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The paper presents how ETR (energy transfer ratio) changes for a steel-
concrete composite beam depending on the degree of damage. A nume-
rical model of composite beam was constructed on the basis of research
conducted on a real beam. The study presents how the frequency of na-
tural vibrations, the damping ratio and ETR alter due to changes in the
structure of the beam. The performed studies show that ETR is the most
sensitive parameter to damage taking place in the beam. Consequently,
this parameter can be used to diagnose damage in this kind of beams.
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1. Introduction

Modal analysis is ever more often used to detect damage in engineering struc-
tures. An early detection and ability to locate damage is particularly important
in bridge structures. Steel-concrete composite beams are often used as main
carrying girders in bridge constructions. This kind of beams is composed of a
steel girder and a reinforced concrete slab placed onto it. This connection is
made by welding steel elements to the top flange of a girder. These elements
will be later embedded in concrete thus creating a fixed connection between
the reinforced concrete slab and steel girder.
The observed increase of road transport intensity makes it necessary to

monitor the technical condition of the existing bridge constructions. Particular
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attention should be paid to both static and dynamic properties of a structure.
The applied modal analysis can be used to detect damage. An observed change
of some selected modal parameters can be the evidence of damage which is
developing in the structure. Early detection of defects allows one to undertake
preventive steps, thus to avoiding risk of having to close off the construction
in question. Traditional modal parameters, such as the frequency and modes
of natural vibrations and their respective damping ratios, are not sensitive
enough to some kinds of damage.

The aim of the present study was to apply the Energy Transfer Ratio –
ETR to diagnostics of defects in steel-concrete connections of composite be-
ams. ETR is a modal parameter defined by Liang and Lee (1991). According
to the authors, it is much more sensitive to appearing damage than the tradi-
tionally defined modal parameters. The results of experiments conducted on
a real composite beam have been used in this study to analyse and validate
the effectiveness of ETR.

2. The state-of-the-art analysis

Commonly applied modal analysis is a technique of testing dynamic properties
of a structure. The conducted analysis yields a modal model comprising a set of
frequencies and modes of natural vibrations as well as damping ratios. Modal
analysis is ever more often used to diagnose the technical condition of struc-
tures. This approach can be seen in the studies into steel-concrete composite
beams carried out by the team of scientists from the University of Udine, Italy.
A paper published in 2 parts by Dilena and Morassi (2003) and by Morassi and
Rochetto (2003) presents the results of investigations conducted on composite
beams with damage in the steel-concrete interface. The analysed beam had
no supports and it was hung on four flexible ropes. The investigated damage
was introduced at one of the free ends of the beams. The authors focused on
the analysis of changes taking place in the frequency vibrations. Consequently,
they obtained results, according to which longitudinal/axial vibrations of the
beam were not very sensitive to damage in the connections. In contrast, in the
case of flexural vibrations, the differences amounted to 38%.

Liang and Lee (1991) defined a new modal parameter – Energy Transfer
Ratio – which describes the amount of energy transferred between various mo-
des of vibrations. Their definition of ETR says that it is the ratio of modal
energy transferred during a cycle to the total energy stored in the structure
prior to the cycle. Energy transferred between various modes of vibrations
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exists for non-proportionally damped systems, which are majority in the civil
engineering, and for these kinds of systems the ETR is possible to be determi-
ned. Details concerning this coefficient will be presented later in this paper.
Theoretical analyses usually look into two kinds of damping: proportio-

nal and non-proportional. Systems with proportional damping are extremely
rare in the real world (it is an almost hypothetic case). However, scholars
very often assume damping to be proportional. This is due to the fact that
for proportionally damped systems and for those without damping vibration
modes are identical and frequencies of natural vibrations are very similar. An
assumption about proportional damping makes it possible to determine mo-
dal properties of a structure by analysing a system without damping, which
is quite a simplification.
A system is proportionally damped if the following relation is met:

– according to Caughey and O’Kelley (1965)

CM
−1
K = KM−1C (2.1)

– according to Ewins (1995)
C = βK (2.2)

