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Dynamics of Timoshenko’s beam made of a viscoelastic material is stu-
died. Dimensionless equations of motion are obtained, depending only
on two parameters, one of which relates to the shear flexibility and the
second – to the viscous internal friction. Advantages of the proposed
equations are illustrated by solutions to the free and forced oscillation
problems for the simplest case of hinged-hinged beams. The influence
of the beam shear flexibility and viscous internal friction on the natural
frequencies and the dynamic amplification factor is studied.
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1. Introduction

It is well known that oscillation of structures, in particular, beams, in the vici-
nity of resonances may be correctly described only with account of the internal
friction. This means that the elastic model of the material is insufficient, and
its viscoelastic properties should be taken into account.
For the classical beam model such solutions for beams made of viscoelastic

materials have been obtained in many known works, see e.g., Panovko (1960),
Filippov (1956).
For the Timoshenko model of a beam, which is necessary for shear-

deformable beams (short beams, composite beams), the known solutions mo-
stly relate to an elastic material (see References and others).
The aim of this paper is to provide the analysis of transverse oscillations

of Timoshenko beam made of a viscoelastic material that obeys the Voigt law.
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We would like to show that the use of the proposed generalized dimensionless
equation, which depends only on two parameters, considerably facilitates the
general analysis of the beam dynamics.

2. Governing equations

2.1. Equations of motion

Equations of motion are derived using known hypotheses. Deformations of
the beam are described by two independent functions – the angle of the cross
section rotation ψ and the shear angle (at the neutral axis) γ, see Fig. 1.

Fig. 1. Element of the beam and scheme of deformation of the beam flat cross
section; n-n is the normal plane (to the bent axis), p-p is the tangent plane to the

deformed cross section (at the neutral axis)

The total slope of the bent axis is

∂y

∂x
= ψ + γ (2.1)

where y(x, t) is the transverse displacement. The longitudinal displacement of
a point at a distance z from the neutral axis and the longitudinal deformations
are expressed through the angle ψ: u = −zψ, εx = −z∂ψ/∂x.
Constitutive relations are assumed according to the Voigt law for normal

stresses as well as for shear ones in the form

σx = Eεx + k1
∂εx
∂t
= E
(
1 + µ1

∂

∂t

)
εx

(2.2)

τ = Gγ + k2
∂γ

∂t
= G
(
1 + µ2

∂

∂t

)
γ
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(the stresses depend not only on deformations but also on the velocity of defor-
mations), here k1,2 and µ1 = k1/E, µ2 = k2/G are the viscosity parameters.
Further we assume µ1 = µ2 = µ.
Then the bending moment and the transverse shear force in the cross

section are specified by the known expressions

M = −EJ
(
1 + µ

∂

∂t

)∂ψ
∂x

(2.3)

Q = k′Aτ = k′AG
(
1 + µ

∂

∂t

)(∂y
∂x
− ψ
)

where k′ is the coefficient which depends upon the cross section shape, see
e.g., Timoshenko (1955), A and J are the cross section area and the moment
of inertia, E and G are moduli of elasticity in tension and shear, respectively.
The equations of balance of forces for the beam loaded by a distributed

load q0(x, t) with account of the rotary inertia are as follows

∂Q

∂x
− ρA∂

2y

∂t2
+ q0(x, t) = 0 − ρJ ∂

2ψ

∂t2
+Q− ∂M

∂x
= 0 (2.4)

These equations with regard to the above relations result in two differential
equations of motion in y and ψ

k′GA
(
1 + µ

∂

∂t

) ∂
∂x

(∂y
∂x
− ψ
)
− ρA∂

2y

∂t2
+ q0(x, t) = 0

(2.5)

EJ
(
1 + µ

∂

∂t

)∂3ψ
∂x3
− ρJ ∂3ψ

∂x∂t2
+ ρA

∂2y

∂t2
− q0(x, t) = 0

After excluding the angle ψ, a single equation with respect to the displa-
cement y(x, t) is obtained

