MECHANIKA TEORETYCZNA I STOSOWANA 1, 17 (1979)

O PRZESTRZENNYCH FRONTACH FAL NAPRĘŻENIA W IZOTROPOWYM OŚRODKU SPRĘŻYSTYM

EDWARD WLODARCZYK (WARSZAWA)

1. Wstęp

Oddziaływanie powietrznej fali uderzeniowej na powierzchnie gruntu, wygenerowanej wybuchem punktowego ładunku jądrowego lub klasycznego, można sprowadzić do ruchomego obciążenia normalnego, przyłożonego na kołowej powierzchni, której promień rośnie z upływem czasu, ze zmienną prędkością D[r(t)] (rys. 1).

Obciążenie to generuje z kolei w gruncie odpowiedni układ fal naprężeń. Jeśli mechaniczne właściwości grùntu zaaproksymować liniowym izotropowym ośrodkiem sprężystym, to otrzymamy układ dwóch frontów fal — front fali podłużnej, propagujący się z prędkością a i front fali poprzecznej, propagujący się z prędkością b. Obraz taki otrzymamy przy założeniu, że $D[r(t)] \ge a$ [1-4]. Dla pozostałych zakresów prędkości obraz falowy ulega znacznemu skomplikowaniu i nie będziemy go w niniejszej pracy rozpatrywać. Przypadek $D[r(t)] \ge a$ występuje najczęściej w praktyce inżynierskiej i dlatego jest przedmiotem badań zawartych w niniejszej pracy.

Celem pracy jest podanie prostej metody określania kształtów frontów przestrzennych fal naprężenia, wygenerowanych ruchomym obciążeniem, w oparciu o teorię optyki geometrycznej.

2. Wyprowadzenie równań na fronty fal naprężenia

Dla określenia frontów fal naprężenia wykorzystamy zasadę C. V. Huygensa. Zgodnie z tą zasadą, każdy punkt powierzchni ziemi, do którego dociera front ciśnienia powietrznej fali uderzeniowej, staje się źródłem elementarnych fal kulistych, rozprzestrzeniających się w gląb ośrodka, z prędkością fal podłużnych i poprzecznych. Obwiednie wymienionych fal elementarnych tworzą powierzchnię poszukiwanych frontów fal podłużnych i poprzecznych (rys. 2).

Przy określaniu tych obwiedni będziemy korzystać z następujących oznaczeń (rys. 2):

- r_p współrzędna punktu na powierzchni półprzestrzeni, który generuje elementarne fale kuliste — podłużne i poprzeczne;
- r_0 promień okręgu, na którym przyłożone jest ciśnienie powietrznej fali uderzeniowej — maksymalny promień zasięgu frontów fal w gruncie, odpowiadający chwili t_0 ;

- z_s, r_s współrzędne punktu S na płaszczyźnie r, z, który wydziela część kulistą obwiedni;
- t_0 i t_p czasy, po upływie których front fali uderzeniowej propagujący się wzdłuż powierzchni półprzestrzeni obejmie obszary odpowiednio o promieniu r_0 i r_p .
 - a prędkość propagacji fal podłużnych;
 - b prędkość propagacji fal poprzecznych.

W dalszym ciągu rozważań wzory będziemy wyprowadzać dla fal podłużnych. Wzory te zachowują tę samą postać dla fal poprzecznych z tym, że w miejsce *a* kładziemy w nich *b*. W przypadkach, w których występują istotne różnice, będziemy wypisywać wzory dla obydwu rodzajów fal jednocześnie.

Zgodnie z podanymi oznaczeniami, równanie dla elementarnej fali kulistej przyjmuje postać:

(2.1)
$$z^{2} + (r - r_{p})^{2} = a^{2} \left[\int_{0}^{r_{0}} \frac{d\xi}{D(\xi)} - \int_{0}^{r_{p}} \frac{d\xi}{D(\xi)} \right]^{2} = a^{2} \left[\int_{r_{p}}^{r_{0}} \frac{d\xi}{D(\xi)} \right]^{2}$$

Różniczkując równanie (2.1) po parametrze r_p mamy:

(2.2)
$$r - r_p = \frac{a^2}{D(r_p)} \int_{r_p}^{r_0} \frac{d\xi}{D(\xi)}$$

Po wyeliminowaniu z (2.1) i (2.2) parametru r_p otrzymalibyśmy w jawnej postaci równanie obwiedni — front fali (podłużnej lub poprzecznej). Jednak w ogólnym przypadku zmiany prędkości $D(r_p)$, eliminacja parametru r_p jest niemożliwa i wobec tego wygodniej jest przedstawić równanie obwiedni w postaci parametrycznej, a mianowicie:

Σn

(2.3)

$$r(r_{0}, r_{p}) = r_{p} + \frac{a^{2}}{D(r_{p})} \int_{r_{p}}^{r_{0}} \frac{d\xi}{D(\xi)}$$

$$z(r_{0}, r_{p}) = a \sqrt{1 - \frac{a^{2}}{D^{2}(r_{p})}} \int_{r_{p}}^{r_{0}} \frac{d\xi}{D(\xi)}$$

$$d|a, r_{0} \leq r \leq r_{0}(t_{0}), \quad 0 \leq z \leq z_{0} \quad \text{oraz}$$

dia $r_s \leq r \leq r_0(\iota_0)$, $z \ge z_s$ oraz

(2.4)
$$r^2 + z^2 = (at_0)^2, \quad t_0 = \int_0^\infty \frac{d\xi}{D(\xi)}$$

dla $0 \leq r \leq r_s$, $z_s \leq z \leq at_0$ gdzie:

(2.5)
$$r_s = \frac{a}{D(0)} at_0, \quad z_s = \sqrt{1 - \left[\frac{a}{D(0)}\right]^2} at_0$$

- dla fal podłużnych oraz

(2.6)
$$r_s = \frac{b}{D(0)} at_0, \quad z_s = \frac{b}{a} \sqrt{1 - \left[\frac{b}{D(0)}\right]^2} at_0$$

- dla fal poprzecznych.

Wyprowadzone wzory obowiązują dla przypadku, kiedy front fali uderzeniowej porusza się z nadsejsmiczną prędkością tj. dla:

$$(2.7) \qquad \qquad \frac{a}{D} \leq 1$$

Przypadek ten obejmuje praktycznie cały zakres zagadnień spotykanych w problemach fortyfikacyjnych.

3. Analiza kształtów frontów fal naprężenia

Wprowadzimy następujące wielkości bezwymiarowe:

(3.1)

$$R = \frac{r}{h}, \quad Z = \frac{z}{h}, \quad T = \frac{at}{h}, \quad R_p = \frac{r_p}{h}, \quad R_k = \frac{r_k}{h}$$

$$R_e = \frac{r_e}{h}, \quad R_0 = \frac{r_0}{h}, \quad H_z = \frac{h_z}{h}, \quad H_p = \frac{h_p}{h}$$

$$h = 3.5\sqrt[3]{q} = 4.41\sqrt[3]{q_f}, \quad \alpha = \frac{a}{D}$$

$$\beta = \frac{b}{D} = \gamma \alpha, \quad \gamma = \frac{b}{a}$$

gdzie:

- h graniczna wysokość między wybuchem powietrznym i naziemnym w [m];
- h_{p} ,wysokość wybuchu powietrznego w [m];
- h_z współrzędna (w kierunku osi z) punktu leżącego na froncie fali naprężenia w gruncie w odległości r_e od epicentrum wybuchu (rys. 5);

9 Mech. Teoret. i Stos. 1/79

E. Włodarczyk

- re odległość od epicentrum wybuchu mierzona na powierzchni ziemi.
- r_k promień okręgu na którym prędkość obciążenia na powierzchni osiąga wartość prędkości fal podłużnych;
- q równoważnik trotylowy ładunku jądrowego w tonach;
- $q_f = 0,5 q.$

W wielkościach bezwymiarowych (3.1) wzory ($2.3 \div 2.6$) przyjmują postać:

(3.2)

$$R = R_{p} + \alpha(R_{p}) \int_{R_{p}}^{R_{0}} \alpha(\xi) d\xi, \quad R_{S_{1}} \leq R \leq R_{0}$$

$$Z = \sqrt{1 - \alpha^{2}(R_{p})} \int_{R_{p}}^{R_{0}} \alpha(\xi) d\xi, \quad 0 \leq z \leq Z_{S_{1}}$$

(3.3)
$$R^2 + Z^2 = T_0^2, \quad 0 \le R \le R_{S_1}, \quad Z_{S_1} \le Z \le T_0$$

- dla fal podłużnych oraz:

(3.4)

$$R = R_{p} + \gamma^{2} \alpha(R_{p}) \int_{R_{p}}^{R_{0}} \alpha(\xi) d\xi, \quad R_{S_{2}} \leq R \leq R_{0}$$

$$Z = \gamma \sqrt{1 - \gamma^{2} \alpha^{2}(R_{p})} \int_{R_{p}}^{R_{0}} \alpha(\xi) d\xi, \quad 0 \leq Z \leq Z_{S}$$