– according to Ewins (1995), Uhl (1997), Lee and Liang (1998)

C = αM+ βK (2.3)

where: M is the mass matrix, C – damping matrix, K – stiffness matrix.
α and β are proportionality coefficients. Details concerning the issue of pro-
portional damping can be found in the above mentioned studies.
In 1999 Liang and Lee were conducting research on a composite bridge

model on a scale of 1:6, which consisted of a concrete slab resting on three
single-span steel girders. They limited their study to two kinds of damage:
1) removal of the support at one end of the central girder, 2) crack of a stret-
ched part of the girder in the middle span. On the basis of purely theoretical
investigations and concrete assumptions, the authors determined a relation ac-
cording to which ETR was 1000 times more sensitive to damage than frequency
of natural vibrations. In order to validate their assumptions, they conducted
experiments whose results are presented in Table 1.
The results presented there clearly show that ETR is a good identifier of

changes taking place in beams both for the first and second kind of damage.
ETR is much more sensitive to changes in a structure than any other para-
meter. Unfortunately, the experiment conducted by Liang and Lee did not
confirm their assumption that ETR is 1000 times more sensitive to damage
than frequency of natural vibrations.
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Table 1. Changes of modal parameters [%]

Mode
number

Damage 1 Damage 2

Frequency
Damping

ETR Frequency
Damping

ETR
ratio ratio

1 4.1 89.5 309 2.7 7.3 117

2 3.8 1.3 30 1.0 15.2 243

3 0.1 7.4 1892 7.8 129.0 236

Wang and Zong in their papers published in 2002 and 2003 analysed ETR
as well. The model made on a scale of 1:6 consisted of a concrete slab resting
on four steel girders. Two kinds of artificial damage were introduced into the
model: 1) the first was a simulated lack of the support; 2) the second was
buckling and cracking of the steel girder. The authors, similarly to Liang and
Lee, introduced a relation according to which ETR is 1000 times more sensitive
to damage than frequency of natural vibrations. However, also this time they
failed to confirm their theoretical assumptions. The sensitivity analysis for the
investigated modal parameters is presented in Table 2.

Table 2. Sensitivity analysis for damages

Mode
number

Damage 1 Damage 2

Frequency
Damping

ETR Frequency
Damping

ETR
ratio ratio

1 5.7 38.4 592.5 7.5 1.3 1614.7

2 8.4 74.0 81.7 2.8 67.3 820.2

3 6.3 123.4 4524.0 3.5 18.9 68.2

Having analysed Table 2, it can be concluded that:

• ETR is much more sensitive to introduced damage than either frequency
of natural vibrations or corresponding damping ratios.

• The form of vibrations for which ETR showed the biggest changes is
not the form for which the frequency vibrations and/or damping ratio
reached their biggest differences both prior to and after the introduced
damage, e.g. for the first kind of damage the biggest change in the fre-
quency of natural vibrations occurred for the 2nd form, while for ETR
the biggest change took place for the 3rd form.

• ETR shows much bigger changes for damage resulting from the missing
support than for damage such as cracking of the girder.
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As shown above, procedures aiming at diagnosing damage in steel-concrete
composite beams have been applied for several years now. Scientists have been
trying to determine how the analysed parameters change given defects recor-
ded in their structure. The studies conducted so far seem to point out that
ETR is the parameter which is the most sensitive to introduced damage. There
are, however, some discrepancies between relations that were introduced in a
purely theoretical way and empirical tests. All these facts seem to suggest the
need of conducting ETR analysis of steel-concrete composite beams.