EJ
(
1 + µ

∂

∂t

)2 ∂4y
∂x4
− ρJ

(
1 +

E

k′G

)(
1 + µ

∂

∂t

) ∂4y

∂x2∂t2
+
ρ2J

k′G

∂4y

∂t4
+

(2.6)

+ρA
(
1 + µ

∂

∂t

)∂2y
∂t2
=
(
1 + µ

∂

∂t

)
q0 +

ρJ

k′GA

∂2q0
∂t2
− EJ

k′GA

(
1 + µ

∂

∂t

)∂2q0
∂x2

In particular cases of the Euler-Bernoulli (E-B) viscoelastic beam and Ti-
moshenko elastic beam, this equation is reduced to the well known equations.
The boundary conditions for set (2.5) in variables y and ψ can be derived

by making use of Hamilton’s principle and are given, e.g., by Anderson (1953),
Dolph (1954), Trail-Nash and Collar (1953). In particular, for the hinged end,
one immediately gets from (2.3)

y = 0
∂ψ

∂x
= 0 (2.7)
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2.2. Dimensionless equations

The obtained governing equation, (2.6), is not convenient for the analysis
since it includes many parameters. In order to facilitate the general analysis
let us introduce dimensionless variables and parameters

ξ =
x

r0
Y =

y

r0
τ =

c

r0
t

c2 =
E

ρ
r20 =

J

A
χ =

E

k′G

µ∗ =
c

r0
µ q =

q0r0
EA

(2.8)

Here c is the sound velocity in the beam material, r0 is the cross section radius
of gyration, χ is the shear deformability parameter, µ∗ is the dimensionless
viscosity parameter. Note that for the classical Euler-Bernoulli model χ = 0,
which corresponds to an infinitely large shear stiffness.
In variables (2.8), equations (2.5) take the form

(
1 + µ∗

∂

∂τ

) ∂
∂ξ

(∂Y
∂ξ
− ψ
)
− χ∂

2Y

∂τ2
+ χq(ξ, τ) = 0

(2.9)
(
1 + µ∗

∂

∂τ

)∂3ψ
∂ξ3
− ∂3ψ

∂ξ∂τ2
+
∂2Y

∂τ2
− q(ξ, τ) = 0

and equation (2.7) transforms into

(
1 + µ∗

∂

∂τ

)2∂4Y
∂ξ4
− (1 + χ)

(
1 + µ∗

∂

∂τ

) ∂4Y

∂ξ2∂τ2
+ χ

∂4Y

∂τ4
+

(2.10)

+
(
1 + µ∗

∂

∂τ

)∂2Y
∂τ2
=
(
1 + µ∗

∂

∂τ

)
q + χ

∂2q

∂τ2
− χ
(
1 + µ∗

∂

∂τ

)∂2q
∂ξ2

This equation includes only two generalized parameters characterising the
shear deformability and the viscosity, respectively. For a particular case of E-B
viscoelastic beam (χ = 0) with the rotational inertia (Rayleigh’s model) and
internal friction included, this equation reduces to the following one

(
1 + µ∗

∂

∂τ

)∂4Y
∂ξ4
− ∂4Y

∂ξ2∂τ2
+
∂2Y

∂τ2
= q (2.11)

with the single parameter µ∗, and for the Timoshenko beam made of an elastic
material (µ∗ = 0) to equation

∂4Y

∂ξ4
− (1 + χ) ∂4Y

∂ξ2∂τ2
+
∂2Y

∂τ2
+ χ

∂4Y

∂τ4
= q + χ

∂2q

∂τ2
− χ∂

2q

∂ξ2
(2.12)
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with the single parameter χ. These equations are apparently preferable in
comparison with often used dimensionless equations with several parameters.

