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The task of this paper is identification of stresses in a homogeneous isotropic disc weakened
with an eccentric circular hole which is loaded by pressure in the internal contour of the hole.
By application of a complex variable method, the mathematical model that allows complete
analytical solution of stresses of the disc is formed. The methodology can be applied for
the solution of any disc weakened with an eccentric circular hole. The comparative analysis
has shown a high accuracy of analytically obtained results with FEM results obtained by
calculations in ANSYS 12 software package. The application of the results of this paper is of
great importance for quality design and optimization of thin-walled structures of disc type
weakened by a circular hole.
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1. Introduction

The papers by Timoshenko and Goodier (1951), Timoshenko and Woinowsky-Kreiger (1959)
provide methods for solving some typical problems of the theory of elasticity. These methods
are applied broadly to some practical engineering problems, particularly those with lower ap-
proximation, and give reasonably accurate results. However, when there is a case where the
problem solving significantly differs from the given theoretical model, it is necessary to make
quite a rough approximation, which is the reason why the obtained results are not sufficiently ac-
curate. A particular problem is the calculation of machine elements and structures with sudden
change of geometry, the existence of openings, sharp corners, etc. At these places, there is the
phenomenon of stress concentration which occupies a significant place in the study of problems
of the theory of elasticity. The data from technical practice show that frequent breakdowns and
accidents happen on such machines or structural elements and that the consequences are often
tragic human victims and enormous material damage. In many cases, the cause is an incomplete
and inaccurate identification of stresses and strains.

In studies of this phenomenon, in most cases, the thin plate weakened by a circular hole loaded
with a certain type of loading is analysed (Bakhshandeh et al., 2008; Bizic and Petrovic, 2011;
Bojic et al., 2010; Chandrashekhara and Muthanna, 1978; Chen and Archer, 1989; Mizushima
and Hamada, 1983; Troyani et al., 2002; Wang, 2004; Yang et al., 2010; Zhang and Shen, 2011).
Also, the analysis may include determination of stresses in a thin plate in the case when there
are two adjacent circular holes or more holes (Arshadnejad et al., 2009; Chen et al., 2000;
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Kratochvil and Becker, 2011; Wu and Markenscoff, 1996). Such cases are very frequently present
in construction of railway and road vehicles, vessels, aircrafts, civil engineering machinery, mining
and transportation machinery, cranes, tooling machines, steel structures and many others. The
holes exist on them for various reasons such as construction requirements, optimization of the
structure, reduction of self-weight, esthetic reasons, and so on. In all cases, the problem is the
accurate determination of stresses in some points of the element in loaded plates weakened by
circular holes, in which the stress concentration is present. One of directions for solving this
problem, whose theoretical basis are defined in Bower (2010), Lu (1995), Muskhelishvili (1963),
Savin (1961), is based on the use of complex functions and complex analysis (Mitrinovic, 1981).
The basic equations of the theory of elasticity and stress functions are expressed in a complex
form, and for their solution the most widely used method is the method of conformal mapping. By
applying the complex variable method, it is possible to determine theoretically the exact stress
state of the observed element in a plate weakened by a hole (Huan-chun et al., 1987; Simha
and Mohapatra, 1998). In the design and calculation phase of the mentioned machinery and
structures, this allows very accurate theoretical determination of stresses, which are impossible
to be found by conventional procedures. The papers by Batra and Nie (2010). Radi and Strozzi
(2009) deal with the analysis of mechanical elements similar to the disk weakened with an
eccentric circular hole. In line with these researches, a very interesting problem is mathematical
modelling and identification of stresses in a disc weakened with an eccentric circular hole when it
is loaded by the pressure in the internal contour of the hole. This was motivation for the research
published in this paper, where the mathematical model that allows analytical solution of stresses
is obtained by using the complex variable method (CVM). In order to verify analytically the
obtained results, the stresses are also determined by the finite element method (FEM).

2. Theoretical formulation

For obtaining an analytical solution of the problem of stresses in a disc weakened with an
eccentric circular hole, it is necessary to start with the theoretical formulation of the plane
stress condition. If the thin plate is loaded by forces that are evenly spaced along its thickness
and act in parallel to its base, there is a plane stress condition. The plane stress condition is
defined by the following four groups of equations (Timoshenko and Goodier, 1951).

The first group of equations link the stresses and volume forces

∂σx
∂x
+
∂τxy
∂y
+X = 0

∂τxy
∂x
+
∂σy
∂y
+ Y = 0 (2.1)

where: σx, σy – components of normal stresses, τxy – shear stress, X, Y – components of volume
forces.