3. Theory of complex damping

In structural dynamics, the equilibrium of a vibrating n-DOF system can be
given by a set of differential equations

MX ′′ + CX ′ +KX = F (3.1)

where M, C, K are the mass, damping and stiffness matrices (n× n), respec-
tively, X ′′, X ′, X – acceleration, velocity and displacement vectors (n × 1),
F – vectot of the external forcing function.
According to Lee and Liang (1998), the corresponding homogenous equ-

ation of the system can be written as

Y ′′ +DY ′ +Ω2Y = 0 (3.2)

where

D = Q⊤M−
1

2CM
−
1

2Q

Y = Q⊤M
1

2X

Ω2 = Q⊤M−
1

2KM
−
1

2Q = diag (ω2ni)

In the above equation, Q stands for the eigenvector of the generalized stif-

fness matrix K =M−
1

2KM
−
1

2 and ωni is the natural frequency of the system
without damping. The above system may have n modes if the D matrix is
diagonal, which means that system is proportionally damped. If the matrix D
cannot be diagonalized together with the matrix Ω2, the system cannot be
decoupled into n isolated modes. There is some energy transfer between those
’modes’. In such a case, the system is non-proportionally damped. This type of
damping exists in most real structures. If a system is non-proportionally dam-
ped, the Caughey criterion described in equation (2.1) will not be satisfied,
and also the matrix D will not be diagonal.
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We can assume that the n-DOF system described by equation (3.2) has
a mode shape matrix P, which is complex because of the non-proportional
damping. It has to be noticed that the mode shape matrix P of the system
is no equal to the eigenvector Q of the generalized stiffness matrix. The i-th
eigenvalue of the system λi is also called the complex frequency

λi = −ξiωi ± j
√
1− ξ2i ωi (3.3)

where ξi is damping ratio and ωi is natural frequency of the non-proportionally
damped system. It should be noted that ωi 6= ωni.

Now, we can rewrite equation (3.2) as follows

Q⊤PΛ2 +Q⊤CPΛ+Ω2Q⊤P = 0 (3.4)

where

C =M−
1

2CM
−
1

2 Λ = diag (λi)

The ii-th entry of each matrix of equation (3.4) becomes

λ2iQ
⊤

i Pi + λiQ
⊤

i CPi + ω
2
niQ
⊤

i Pi = 0 (3.5)

The above equation can be rewritten to the form

λ2i + λi
[Q⊤i CPi
Q⊤i Pi

]
+ ω2ni = 0 (3.6)

The term in the square brackets is called the generalized Rayleigh quotient.
According to Lee and Liang (1998), we can notice that

1

2ωi

[Q⊤i CPi
Q⊤i Pi

]
= ξi + jζi (3.7)

The term ζi is called to be the i-th energy transfer ratio – ETR. It can be
also proven that

ωi = ωni exp(ζi) (3.8)

Detailed information and derivations of the above equations are presented
elsewhere, see Liang and Lee (1991), Lee and Liang (1998).
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4. Composite beam

The beam cross-section is presented in Fig. 1. The beam measured 3200 mm
in overall length (only the I-bar was 20mm longer at both ends). The beam
consisted of a rolled steel I-bar IPE 160 made of S235JRG2 steel and a re-
inforced concrete slab 60 × 600mm in section size made of C25/30 concrete.
The reinforcement rods were placed in two layers in the way shown in Fig. 1.

Fig. 1. Cross-section of the composite beam

Transverse reinforcement was made of rods, 6mm in diameter, which were
placed every 150mm. The beam had a stiff connection consisting of perforated
steel slats. The perforated slats are a new generation of connecting elements
used in the bridge engineering. The slats were made from a flat bar, 10mm
thick, made from S235JRG2 steel. The distribution of connecting elements is
shown in Fig. 2.

Fig. 2. Distribution of connecting elements
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The program of experimental tests included realisation of the following
operations: (i) initial static load tests; (ii) tests to determine basic dynamic
characteristics; (iii) other additional tests (material tests).

During the initial static load tests, a simply supported beam was assumed.
Some static load was applied in order to test the correctness of workmanship
of the beams and to prepare them for dynamic tests. The obtained results
showed no anomalies.

The tests whose aim was to determine basic dynamic characteristics, were
conducted for a free beam. This kind of a beam was achieved by suspending
the tested beam on two steel frames by means of four steel cables, 3mm in
diameter. A grid of measuring points and a system of coordinates used in the
studies are presented in Fig. 3. The acceleration of vibrations was measured
as the system response. Each beam was tested three times. In every test, the
beam vibrations were excited in different points. An impulse excitation was
used in the tests. The excitation points are marked in Fig. 3 as A, B and C.
At the points A and B, the excitation was applied in the y-direction, whereas
at the point C, in the x-direction.