(3.5) $R^2 + Z^2 = \gamma^2 T_0^2, \quad 0 \le R \le R_{S_2}, \quad Z_{S_2} \le Z \le T_0$

— dla fal poprzecznych, gdzie:

(3.6)

$$R_{S_{1}} = \alpha(0) T_{0}, \quad Z_{S_{1}} = \sqrt{1 - \alpha^{2}(0)} T_{0}$$

$$R_{S_{2}} = \gamma^{2} \alpha(0) T_{0}, \quad Z_{S_{2}} = \gamma \sqrt{1 - \gamma^{2} \alpha^{2}(0)} T_{0}$$

$$T_{0} = \int_{0}^{R_{0}} \alpha(\xi) d\xi, \quad 0 \leq R_{0} \leq R_{k}$$

$$\alpha(R_{k}) = 1 \rightarrow R_{k}$$

Z podanych wzorów wynika, że kształty frontów fal determinowane są przez funkcję:

$$(3.7) \qquad \qquad \alpha(R) = a/D(R)$$

Zgodnie z [5] prędkość propagacji fali uderzeniowej w powietrzu D związana jest z nadciśnieniem na jej froncie następującym wzorem:

(3.8)
$$D = D_0 \sqrt{\frac{k+1}{2k} \frac{p_m + p_0}{p_0} + \frac{k-1}{2k}}$$

gdzie:

 p_m nadciśnienie na froncie fali;

 p_0 ciśnienie przed frontem fali;

k wykładnik adiabaty dla powietrza;

D₀ prędkość propagacji fali dźwiękowej w powietrzu niezaburzonym.

Jeżeli przyjąć dla niezaburzonego powietrza:

$$p_0 = 101325 \text{ N/m}^2$$
, $\varrho_0 = 1,226 \text{ kg/m}^3$, $D_0 = 340 \text{ m/s}$

to wzór (3.8) można przedstawić w postaci:

(3.9)
$$D(r) = 340 \sqrt{1 + 8,46 \cdot 10^{-6} p_m(r)} \text{ [m/s]}$$

gdzie $p_m(r)$ podstawiamy w N/m².

Zatem, aby określić D(r), a tym samym i funkcję $\alpha(R)$, należy znać nadciśnienie na froncie fali $p_m(r)$.

Zgodnie z [5], dla wybuchu naziemnego mamy:

(3.10)
$$p_m(r) = \left[1,06\frac{\sqrt[3]{q_f}}{r} + 4,3\left(\frac{\sqrt[3]{q_f}}{r}\right)^2 + 14\left(\frac{\sqrt[3]{q_f}}{r}\right)^3\right] \cdot 98066,5 \ [N/m^2]$$

gdzie równoważnik q_f należy podstawić w kg.

Wyrażając $p_m(r)$ w zmiennych bezwymiarowych (3.1), z (3.7) i (3.9) otrzymamy:

(3.11)
$$\alpha(R) = a/340\sqrt{1+8,46\cdot 10^{-6}f(R)}$$

gdzie:

(3.12)
$$f(R) = \left[1.06\left(\frac{1}{0.441R}\right) + 4.3\left(\frac{1}{0.441R}\right)^2 + 14\left(\frac{1}{0.441R}\right)^3\right] \cdot 98066.5.$$

Dla wybuchu powietrznego wartości nadciśnienia $p_m(r)$ podawane są na wykresach lub w tabelach [5] dla odpowiednich wysokości wybuchu h_p .

Ostatecznie kształty frontów fal można wyrazić analitycznie za pomocą następujących wzorów:

$$R = R_{p} + \left(\frac{a}{340}\right)^{2} F(R_{p}) I(R_{0}, R_{p}); \quad R_{S_{1}} \leq R \leq R_{0}$$

$$Z = \sqrt{1 - \left(\frac{a}{340}\right)^{2} F^{2}(R_{p})} I(R_{0}, R_{p}); \quad 0 \leq Z \leq Z_{S_{1}}$$

$$(a_{1}, b_{2})^{2} = \left(\frac{a}{340}\right)^{2} F^{2}(R_{p}) I(R_{0}, R_{p}); \quad 0 \leq Z \leq Z_{S_{1}}$$

(3.13)

(3

9*

$$R^{2} + Z^{2} = \left(\frac{a}{340}\right)^{2} I^{2}(R_{0}, 0); \quad 0 \leq R \leq R_{S_{1}}; \quad Z_{S_{1}} \leq Z \leq \left(\frac{a}{340}\right) I(R_{0}, 0)$$