The second group of equations is the relation between stress and strain

σx = λε+ 2µ
∂u

∂x
σy = λε+ 2µ

∂v

∂y
τxy = µ

(∂u

∂y
+
∂v

∂x

)

(2.2)

where: ε – surface deformation, λ, µ – Lame’s constants, that are

λ =
νE

(1− 2ν)(1 + ν)
µ =

E

2(1 + ν)

and E – modulus of elasticity, ν – Poisson’s ratio, u, v – displacements in the direction of the
coordinate axes x and y, respectively.
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The third group of equations are compatibility conditions, where solutions have a unique ID
only when they satisfy the conditions of compatibility

∂2εx
∂y2
+
∂2εy
∂x2
=
∂2γxy
∂x∂y

(2.3)

where: εx, εy – deformational components, γxy = (∂u/∂y) + (∂v)/(∂x) – slip component.
Finally, the fourth group of equation are boundary conditions

Xn = lσx +mτxy Yn = lτxy +mσy (2.4)

where: Xn, Yn – components of the vector of external forces, l = cos(n, x), m = cos(n, y) –
direction cosine, n – vector of the external normal to the contour.
Therefore, the plane stress condition is completely defined by equations (2.1)-(2.4). In one

point with the stresses σx, σy and τxy, it is always possible to find a coordinate system in
which the normal stresses have extreme values and in which the shear stresses equal zero. These
stresses are named the principal stresses and are defined by the following equations

σ1,2 =
σx + σy
2
±

√

(σx − σy
2

)2

+ τ2xy (2.5)

2.1. Plane stress condition expressed through complex potentials

The problem solving in the plane stress condition is reduced to finding a stress function
that will uniquely determine stresses and deformations, while equations (2.1)-(2.4) will match
with it. Determination of stresses in the disc weakened by an eccentric circular hole is this type
of problem in which the volume forces can be neglected. As a consequence, there is always a
function U(x, y) through which it is possible to express the stresses by the following expressions

σx =
∂2U(x, y)

∂2y
σy =

∂2U(x, y)

∂2x
τxy = −

∂2U(x, y)

∂x∂y
(2.6)

The function U(x, y) is called the stress function and it has to match with the following bihar-
monic equation

∂4U

∂x4
+ 2

∂4U

∂x2∂y2
+
∂4U

∂y4
= 0 (2.7)

Solving equation (2.7) and determining the stress function in real form is often very complex,
and for a number of problems is practically impossible. One method of solving this problem
is the transition into the complex area and solution of the problem in a complex form. The
stress function, which is a function of two independent variables x and y, is expressed through
two functions of one complex variable. In this way, the problem of solving a single function of
two independent variables reduces the problem of two complex functions of one independent
variable. These complex functions are φ(z) and ψ(z), and they are called complex potentials.
Equations of the plane stress condition expressed trough complex potentials are (Muskheli-

shvili, 1963)

σx + σy = 2[φ(z) + φ(z)] = 4Reφ(z)

σy − σx + 2iτxy = 2[zφ
′(z) + ψ(z)]

(2.8)

where: Re – real part, z – conjugated complex number.
The complex potentials are determined through the conditions made at the contour. In

solving the problem of determining the stresses of the disc weakened by an eccentric circular
hole, several methods for determining the complex potentials can be applied. In this paper, the
method of power series is applied, but before that the conformal mapping is defined.
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2.2. Conformal mapping

If z = x + iy and ζ = ζ + iη are two complex variables that are linked with the relation
z = ω(ζ), where ω(ζ) is an unambiguous analytical function in the area of Σ in the plane area
of change ζ, then each mapping (Fig. 1) that is applied by using these functions in which values
of the angles are preserved, is called a conformal mapping (Muskhelishvili, 1963).

Fig. 1. Conformal mapping

In other words, the task is to find a function for the mapping in which the angle between the
two curves in the plane z will be copied without changes in the angle between the corresponding
curves in the plane ζ (α = β). There are advanced methods for formation of the conformal
mapping function ω(ζ). In this paper, the ready-made function of conformal mapping is used.