Fig. 3. A grid of measuring points

To process the results obtained in the dynamic tests, Time Domain MDOF
ASM module implemented in CADA-X software package was used – LMS In-
ternational (2000). This module uses a universal method of estimating parame-
ters of a modal model LSCE/LSFD (Least Square Complex Exponential/Least
Square Frequency Domain). The estimation of the model parameters in this
method is global for all transfer functions. In order to determine frequencies of
natural vibrations on the basis of the obtained transfer functions, SUM index
was used. This index gives a normalized sum of amplitudes of the measured
transfer functions at the selected measuring points and directions.
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Table 3 contains vibration frequencies and values of their corresponding
modal damping ratios for the first five flexural vibrations modes of the beam.

Table 3. Experimental natural vibration frequencies and their corresponding
values of modal damping ratio

Frequency 1flex 2flex 3flex 4flex 5flex

fi [Hz] 77.75 186.65 304.72 417.57 531.13

ξi [%] 0.11 0.27 0.33 0.42 0.42

5. Rigid finite element model of the beam

The numerical model of the beam has been created in the convention of rigid
finite element method – RFE model. The central idea of the method is the
division of a real system into rigid bodies which are called rigid finite elements
(RFE), which are then in turn connected by means of spring-damping elements
(SDE).
For continuous parts of a structure it is customary to start creating a

model with segmentation of a beam into equal or nearly equal segments. This
segmentation is also called the primary division. A spring-damping element
(SDE) is placed in the centre of gravity of every segment. This SDE is supposed
to concentrate all spring and damping properties of a given segment. The next
step is to connect SDEs created in the primary division by means of RFE.
This is the so-called secondary division.
While modelling a composite beam, its steel and concrete parts should

be treated separately. Figure 4a shows a composite beam with length L and
divided into n segments of equal length ∆L (primary division). As it can be
seen, two SDEs were placed in every segment of the beam resulting from the
primary division: one concentrating the properties of the steel I-bar and ano-
ther one concentrating the properties of the segment of a reinforced concrete
slab. The RFEs modelling the beam (secondary division, Fig. 4b) were placed
between SDEs. The initial and final RFEs are half the size of indirect RFEs
of length ∆L. The SDEs, modelling the connection are the last elements of
the model. These SDEs connect RFEs modelling steel and concrete parts of
the composite beam.
Every RFE of a given number i has its own independent coordinate system

X̂
(i)
1 , X̂

(i)
2 , X̂

(i)
3 . The system is chosen so that it would overlap with the princi-

pal central axes of inertia of the given RFE. Having applied this assumption,



60 T. Wróblewski et al.

Fig. 4. RFE model: (a) segmentation of a beam into sections (primary division);
(b) RFE system (secondary division)

the mass and moments of inertia are the only parameters necessary to describe
any RFE. These quantities can be given in a form of a diagonal mass matrix

M
(i) = diag [m(i),m(i),m(i), J

(i)
1 , J

(i)
2 , J

(i)
3 ] (5.1)

The first three terms of the matrix are equal to the mass of an RFE, while
the other three are the mass moments of inertia of RFE relative to the axes
X̂
(i)
1 , X̂

(i)
2 , X̂

(i)
3 .

Every SDE of the k number has its own independent co-ordinate system of

the main axes Ŷ
(i)
1 , Ŷ

(i)
2 , Ŷ

(i)
3 . The main axes of an SDE have a property that

forces acting on the SDE in the direction compatible with these axes result
in its translational deformations which take place only in the direction where
these forces are applied.
The main parameters that describe an SDE of the number k are coeffi-

cients defining its spring and damping properties. The spring properties are
described by means of two matrices: the matrix of translational stiffness co-

efficients K
(k)
Y and the matrix of rotational stiffness coefficients K

(k)
ϕ . Both

matrices are diagonal and they are 3× 3 in dimension

K
(k)
Y = diag [k

(k)
Y,1, k

(k)
Y,2, k

(k)
Y,3] K

(k)
ϕ = diag [k

(k)
ϕ,1, k

(k)
ϕ,2, k

(k)
ϕ,3] (5.2)