— dla fal podłużnych oraz

(14)

$$R = R_{p} + \left(\gamma \frac{a}{340}\right)^{2} F(R_{p})I(R_{0}, R_{p}); \quad R_{s_{2}} \leq R \leq R_{0}$$

$$Z = \sqrt{1 - \left(\gamma \frac{a}{340}\right)^{2} F^{2}(R_{p})I(R_{0}, R_{p}); \quad 0 \leq Z \leq Z_{s_{1}}}$$

$$R^{2} + Z^{2} = \left(\gamma \frac{a}{340}\right)^{2} I^{2}(R_{0}, 0); \quad 0 \leq R \leq R_{S_{2}}; \quad Z_{S_{1}} \leq Z \leq \left(\gamma \frac{a}{340}\right) I(R_{0}, 0)$$

— dla fal poprzecznych gdzie:

(3.15)
$$F(R_p) = 1/\sqrt{1+8,46 \cdot 10^{-6} f(R_p)}$$
$$I(R_0, R_p) = \int_{R_p}^{R_0} F(\xi) d\xi.$$

Wartości funkcji $F(R_p)$ dla wybuchu naziemnego podajemy na rys. 3.

Funkcję $I(R_0, R_p)$ określamy planimetrując pole pod krzywą $F(R_p)$ w przedziale $R_p - R_0$. Po określeniu wartości funkcji $F(R_p)$ i $I(R_0, R_p)$ podstawiamy je do wzorów (3.13) oraz (3.14) i wyznaczamy z nich współrzędne fali naprężenia.

Za pomocą wyprowadzonych wyżej wzorów wykonano obliczenia liczbowe. Wybrane wyniki tych obliczeń przedstawiamy na wykresach (patrz rys. $4a \div c$). Pokazujemy na nich

Rys. 4b

132

kształty frontów fal podłużnych i poprzecznych dla prędkości propagacji zaburzeń a = 100,400 i 1000 m/s, przy dwóch wartościach parametru R_0 (dwie chwile czasowe). Wartości parametrów, dla których wykonano wykresy podajemy na rysunkach.

Z zamieszczonych wykresów widać, że kształty frontów fal dość silnie zależą od prędkości propagacji a. Dla małych wartości a fronty zbliżone są do linii prostej, poprowadzonej pod kątem:

Ze wzrostem prędkości *a* fale robią się coraz bardziej wypukłe i aproksymacja takich frontów linią prostą poprowadzoną pod kątem δ prowadzi do kilkudziesięciu, a w niektórych przypadkach nawet do kilkusetprocentowych błędów. Błędy te rosną, wraz ze wzrostem głębokości wnikania frontu fali naprężenia w głąb ośrodka.

4. Określenie kąta padania fali naprężenia w gruncie

W konkretnych obliczeniach dynamicznych konstrukcji podziemnych bardzo często potrzebna jest znajomość kąta padania fali w danym punkcie. Kąt ten jednoznacznie można określić za pomocą kąta nachylenia stycznej do frontu, następującym wzorem:

(4.1)
$$\delta = \arcsin\left[-\frac{dZ}{dR_p}\right] \sqrt{\left(\frac{dR}{dR_p}\right)^2 + \left(\frac{dZ}{dR_p}\right)^2}\right]$$

Praktyczne korzystanie z tego wzoru jest bardzo pracochłonne i żmudne. Dlatego, w oparciu o teorię liniowej optyki, wyprowadzimy bardziej wygodny do stosowania w praktyce inżynierskiej wzór przybliżony.

Jak wiadomo z optyki geometrycznej, zaburzenia propagują się wzdłuż promieni. Jeśli założyć, że na odcinku $r_e - r_p$ (rys. 5) prędkość propagacji fali uderzeniowej $D = D(r_p) \approx \text{const}$, wówczas na głębokości h_z mamy:

(4.2)
$$\sin \delta = \frac{r_e - r_p}{\sqrt{h_x^2 + (r_e - r_p)^2}} \approx \frac{a}{D(r_p)}$$

lub w formie bezwymiarowej:

(4.3)
$$\frac{a}{340} = \Phi(R_p, R_e, H_z)/F(R_p)$$

gdzie:

(4.4)

Dla ustalonych wartości a, R_e i $H_z z$ (4.3) wyliczamy pierwiastek $R_p = R_p^*$ tego równania. Podstawiając z kolei $R_p = R_1^*$ do (4.2) znajdujemy poszukiwany kąt padania fali. Wzór (4.2) można stosować dla obiektów typu wykopowego umieszczonych na małych głębokościach.

Dla obiektów tunelowych umieszczonych głęboko pod ziemią należy posługiwać się wzorem ścisłym (4.1).