The angle ψ can be expressed through Y using equation (2.9)2. For the
derivative ψξ ≡ ∂ψ/∂ξ = r0∂ψ/∂x (which enters in boundary conditions
(2.7)) one has a relationship

∂2Y

∂τ2
=
∂2ψξ
∂τ2
−
(
1 + µ∗

∂

∂τ

)∂2ψξ
∂ξ2
+ q(ξ, τ) (2.13)

The shear angle γ = (∂y/∂x) − ψ = (∂Y/∂ξ) − ψ and its derivative γξ is
expressed through dimensionless variables Y and ψξ

γξ ≡
∂γ

∂ξ
=
∂2Y

∂ξ2
− ψξ (2.14)

Boundary conditions (2.7) in dimensionless variables take the form

Y = 0 ψξ = 0 (2.15)

One can also obtain an equation for ψ, or (more convenient) equation
for ψξ. Excluding Y from set (2.9) leads to an equation with the same operator
in the left hand side but differing in the right hand side

(
1 + µ∗

∂

∂τ

)2∂4ψξ
∂ξ4
− (1 + χ)

(
1 + µ∗

∂

∂τ

) ∂4ψξ
∂ξ2∂τ2

+ χ
∂4ψξ
∂τ4
+

(2.16)

+
(
1 + µ∗

∂

∂τ

)∂2ψξ
∂τ2
=
(
1 + µ∗

∂

∂τ

)∂2q
∂ξ2

Combining equations (2.9) and (2.14) results in the equation for the shear
angle or for the derivative γξ (again with the same left hand side)

(
1 + µ∗

∂

∂τ

)2∂4γξ
∂ξ4
− (1 + χ)

(
1 + µ∗

∂

∂τ

) ∂4γξ
∂ξ2∂τ2

+ χ
∂4γξ
∂τ4
+

(2.17)

+
(
1 + µ∗

∂

∂τ

)∂2γξ
∂τ2
= χ

∂4q

∂τ2∂ξ2
− χ
(
1 + µ∗

∂

∂τ

)∂4q
∂ξ4
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3. Free oscillations of a hinged-hinged beam

3.1. Solution

For free oscillations q = 0 in (2.10), one arrives at the equation

(
1+µ∗

∂

∂τ

)2∂4Y
∂ξ4
− (1+χ)

(
1+µ∗

∂

∂τ

) ∂4Y

∂ξ2∂τ2
+
(
1+µ∗

∂

∂τ

)∂2Y
∂τ2
+χ

∂4Y

∂τ4
= 0

(3.1)
and an identical one for ψξ (from (2.16)). Here only the simplest case of a
hinged-hinged beam is considered, for which the solution is sought in the form

Y (ξ, τ) = eiωτ sin kξ (3.2)

The parameter k is determined from boundary conditions (2.15): kn = nπr0/l,
(n = 1, 2, . . .). Substitution (3.2) into (3.1) gives a frequency equation for ωn
with complex coefficients

(1 + iωnµ
∗)2k4n − ω2n(1 + χ)(1 + iωnµ∗)k2n − (1 + iωnµ∗ − χω2n)ω2n = 0 (3.3)

So the natural frequency is a complex quantity. After introducing the de-
notation

Zn =
ω2n

1 + iωnµ∗
(3.4)

equation (3.3) reduces to an equation for Zn with real coefficients

χZ2n − Zn[1 + (1 + χ)k2n] + k4n = 0 (3.5)

whence two roots Zn are

Zn,1,2 =
1

2χ

[
(1 + k2n + χk

2
n)∓

√
(1 + k2n + χk

2
n)
2 − 4χk4n

]
(3.6)

It is easily seen that both Zn,1,2 values are real and positive. Then for each
Zn,1,2 value one gets from (3.4) the following equation specifying the natural
frequencies ωn

ω2n − iωnµ∗Zn,1,2 − Zn,1,2 = 0 (3.7)

with a pair of complex natural frequencies which differ with sign of the real
parts

ωn,1,2 = αn,1,2 + iβn,1,2 ωn,3,4 = −αn,1,2 + iβn,1,2 (3.8)

where

αn,1,2 =

√

Zn,1,2 −
(µ∗Zn,1,2)2

4
βn,1,2 =

µ∗Zn,1,2
2

(3.9)
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Each complex frequency corresponds to a pair of particular solutions, for
any n

Ynj(ξ, τ) = Y0,nje
−βnjτei(αn jτ+θnj) sin knξ j = 1, 2 (3.10)

or, in the real form

Ynj(ξ, τ) = Y0,nje
−βnjτ cos(αnjτ + θnj) sin knξ j = 1, 2 (3.11)

with constants Y0,nj and θnj (amplitude and initial phase of the particular
solution). They present decaying oscillations. The real parts of the complex
eigenfrequencies give the cyclic frequencies αn1 and αn2, the imaginary parts
give the damping factors βn1 and βn2.