While investigating the question of motion of flat systems, the above discus-

sed matrices reduce their dimensions respectively to: M(i) (3×3), K
(k)
Y (2×2),
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K
(k)
ϕ (1×1). Practical methods of creating the stiffness matrix K on the basis of

translational K
(k)
Y and rotational K

(k)
ϕ stiffness coefficients as well as methods

of creating the inertia matrix M on the basis of individual mass matrices M(i)

were described in details by Kruszewski et al. (1999) and by Wittbrodt et al.
(2006).

The relations on the basis of which the elements of matrices M(i), K
(k)
Y ,

K
(k)
ϕ are determined for RFE and SDE (spring-damping elements) modelling
the constant part of the structure (the reinforced concrete slab and the steel
I-bar), are throughly discussed in the literature on the subject (Kruszewski et
al., 1999; Wittbrodt et al., 2006). These relations require knowing both the
applied materials and parameters describing the cross-section of an element.
Table 4 contains a list of all parameters which were possible to be determined
on the basis of the beam inventory or reference data. The table does not contain
values of the substitute modulus of elasticity of the reinforced concrete slab Ec.

Table 4. Parameters of the beam model

Reinforced concrete slab

tc [m] 6.386E − 02
Ac [m

2] 3.832E − 02
Ic [m

4] 1.302E − 05
ρc [kg/m

3] 2.447E + 03
ec [m] 3.193E − 02

Steel I-section

As [m
2] 2.010E − 03

Is [m
4] 8.690E − 06

ρs [kg/m
3] 7.850E + 03

Es [N/m
2] 2.050E + 11

es [m] 8.000E − 02

The modulus Ec is a substitute modulus which takes into account the
longitudinal reinforcement of the concrete slab. It can be easily calculated
when the moduli of elasticity for both steel and concrete are known. White
the obtaining of the steel modulus is relatively easy, the concrete modulus
is much more difficult to be found. Lee et al. (1987) as well as Memory et
al. (1995) during their theoretical analyses aiming at determining dynamic
characteristics of reinforced concrete and composite structures maintained that
it was important to take into consideration the dynamic modulus of elasticity
of concrete Ed. According to Neville (1995), the dynamic modulus Ed can
be determined by means of vibrations of a concrete specimen, with only a
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negligible stress being applied. Owing to a low stress level, there are no micro-
cracks and there is no creep. This is the reason that the dynamic modulus
of elasticity is considered to be roughly equal to the initial tangent modulus
defined in a static test. The dynamic modulus of elasticity is therefore much
higher than the secant elasticity modulus Ecm, which in a standard procedure
is determined during application of a static load onto a sample.

The matrix elements K
(k)
Y for SDEs modelling the connection reflect the

stiffness of the connection. If we investigate a flat system, it is necessary to
know the stiffness of connecting elements in the vertical direction (perpendi-
cular to the connection plane) Kv and in the horizontal direction (parallel
to the connection plane) Kh. The reference literature does not provide any
information on this problem.

The three missing parameters defining the model stiffness, i.e. Ec, Kv , Kh
were determined on the basis of parametric identification. The best possible
fit of natural vibration frequencies obtained in experimentally and numerical-
ly was used as the identification criterion. Both flexural and axial vibration
modes were analysed. Detailed data of the procedure can be found in Wró-
blewski (2006). Table 5 contains a comparison of frequencies obtained during
the investigations and on the basis of the RFE method model. It also contains
values of the identified parameters of the model.

Table 5. Parameters of the beam model

Model RFE
i fi exp fi num ∆

[Hz] [Hz] [%]

1flex 77.75 77.75 0.0

2flex 186.65 187.07 0.2

3flex 304.72 307.10 0.8

4flex 417.57 419.81 0.5

5flex 531.13 526.70 −0.8

Kh [N/m] 2.012E + 09

Kv [N/m] 2.745E + 08

Ec [N/m
2] 3.392E + 10

The damping properties of SDEs are described by means of two matrices:

the matrix of translational damping coefficients C
(k)
Y and the matrix of rota-

tional damping coefficients C(k)ϕ . In a general case, both matrices are 3 × 3.