2.3. Stresses in a mirrored area

Some area S in the plane z is mapped into a circular area Σ in the plane ζ (Fig. 1). In a
new field Σ in the plane ζ, the polar coordinates θ and ρ are introduced by using the following
relation

ζ = ρeiθ (2.9)

The circles ρ = const and θ = const of the field Σ in the plane ζ match curves which are also
marked with ρ = const and θ = const . The mapping is done by using the following analytical
function

x+ iy = ω(ρeiθ) (2.10)

So, the lines ρ = const and θ = const are coordinate lines in the mirrored area Σ, and in
the plane z they intersect at right angles. If through the point on the plane z pass the curves
ρ = const and θ = const (Fig. 2), which are mutually orthogonal, then the angle between
the tangent to the curve θ = const in the direction of increasing ρ and x axis can be marked
with α.
The link between the stress ratio in Cartesian and polar coordinates is as follows:

σρ + σθ = σx + σy

σθ − σρ + 2iτρθ = e
2iα(σy − σx + 2iτxy)

(2.11)

where: σρ – normal component of stress on the curve ρ = const , σθ – normal component of
stress on the curve θ = const , τρθ – tangential component of stress on both curves.
The stresses that are expressed in the polar coordinate system through the complex potential

in the new mirrored area are defined by the expressions

σρ + σθ = 4Reφ(z)

σθ − σρ + 2iτρθ =
2ζ2

ρ2ω′(ζ)
[ω(ζ)φ′(ζ) + ω′(ζ)ψ(ζ)]

(2.12)
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Fig. 2. The link between stress in Cartesian and polar coordinates in the mirrored area

3. Determination of complex potentials for a disc weakened with an eccentric

circular hole

The disc is limited by two circles whose centers are shifted by the eccentricity e, as shown in
Fig. 3.

Fig. 3. The disc weakened by an eccentric circular hole

The condition is that the main moment and the main vector on the contours equal zero. The
function of conformal mapping by which the disc mirrors on a circular ring is

z = ω(ζ) = c
ζ + 1

ζ − 1
(3.1)

where: c – real constant determined from the expression

c =

√

e4 +R41 +R
4
2 − 2(R1R2)

2 − 2e2(R21 +R
2
2)

2e
(3.2)

The outer contour of the disc of radius R1 is mapped to the inner contour of the circular ring
of radius ρ0, according to the equation

ρ0 =
c+
√

c2 +R21

R1
(3.3)

The inner contour of the disc of radius R2 is mapped to the outer contour of the circular ring
of radius R1, according to the equation

ρ1 =
c+
√

c2 +R22

R2
(3.4)
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The conformal mapping is defined by the following relation

x2 +
(

y − c
ζζ + 1

ζζ − 1

)2

=

∣

∣

∣

∣

2c
√

ζζ

ζζ − 1

∣

∣

∣

∣

2

(3.5)

From relation (3.5), it is noticed that the concentric circles ζζ = ρ2 correspond to the circles in
S area with the center on the y axis shifted for the value d of radius r. The two parameters
(d and r) are concluded from relation (3.5) as follows

d = c
ρ2 + 1

ρ2 − 1
r =

2cρ

ρ2 − 1
(3.6)

The expressions for the stresses in polar coordinates are obtained by solving the system of
equations (2.12)

σθ = 2Reφ(ζ) +
1

2
ReΩ(ζ) σρ = 2Reφ(ζ)−

1

2
ReΩ(ζ)

τρθ =
1

2
ImΩ(ζ)

(3.7)

In equations (3.7), Ω(ζ) is a complex function that is defined by the following equation

Ω(ζ) =
2ζ2

ρ2ω′(ζ)
[ω(ζ)φ′(ζ) + ω′(ζ)ψ(ζ)] (3.8)

The complex potentials are

φ(ζ) = C0 + (ζ − 1)
2
(

C1 +
C2
ζ2

)

ψ(ζ) =
ρ20(ζ − 1)

2

(ρ20 − ζ)
2

[

φ(ζ) + C0 +
(ρ20
ζ
− 1
)2(

C1 +
C2ζ

2

ρ40

)]

+
(ρ20 + ζ)(ζ − 1)

2

2(ρ20 − ζ)
φ′(ζ)

(3.9)

The real constants are determined in the following way

C0 =
1

2
C1
[

2(ρ0ρ1)
2 + 2(ρ20 + ρ

2
1)− 2(ρ

2
0 + ρ

2
1)
2
−

pρ21
2(ρ21 − ρ

2
0)

]

C1 = −
pρ21ρ

2
0

(ρ21 − ρ
2
0)(ρ

2
1ρ
2
0)(ρ

2
0 + ρ

2
1)− 4(ρ0ρ1)

2 + ρ20ρ
2
1

C2 = −C1(ρ0ρ1)
2

(3.10)

In relations (3.10), p is the pressure that operates in the inner part of the contour of the
eccentric hole.