The general solution is a linear combination of the particular solutions for
all n with arbitrary constants.

The above formulas determine frequencies and damping of oscillations in
the dimensionless variables ξ, τ . These quantities in the initial variables can be
obtained with account of (2.8). Denoting with lower indexes x, t the quantities
computed in the initial variables, one has instead of (3.2)

y(x, t) = y0e
iωxtt sin kxtx

As kxtx = kxtr0ξ, ωxtt = ωxtr0τ/c we get: kxtr0 = k, ωxtr0/c = ω. Hence,
having the dependence ω = f(k), one obtains the corresponding relationship
in the initial variables in the form

ωxt =
cω

r0
=

c

r0
f(kxtr0) (3.12)

(for the real and imaginary parts of ωn, i.e. for αn1,2 and βn1,2, the translation
formulas are similar).

3.2. Analysis of the solution for the elastic Timoshenko beam

Consider first the case of a Timoshenko beam made of an elastic material.
The free oscillation problem for the elastic Timoshenko beam was studied in
numerous works, but our aim here is to demonstrate merits of the proposed
equations in performing general analysis.

For µ∗ = 0, χ 6= 0 from (3.4) one has Zn = ω2n. As both roots Zn,1,2
(3.6) are real and positive, the eigenfrequencies ωn,1,2 are real, βn1,2 = 0,
ωn,1,2 = ±αn1,2 = ±

√
Zn,1,2.
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Let us consider first approximate formulas and asymptotics for the natural
frequencies. Let us rewrite Zn = ω

2
n (3.6) as follows

ω2n,1,2 =
1 + k2n + χk

2
n

2χ

[

1∓
√

1− 4χk4n
(1 + k2n + χk

2
n)
2

]

(3.13)

Elementary analysis shows that 4χk4n < (1+k
2
n+χk

2
n)
2 for any kn and χ.

So one may expand the expression under the root in (3.13) into power series.
Keeping only two terms, one obtains

ω2n,1,2 ≈
1 + k2n + χk

2
n

2χ

[
1∓
(
1− 2χk4n
(1 + k2n + χk

2
n)
2

)]
(3.14)

So, approximately, the first branch of the solution, corresponding to sign
”−”, is

ω2n,1 ≈
k4n

1 + k2n(1 + χ)
(3.15)

and the second branch (sign ”+”)

ω2n,2 ≈
1 + k2n + χk

2
n

χ

(
1− χk4n
(1 + k2n + χk

2
n)
2

)
(3.16)

For qualitative considerations, the last expression may be further simplified

ω2n,2 ≈
1 + k2n + χk

2
n

χ
(3.17)

In the plane (kn, ωn), expression (3.17) determines a hyperbola (with pa-
rameter χ). The above formulas lead to the following asymptotic expressions
for cases kn → 0 and kn →∞. The first branch for small kn is the parabola
(from (3.15))

ωn,1 ≈ k2n (3.18)

and for large kn it is a straight line

ωn,1 ≈
kn√
1 + χ

(3.19)

The second branch for small kn is close to ω
2
n,2 ≈ 1/χ, and for large kn is

the straight line

ωn,2 ≈ kn
√
1 + χ

χ
(3.20)
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Fig. 2. Natural frequency vs. wave number kn for the elastic Timoshenko beam at
χ = 3 (a) and χ = 10 (b). 1, 2 – the first and second frequency spectrum, solid
curves – exact solution, dashed and dotted lines – approximate solutions by (3.15),