For flat systems they reduce their dimensions, similarly to K
(k)
Y , K

(k)
ϕ



Application of ETR for diagnosis... 63

C
(k)
Y = diag [c

(k)
Y,1, c

(k)
Y,2, c

(k)
Y,3] C

(k)
ϕ = diag [c

(k)
ϕ,1, c

(k)
ϕ,2, c

(k)
ϕ,3] (5.3)

For SDEs which replace the constant part of the structure made of a ma-
terial with properties defined by the Kelvin-Voigt model, the relation between
the respective damping and stiffness ratios of the matrix elements can be given
by Kruszewski et al. (1999)

c
(k)
Y,i =

Q−1

ω
k
(k)
Y,i c

(k)
ϕ,i =

Q−1

ω
k
(k)
ϕ,i i = 1, 2, 3 (5.4)

where Q−1 is the loss factor and , ω is the vibration frequency. The loss fac-
tor Q−1, just like the logarithmic damping decrement δ or the damping ra-
tio ξ, is a parameter used for defining the damping. Assumping that the dam-
ping is minimal, between the above given parameters, the following relations
are to be observed (Marchelek, 1991)

Q−1 =
δ

π
ξ =
δ

2π
δ = 2πξ (5.5)

Values of the loss factor depend on the frequency, temperature and other
factors. The higher value of the loss factor, the better damping properties
of a material. According to Rao (2004), the loss factor for steel amounted
to Q−1s ∈ 〈6 · 10

−4, 2 · 10−4〉. Concrete has much better damping properties
than steel and owing to this its loss factor values vary in the following range
Q−1c ∈ 〈0.06, 0.02〉 (De Silva, 2000).
For interfaces of elements and connections, through analogy to loss factors,

it is possible to derive a connection loss factor (Marchelek, 1991). In the in-
vestigated case, the connection loss factor was introduced and it was defined
as Q−1con. Matrices of damping ratios for modelling connections of SDEs were
defined according to relation (5.4) by substituting coefficient Q−1con.
It was decided that the loss factors Q−1s , Q

−1
c , Q

−1
con should be determined

by means of fitting the frequency characteristics obtained from the RFE model
to the characteristics obtained experimentally. The characteristic obtained on
the assumption that the system input is force and its output is acceleration
is called inertance. Such characteristics are fitted with each other. One of the
optimization procedures of Optimization Toolbox/Matlab software package
was used during the analysis. Loss factor values for which the frequency am-
plitudes for some selected resonance frequencies obtained in the experimental
and numerical investigations overlap were sought. An example of such values
obtained both experimentally and numerically can be seen in Fig. 5. For com-
parison purposes, some measuring points located at the ends of the reinforced
concrete slab (i.e. points 2 and 34, response direction y, point C excited) were
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chosen. The loss factors determined in the analysis are presented in Table 6.
More detailed information on the loss factor procedure can be found elsewhere
(Wróblewski, 2006).

Table 6. Values of loss factors

Q−1s 0.0003

Q−1c 0.0222

Q−1con 0.0058

Fig. 5. Comparison of experimental and numerical amplitude and frequency
characteristics

The developed model of the composite beam has very low requirements for
processing capacity. This fact is due to a limited number of degrees of freedom.
The software used in the analysis had been prepared in Matlab environment.
The fit of experimental and numerical results is very high, which can be seen
in Table 6 and Fig. 5. The thus determined model was used for numerical
simulations of damage occurring in the beam connections.

