
which is in agreement with the analytical expressions. The parameter
YW increases almost linearly together with the increase of the impact
velocity in the range 100-200 m/s.
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Table 1. Comparison of the experimental and analytical results from Taylor
tests for chromium-nickel steel

V
ξL ξf ξp α∗ β∗ δ∗

[m/s]

120 0.973 0.60 0.373 −0.075 6.667 1.037

140 0.961 0.58 0.381 −0.093 5.714 1.040

172 0.945 0.56 0.385 −0.120 4.651 1.046

209 0.922 0.53 0.392 −0.158 3.828 1.050

|εpmax|
YW YJ YT YW

Re

YJ
Re

YT
Re[MPa] [MPa] [MPa]

0.085 1500 2176 1824 1.195 1.733 1.453

0.094 1649 2059 1702 1.314 1.641 1.356

0.109 1920 2127 1800 1.530 1.695 1.434

0.124 2152 2141 1804 1.715 1.706 1.437

• In this range of the impact velocity, the parameters YJ and YT nearly
do not change. Due to error in the Taylor theory (Jones et al., 1987) the
inequality YJ > YT is fulfilled.

• The approximation of dynamic properties of metals with strain harde-
ning by means of the model of a perfectly plastic material is far-reaching
simplification disagreeing with the reality.
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Inżynierska analiza dynamicznych parametrów mechanicznych
sztywno-plastycznego materiału z liniowym wzmocnieniem dla testu

udarowego

Streszczenie

W pracy przedstawiono prostą inżynierską metodę określania dynamicznych para-
metrów mechanicznych sztywno-plastycznych materiałów z liniowym wzmocnieniem.
Zastosowano do tego celu uderzeniowy test Taylora, tj. prostopadłe uderzenie prę-
ta, wykonanego z testowanego materiału, w nieodkształcalną płytę. Wyprowadzono
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przestępne równania, z których można określić explicite dynamiczną granicę plastycz-
ności YW i odkształcenie plastyczne εp materiału pręta. Uzyskano wzrost parame-
tru YW , wraz ze wzrostem prędkości uderzenia pręta, co jest zgodne z oczekiwa-
niem. Stosowana w literaturze aproksymacja dynamicznych właściwości metali mo-
delem idealnie-plastycznym jest daleko idącym uproszczeniem, niezgodnym z rzeczy-
wistością.
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