5. Przyklad

Określimy kąt padania sprężystej podłużnej fali naprężenia w zwartej glinie (a = 1000 m/s) na głębokości $h_z = 50 \text{ m}$, spowodowanej naziemnym wybuchem jądrowym, w odległości od epicentrum wybuchu $r_e = 1000 \text{ m}$. Moc wybuchu $q = 2 \cdot 10^6 \text{ ton}$.

Na podstawie wymienionych danych, obliczamy następujące wielkości:

$$h = 3,5\sqrt[3]{q} = 3,5\sqrt[3]{2.10^6} = 441 \text{ m}$$

$$R_e = \frac{r_e}{h} = \frac{1000}{441} = 2.2676$$

$$H_z = \frac{h_z}{h} = \frac{50}{441} = 0,1134$$

$$\frac{a}{340} = \frac{1000}{340} = 2,9412$$

$$\Phi = \frac{2.2676 - R_p}{\sqrt{0.1134^2 + 2.2676 - R_p}^2}$$

Pierwiastek spełniający równanie (4.3) przy przyjętych danych wynosi:

$$R_{n_0}^* = 2,165$$

Poszukiwany kąt padania fali wynosi:

$$\sin \delta = \frac{a}{340} F(R_{p_0}^*) = 2,9412 \cdot 0,2283 = 0,6715$$
$$\delta = 42^{\circ}11'$$

6. Wnioski końcowe

Na podstawie przeprowadzonej w niniejszej pracy analizy propagacji frontów przestrzennych fal naprężenia w gruncie, wywołanych działaniem powietrznej fali uderzeniowej wybuchu jądrowego, można wyciągnąć następujące wnioski:

1. Stosowana w dotychczasowej literaturze technicznej liniowa aproksymacja frontów fal może być stosowana tylko dla gruntów o małej prędkości propagacji zaburzeń i na małych głębokościach (a < 1000 m/s, $h_z < 20$ m).

2. Należy stosować aproksymację frontów fal linią łamaną (cięciwami) po uprzednim wyznaczeniu ich wg wzorów ścisłych, wyprowadzonych w niniejszej pracy. Unikamy wówczas dużych błędów (rzędu 100%) przy określaniu lokalnego kąta padania fali, od którego zależą w sposób istotny parametry fal odbitych i załamanych [6, 7].

Literatura cytowana w tekście

- 1. Y. C. FUNG, Foundation of solid mechanics, Prentice-Hall, Inc., Englewood Cliffs, New Jersey, U.S.A., 1965.
- 2. F. CHWALCZYK, J. RAFA, E. WŁODARCZYK. Propagation of two-dimensional non-stationary pressure wave in a layer of perfect compresible liquid, Proc. Vibr. Probl. 14, 3, 1973.
- 3. А.Г. Багдоев, Пространственные нестационарные движения сплошной среды с ударными волнами, Изд. АН Армянской ССР, Ереван 1901
- 4. Х. А. Рахматулин, Я. У. Сагатов, П. Ф. Сабодаш, И. Г. Филиппов, Двумерные задачи по неустановившемусл движению сжимаемых сред, Изд. "ФАН" Узбекской ССР, Ташкент 1969.
 - 5. Ю. С. Яковлев, Гидродинамика взрыва, Изд. Судпромгиз, Ленинград, 1961.
 - 6. Г. М. Арутюнян, Л. В. Карчевский, Отраженные ударные волны, Машиностроение, Москва 1973.

Содержание

О ПРОСТРАНСТВЕННЫХ ФРОНТАХ ВОЛН НАПРЯЖЕНИЯ В ИЗОТРОПНОЙ УПРУГОЙ СРЕДЕ

В работе выведены формулы для форм пространственных фронтов волн напряжения распространяющихся в грунте, вызванных наземным или воздушным взрывом ядерного заряда. Доказано, что применяемая до сих пор аппроксимация этих фронтов одной плоскостью ведет к ошибкам нескольких десятков процентов, а в некоторых случаях (большие скорости распространения и глубокое основание объектов) к ошибкам нескольких сот процентов.

E. Włodarczyk

Summary

ON SPATIAL FRONTS OF STRESS WAVES IN ISOTROPIC ELASTIC MEDIUM

The formulae have been derived for the shapes of spatial fronts of the stress waves propagating in soil and produced by a surface or air explosion of a nuclear charge. It has been demonstrated that the approximation used so far of those fronts by a single plane leads to tens of per cent errors, and in certain cases (high propagation speeds and deep subsite of structure) — to errors of hundreds of per cent.

WOJSKOWA AKADEMIA TECHNICZNA WARSZAWA

Praca zostala zlożona w Redakcji dnia 20 kwietnia 1978 r.