6. Numerical simulation of damage

The carried out numerical simulation of damage aimed at investigating the
sensitivity of ETR to the beam damage. Damage simulation in the connection
was conducted by removing successive SDEs connections 1, 4, and 7, respecti-
vely (compare Fig. 4) at one end of the beam. The removal of SDE number 1
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simulated the damage on a 50mm long segment. The removal of two adjacent
SDEs number 1 and 4 simulated the damage on a 150mm long segment. In
a similar way, subsequent segments from which SDEs were removed, can be
determined (compare Fig. 4). The modal parameters, i.e. frequency of natural
vibrations for a system without damping or with proportional damping fi
and for a system with non-proportional damping fni, and the damping ra-
tio together with ETR were determined for the first five modes of flexural
vibrations. Changes of these parameters are presented in Tables 7, 8 and 9.
Because the values of fni and fi were almost identical, only one frequency
table is presented below – that for fi.

Table 7. Changes in frequencies of natural vibrations fi

Damaged SDEs 1 1, 4 1, 4, 7
i fi num fi num,d ∆ fi num,d ∆ fi num,d ∆

[Hz] [Hz] [%] [Hz] [%] [Hz] [%]

1flex 77.75 77.69 −0.1 77.37 −0.5 76.49 −1.6

2flex 187.08 186.36 −0.4 182.53 −2.4 172.02 −8.0

3flex 307.10 304.28 −0.9 289.51 −5.7 261.38 −14.9

4flex 419.82 413.77 −1.4 389.09 −7.3 365.67 −12.9

5flex 526.71 518.10 −1.6 493.44 −6.3 477.42 −9.4

Table 8. Changes in damping ratio ξi

Damaged SDEs 1 1, 4 1, 4, 7
i ξi num ξi num,d ∆ ξi num,d ∆ ξi num,d ∆

[%] [%] [%] [%] [%] [%] [%]

1flex 0.26 0.26 0.0 0.26 1.1 0.28 5.8

2flex 0.28 0.28 0.5 0.30 7.9 0.39 40.8

3flex 0.33 0.33 1.6 0.40 21.0 0.50 53.4

4flex 0.41 0.42 2.7 0.49 18.5 0.46 12.5

5flex 0.52 0.54 2.6 0.55 6.1 0.49 −7.0

As can be seen from the presented data, the ETR has the highest sensitivity
to damage, and the frequency of natural vibrations fi and fni have the lowest
sensitivity. However, there is no unambiguous relation between the changes
in ETR values and frequencies or damping ratios. Having analysed the values
of damping ratio presented in Tables 3 and 8, their high consistency is to be
stressed. It also confirms the correctness of the loss factor estimation.
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Table 9. Chnges of ETR ζi

Damaged SDEs 1 1, 4 1, 4, 7
i ζi num ζi num,d ∆ ζi num,d ∆ ζi num,d ∆

[�]·10−2 [�]·10−2 [%] [�]·10−2 [%] [�]·10−2 [%]

1flex 2.55 2.54 −0.1 2.55 0.2 2.66 4.3

2flex 1.92 1.91 −0.5 2.06 7.2 3.02 57.3

3flex 1.39 1.38 −0.9 1.93 38.7 2.18 56.5

4flex 0.97 0.98 0.6 1.36 39.4 1.16 19.5

5flex 0.76 0.73 −3.9 0.76 −0.3 1.54 103.5

The obtained results do not confirm the relation derived by Liang and
Lee (1999) and by Wang and Zong (2002, 2003), which claims that ETR is
1000 times more sensitive than the frequency of natural vibrations fi. The
assumptions made by the researchers are presented in detail below. For these
assumptions, the relation in question was obtained. Let ”0” denote undamaged
structure and ”j” stand for changed conditions of the structure after intro-
duction of the damage. Given the above, relation (3.8) can be expressed as

ωi0 = ωni0 exp(ζi0) ωij = ωnij exp(ζij) (6.1)

The authors assumed that after damage the changes in stiffness of the structure
are negligibly small, and therefore

ωni0 = ωnij = ωni (6.2)

Formulas (6.1) take the following form

ωi0 = ωni exp(ζi0) ωij = ωni exp(ζij) (6.3)

It can be observed that for ζi0 = 0.001 and for changes in natural vibration
frequencies amounting to 0.1%, we obtain

ωij − ωi0
ωi0

= 0.1% →
exp(ζij)− exp(ζi0)

exp(ζi0)
= 0.001

(6.4)
ζij − ζi0
ζi0

= 1(100%)