4. Determination of stress using CVM

The previously defined theoretical equations were applied to the concrete example of the disc of
thickness h = 5mm, radius R1 = 50mm, weakened by an eccentric circular hole of eccentricity
e = 30mm, radius R2 = 10mm, loaded on the inside contour with the pressure p = 1.0 kN/cm

2.
By variation of the polar coordinates ρ and θ in the mirrored area, it is possible to determine
stress at any point of the disc. In this paper using the CVM, the specific numerical values of
stresses σρ and σθ and principal stresses σ1 and σ2 on the outer contour of the disc and at
the contour of the eccentric hole, as well as the stresses σx and σy at the intersection along to
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the vertical axis of symmetry of the disc are determined. The numerical values of stresses σρ
and σθ are determined in function of the coordinates ρ1 and ρ0 in the outer contour of the disc
and the contour of the eccentric hole in the mapped field calculated according to equations (3.3)
and (3.4), for 36 points that are defined by the angle θ that ranges from 0◦-360◦ with a step
of 10◦. The numerical values of stresses σx and σy are calculated in 22 points on the interval
from ρ0 to ρ1 (y = 0.5 cm to y = 10.5 cm) with step

∆ =
ρ1 − ρ0
10

(4.1)

Therefore, the stresses σx and σy are determined for values of the coordinate ρ with the step ∆
according to equation (4.1) and for the angles θ = 0◦ and θ = 180◦. This means that the
numerical values of stresses σx and σy are determined for the intersection that matches the
y axis.
Based on the previously defined equations, an algorithm for numerical solution of the problem

is created. The fact that is worth mentioning is that the programming is done with complex sizes.
Based on such obtained numerical values of stresses, appropriate diagrams of stresses change
at the outer contour of the disc, and at the contour of the eccentric hole are created as given
in Section 5. Analysis of the data for the stress value σρ at the contour of the eccentric hole
obtained by using theoretical models has shown that the stresses are constant at any point of the
eccentric hole, which is logical because the first boundary condition was made on that contour
which implied that it was loaded with a constant pressure p = 1.0 kN/cm2. Also, at the outer
contour of the disc, the values of stress σρ equal zero. The values of principal stresses σ1 and σ2
at any point of the disc with the eccentric circular hole are obtained when the values of stresses
σρ, σθ and τρθ are replaced in the following equations

σ1 =
σρ + σθ
2
+

√

(σρ − σθ
2

)2

+ τ2ρθ σ2 =
σρ + σθ
2
−

√

(σρ − σθ
2

)2

+ τ2ρθ (4.2)

At the outer contour of the disc, the values of stress σ2 equal zero at any point. The stresses
values σx, σy and τxy at any point of the disc with the eccentric hole can be obtained when σρ,
σθ and τρθ are replaced in the following equations

σx =
σρ + σθ
2
+
σρ − σθ
2
cos 2θ − τρθ sin 2θ

σy =
σρ + σθ
2
−
σρ − σθ
2
cos 2θ + τρθ sin 2θ

τxy =
σρ − σθ
2
sin 2θ + τρθ cos 2θ

(4.3)

5. Determination of stress using FEM

The FEM is based on physical discretization of the considered continuum with elements of finite
dimensions and simple shape. In the study, a numerical model was created. It was a steel disc
weakened by an eccentric circular hole whose dimensions and load are identical to the dimensions
and load used in the previous analysis by the CVM. Also, a homogeneous isotropic disc has been
considered, while the material of the disc is steel with modulus of elasticity E = 21000 kN/cm2,
and Poisson’s ratio ν = 0.33. The calculation was carried out by using ANSYS 12 software
package and the finite elements such as thin plates were applied. The FEM model consists
of 10492 nodes and 1816 finite elements. It is important to note that the input data for the
spatial discretization and mesh generation were not previously adjusted, but a mesh that is
generated automatically by the program ANSYS 12 was used. The disc was loaded with internal
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Fig. 4. Equivalent stress

Fig. 5. Normal stress σx (a) and σy (b)

Fig. 6. Shear stress τxy
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pressure equal to p = 1.0 kN/cm2, acting within the internal contours of the eccentric hole. As
a consequence of the given discretization and load, the corresponding stresses in the disc were
obtained as shown in Figs. 4-6.