(3.16) and (3.19), (3.20), respectively

In Fig. 2, ωn-kn relationships are presented for χ = 3 and χ = 10, Fig. 2a
and Fig. 2b, respectively (value χ = 3 corresponds approximately to an isotro-
pic material, see expression for χ (2.8)). Two the branches are given (curves
1, 2, respectively), solid curves – exact predictions by (3.13), dashed curves –
approximate values by (3.15) and (3.16), and dotted lines – values by approxi-
mations (3.19) and (3.20), for the first and second branches, respectively. The
error of the approximate formulas is rather small for χ = 3 and practically
disappears for χ = 10 in the whole kn range considered. For larger χ values,
simple formulas (3.15) and (3.17) give practically exact predictions for the
both frequency branches at any kn.
Note that parabola (3.18) is the exact solution to the E-B beam. When

taking into account the rotatory inertia, but disregarding the shear flexibility
(Rayleigh model, χ = 0), the first branch, (3.15), reduces to

ω2n,1 =
k4n
1 + k2n

For the first branch both these relationships give the correct asymptotics
for small kn (large wavelength), but not for large kn (short wavelength). Note
that the second branch is absent in the E-B model as well as in the Rayleigh
model. For real materials, one may put χ > 3, so neglecting χ in relationship
(3.19) is not acceptable.
In Fig. 3a, natural frequencies vs. wave number kn = nπr0/l are presented

for three values of the shear parameter, solid curves – the first frequency
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branch, dotted curves – the second branch (all curves computed by exact
formulas (3.13)).

Fig. 3. Natural frequency vs. wave number kn for the Timoshenko beam at three
values of shear parameter χ (a) elastic material; (b) visco-elastic material (solid

curves – the first branch, dotted curves – the second one)

If χ → 0 then the second branch goes to infinity, therefore this branch is
absent in the E-B and Rayleigh models. The second branch is always higher
than the first one.

Now it is worthwhile to discuss the physical sense of the second branch.
The existence of two values of natural frequency, ωn,1 and ωn,2, which relate
to the same n value (the same wavelength) was noted already in the first in-
vestigations on dynamics of Timoshenko beams (Anderson, 1953; Trail-Nash
and Collar, 1953; Uflyand, 1948), but the meaning of the ”second spectrum” of
eigenfrequencies has attracted particular attention of investigators only later,
in the 70-s, and hitherto remains a topic of debate (Abbas and Thomas, 1977;
Bhashyam and Prathap, 1981; Ekwaro-Osire et al., 2001; Levinson and Co-
oke, 1982; Nesterenko, 1993; Prathap, 1983; Stephen, 1982, 2006; Stephen and
Puchegger, 2006). Some of the investigators adhere to the opinion that ”the
second spectrum predictions of Timoshenko beam theory should be disregar-
ded” (Stephen, 2006). But, in our opinion, the physical nature of the second
branch has been brought to light already in the papers by Dolph (1954), Do-
wns (1976), Huang (1961). It was there established that for the first branch
the transverse deflections due to bending and shear are of the same phase and
are summed to give the total transverse displacement. For the second branch,
the bending deflection and the shear one are opposite in phase, and the total
transverse displacement equals to their difference (these features can be ascer-
tained on the base of the above solution and equations presented in p. 2.1).
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In particular, Downs (1976) detected that the second branch for long waves
includes a ”shear mode” with vanishing total transverse deflection, and this
mode has been also obtained from equations of the theory of elasticity.

3.3. Analysis of the solution for the viscoelastic Timoshenko beam

Let us consider now the general case of the viscoelastic Timoshenko beam.
Results of computations by (3.6), (3.9) are presented in Fig. 3b. Dependencies
of the natural frequency on the wave number kn (at three values of the shear
flexibility parameter χ) for the viscosity parameter µ∗ = 0.5 show that the
influence of this parameter is essential for the second branch and exhibits
itself mostly at kn being of the order of unity (or larger). In distinction to
the elastic material, when the dimensionless natural frequency monotonically
increases with kn, in the case of a viscoelastic material the natural frequency
becomes to decrease at large kn, vanishing at kn close to 2. This means that
modes of the second type are impossible to appear for very short wavelengths.
For oscillations of the first type (prevailing bending modes), the influence of µ∗

is relatively weaker.
So the conclusion may be drawn that the internal friction eliminates the

second branch for sufficiently short wavelengths, and there remains only the

first branch.