For ζi0 = 0.001 and ∆ωi = 0.1% ETR changes 100%, from which it can
be inferred that it is 1000 times more sensitive to changes in the structure
than the frequencies ωi. However, it should be also noted that this result was
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obtained for the following concrete figures: ζi0 = 0.001 and ∆ωi = 0.1%. How
does ETR coefficient change for other values of ζi0 and ∆ωi? For low damping
observed in steel and in concrete structures, values of ETR amount to 0.00-0.01
(Wang and Zong, 2002). Consequently, the analysis focused on changes of ETR
for various values of ζi0 in the range of 0.001-0.005 for frequency variations
∆ωi = 0.1% and ∆ωi = 0.2%. The results are presented in Tables 10 and 11.

Table 10. Changes of ETR depending on ζi0 for ∆ωi = 0.1%

ζi0 0.001 0.002 0.003 0.004 0.005

Change of ETR 100.0% 50.0% 33.3% 25.0% 20.0%

Table 11. Changes of ETR depending on ζi0 for ∆ωi = 0.2%

ζi0 0.001 0.002 0.003 0.004 0.005

Change of ETR 200.0% 100.0% 66.7% 50.0% 40.0%

As can be seen in the above presented tables, the general statement that
ETR is 1000 times more sensitive to damage than frequency of natural vi-
brations is not entirely correct. The statement is true only for ∆ωi = 0.1%
and ζi0 = 0.001. For other values of ∆ωi and ζi0 other sensitivity values are
obtained, e.g. for ∆ωi = 0.1% and ζi0 = 0.005 ETR change amounts to 20%,
so in this case ETR is ”only” 200 times more sensitive to changes than the
frequency of natural vibrations. We should also remember about assumption
(6.2). An assumption was made that changes occurring in the structure are
so small that the structure stiffness does not change and, as a result, the stif-
fness matrix K and frequency of natural vibrations ωni do not change either.
However, our investigations showed that the frequency of vibrations ωni do-
es change after the damage is introduced into the system, which is shown in
Table 7. As can be seen, the biggest change of vibration ωni for 3 vibration
modes and for damaged 3 SDEs amounts to 14.9%. Therefore, it is not correct
to assume that ωni = const .

7. Summary

The present study focuses on ETR sensitivity to damage in the connections
of steel-concrete composite beams. The obtained results confirmed that this
coefficient is markedly more sensitive to damage than frequencies of natural
vibrations. Although this difference does not amount to 1000 times, as Liang
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and Lee (1999) as well as Wang and Zong (2002, 2003) claimed, it is never-
theless a significant one. It was also observed that ETR was more sensitive to
damage than the damping ratio. It should be noted that the simulation in the
connection was conducted for one beam only, for one kind of damage located
at one end of the beam. Further studies, both experimental and numerical,
are planned. They will focus on a wider range of damage. It should also be
stressed that the ETR analysis was conducted on the whole beam. However,
detailed studies show that this coefficient can be determined locally, only for
a part of the beam. Perhaps this way of determination ETR might prove to
be a more effective method of damage detection. This issue is certain to be
the focus of future studies.
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Wykorzystanie ETR do diagnostyki uszkodzeń w stalowo-betonowych

belkach zespolonych

Streszczenie

Artykuł przedstawia, jak zmienia się współczynnik transferu energii ETR wyzna-
czany dla stalowo-betonowych belek zespolonych w zależności od stopnia ich uszkodze-
nia. Model numeryczny belki opracowany został z wykorzystaniem wyników badań
doświadczalnych przeprowadzonych na rzeczywistych belkach zespolonych. Artykuł



70 T. Wróblewski et al.

prezentuje, jak zmieniają się częstotliwości drgań, współczynniki tłumienia oraz ETR
w zależności od zmian w strukturze belki. Analizy wykazały, że ETR jest parametrem
wykazującym największą wrażliwość na symulowane uszkodzenia. Parametr ten może
być użyty do detekcji uszkodzeń w tego typu belkach.
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