In order to compare the results, the numerical stresses obtained by the FEM were read in
specific points of the disc. Locations of these points at the outer contour of the disc and at the
contour of the eccentric circular hole were the same as 36 points that were defined by the angle θ
ranging from 0◦-360◦, with a step of 10◦, defined in Section 3. Locations of points along the
y axis for reading the stresses values were also the same as those in Section 3.

The principal stresses σ1 and σ2 were determined according to equation (2.5), and also the
diagrams of principal stresses at the outer contour of the disc and at the contour of the eccentric
hole were formed. Also, the diagrams of the stresses σx and σy for the intersection that matches
the y axis were formed.

6. Comparison of results obtained by CVM and FEM

The values of the principal stress σ1 at the outer contour of the disc (Fig. 7a) coincide only at
the maximum stress values for the angle θ = 180◦ (y = 0.5 cm). At other points of the outer
contour, the stresses differ by a greater extent. The trend of stress distribution in both cases is
approximately the same. By the FEM, some very small and negligible values of the principal
stress σ2 at the outer contour of the disc (Fig. 7b) are obtained, while according to theoretically
obtained equations (4.2) derived by the CVM, such stress is equal to zero. The maximum values
of the principal stress σ1 at the contour of the eccentric hole (Fig. 8a) calculated by the CVM
are obtained for the angles θ = 100◦ and θ = 260◦, while by using the FEM are obtained for
the angles θ = 110◦ and θ = 240◦. The deviations are very small and, in this case, the trend of
stress distribution is also approximately the same. The values of the principal stress σ2 at the
contour of the eccentric hole (Fig. 8b) calculated by the CVM are constant σ2 = −1.0 kN/cm

2,
which is logical because there is constant pressure of the same intensity inside the contour of
the eccentric hole. In comparison with the FEM, these values are somewhat different, where the
deviations range from −5.9% to 2.1%. As for the values of stress components σx and σy at
the intersection which coincides with the y axis, the comparative analysis has shown that the
values largely overlap, and that overlapping ranges below 2% (Figs. 9a and 9b). Therefore, the
stresses obtained by the CVM and FEM are very similar in values and trend of distribution.

Fig. 7. Comparative diagram of the stress σ1 (a) and σ2 (b) at the outer contour of the disc
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Fig. 8. Comparative diagram of the stress σ1 (a) and σ2 (b) at the contour of the eccentric hole

Fig. 9. Comparative diagram of the stress σx (a) and σy (b) at the intersection of the y axis

7. Conclusion

The task of this paper is stress analysis in a homogeneous isotropic disc weakened with an ec-
centric circular hole which is loaded by pressure in the internal contour of the hole. The complex
variable method (CVM) was applied which is based on the application of Muskhelishvili’s com-
plex variable function technique. The formed mathematical model allows complete analytical
solution of the stress state of the disc, especially the contour of the hole where the stress concen-
tration is present. The technique was applied to the specific example of the disc, for which the
concrete numerical values of stresses were determined. Verification of the obtained results was
carried out by the finite element method (FEM) using the software package ANSYS 12. Com-
parative analysis has shown that stresses obtained by the CVM and FEM are very similar in
values and trend of distribution, which confirms the correctness of the established mathematical
model. The application of the results of this paper is of great importance for quality design and
optimization of thin-walled structures of disc type weakened by a circular hole.
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Modelowanie matematyczne dysku osłabionego mimośrodowo umiejscowionym

otworem kołowym

Streszczenie

Zadaniem podjętym w artykule jest identyfikacja stanu naprężeń w jednorodnym, izotropowym dysku
osłabionymmimośrodowo umiejscowionymwycięciem kołowym, obciążonym wzdłuż brzegu wewnętrznym
naciskiem. Stosując metodę zmiennej zespolonej, w pracy sformułowano matematyczny model układu,
który pozwolił na uzyskanie w pełni analitycznego opisu rozkładu naprężeń w dysku. Zastosowana meto-
dologia, zdaniem autorów, może być użyta dla dowolnego dysku z mimośrodowym otworem o kształcie
koła. W pracy przeprowadzono ponadto analizę porównawczą z wynikami uzyskanymi numerycznie za
pomocą metody elementów skończonych z wykorzystaniem pakietu ANSYS 12. Otrzymane rezultaty
badań mogą mieć duże znaczenie praktyczne z punktu widzenia jakości projektowania i optymalizacji
cienkościennych konstrukcji zawierających elementy strukturalne z kołowym wycięciem.
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