4. Forced oscillations of a simply supported beam

Let us consider now forced oscillations of the simply supported beam under
harmonic excitation

qxt(x, t) = q̂x(x)e
iΩt (4.1)

In dimensionless variables (2.8), we have q(ξ, τ) = q̂(ξ) exp(iΩτ τ), where
Ωτ = Ωr0/c. Expanding the load and displacements into Fourier series (only
stationary oscillations are considered here)

q̂(ξ) =
∑

m

qm sin
mπr0ξ

l
(4.2)

Y (ξ, τ) =
∑

m

Ym sin
mπr0ξ

l
eiΩτ τ

one obtains from (2.10) the following equation for the amplitude ym of each
harmonics
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(1 + iΩτµ
∗)2k4mYm − (1 + χ)(1 + iΩτµ∗)k2mΩ2τYm +

−(1 + iΩτµ∗ − χΩ2τ )Ω2τYm = (4.3)

= (1 + iΩτµ
∗)qm − χΩ2τ qm + χ(1 + iΩτµ∗)k2mqm

where km = mπr0/l. Introducing notation

Z =
Ω2τ

1 + iΩgτµ∗
(4.4)

one gets from (4.3)

Ym =
1− χZ + χk2m

k4m − (1 + χ)k2mZ − (1− χZ)Z
qm

1 + iΩτµ∗
(4.5)

Functions of the dynamic amplification factor kdyn = k
4
m|Ym|/|qm| vs. the

ratio Ωτ/k
2
m for several values of the shear flexibility parameter χ and two km

values are presented in Fig. 4a,b (for µ∗ = 1.0).

Fig. 4. Dynamic amplification factor kdyn vs. Ωτ/k
2

m for several values of shear
parameter χ and two values of km = mπr0/l

It is seen that the shear flexibility, which perceptibly decreases the natural
frequency of the beam, results in a shift of the resonance peak. This shift be-
comes considerable for relatively short wavelengths (not too small km values).
Simultaneously, with a decrease of the frequency, a rise of the resonance peak
is observed in comparison with the classical E-B beam.

5. Conclusions

Dynamical analysis of a Timoshenko beam made of an elastic and viscoelastic
material has been carried out based on the proposed dimensionless equations
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of motion, and depending only on two generalized parameters. For the elastic
Timoshenko beam, a simple and complete analytical description has been given
for natural frequencies in the case of hinged-hinged edges. For the viscoelastic
Timoshenko beam, a frequency equation with complex coefficients has been
obtained, and solutions have been derived for two branches describing two
possible types of free oscillations. The effect of the viscous internal friction
parameter on free oscillations has been studied, and it was shown that the
internal friction eliminates the second branch for sufficiently short wavelengths,
and there remains only the first branch.
For the forced oscillation problem numerical results have been presented.

It was shown that the shear flexibility parameter can perceptibly influence the
frequency response curves, decreasing the natural frequency of the beam and
shifting the resonance peak.
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Drgania własne i wymuszone belki Timoshenko wykonanej z materiału

lepko-sprężystego

Streszczenie

W pracy analizowano dynamikę belki Timoshenko wykonanej z materiału lepko-
sprężystego. Wyprowadzono bezwymiarowe równania ruchu zależne jedynie od dwóch
parametrów: sztywności ścinania i współczynnika lepkiego tarcia wewnętrznego. Ko-
rzyści zaproponowanych równań przedstawiono na przypadkach drgań swobodnych
i wymuszonych belki przegubowo podpartej na obu końcach. Analizowano wpływ
sztywności ścinania belki i współczynnika lepkiego tarcia wewnętrznego na częstości
drgań i dynamiczny współczynnik wzmocnienia.
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