WYMUSZONE DRGANIA GIĘTNE PODATNIE PODPARTEGO ASYMETRYCZNEGO WAŁU

JANUSZ KOLENDA (GDAŃSK)

1. Wstęp

Rozpatrywane w pracach [1] i [2] układy z asymetrycznymi wałami analizowano przy założeniu, że drgania giętne w obu płaszczyznach oraz drgania podłużne i skrętne poszczególnych odcinków linii wałów można opisać niesprzężonymi równaniami różniczkowymi cząstkowymi. Uwzględniono natomiast możliwość sprzężeń pomiędzy tymi drganiami na skutek podatności konstrukcji podpierających linie wałów. W szczególności istotne są sprzężenia pomiędzy drganiami giętnymi. Zagadnienie to zilustrowano w niniejszej pracy na przykładzie drgań dwupodporowego wału. Rozpatrzono również zagadnienia redukcji i dokładności obliczeń.

2. Opis drgań giętnych walu przy wymuszeniach okresowych

Obliczeniowy schemat analizowanego układu przedstawiono na rys. 1. Przyjęto, że główna centralna oś bezwładności wału pokrywa się z osią obrotu. Wał podzielono na dwa odcinki obliczeniowe o długościach l_1 i l_2 , których przekroje poprzeczne są stałe i kołowo asymetryczne. Lokalne ruchome układy współrzędnych obu odcinków x_{11} , x_{12} , x_{13} i x_{21} , x_{22} , x_{23} mają początki na osi obrotu w połowie długości pierwszego łożyska i w przekroju $x_{11} = l_1$ oraz osie odpowiednio równoległe w chwili $t_0 = 2k\pi/\omega$,

Rys. 1. Schemat obliczeniowy analizowanego układu. A_1 -pole przekroju poprzecznego pierwszego odcinka wału; ϱ_1 – gęstość materiału pierwszego odcinka; E_1 – moduł Younga dla pierwszego odcinka; $(I_2)_1$, $(I_3)_1$ – momenty bezwładności przekroju poprzecznego pierwszego odcinka; I_1 – długość pierwszego odcinka; $f_{\alpha}^{w}(\alpha = 2, 3, 5, 6)$ – skupione wymuszenia zewnętrzne; $f_{01}^{w(0)}$ – stała poosiowa siła ściskająca; x_{11} , x_{12} , x_{13} – ortogonalny ruchomy układ współrzędnych pierwszego odcinka; X_1 , X_2 , X_3 – ortogonalny nieruchomy układ odniesienia konstrukcji podpierającej; ω – prędkość kątowa wirowania wału; 1,2 – podpory łożyskowe

5 Mech. Teoret. i Stoso. 3/80

k = 0, 1, 2, ... do osi nieruchomego układu odniesienia fundamentu X_1, X_2, X_3 . Osie $x_{i2}, x_{i3}(i = 1, 2)$ są równoległe do głównych centralnych osi bezwładności przekroju poprzecznego wału. Zakłada się, że wymuszenia zewnętrzne f_{α}^{w} i reakcje łożysk $f_{i\alpha}(\alpha = 2, 3, 5, 6)$ są siłami skupionymi, których wektory przechodzą przez oś obrotu w przekroju $x_{11} = l_1$ i w połowie długości łożysk. Okresowe wymuszenia przedstawiono w postaci:

(2.1)
$$f_{\alpha}^{w} = \sum_{\nu} (f_{\alpha}^{w_{1}(\nu)} \cos \nu \omega t + f_{\alpha}^{w_{2}(\nu)} \sin \nu \omega t) = \sum_{\mu} f_{\alpha}^{w_{\mu}(\mu)} \exp(j\mu\omega t), \quad \mu = \dots, -\nu, \dots, -1, 0, 1, \dots, \nu \dots$$

Podobnie wyrazić można przemieszczenia i siły wewnętrzne wału w przekrojach $x_{i_1} = x \in [0, l_i]$:

(2.2)
$$u_{ix\alpha} = \sum_{\mu} u_{ix\alpha}^{(\mu)} \exp(j\mu\omega t),$$

(2.3)
$$p_{ix\alpha} = \sum_{\mu} p_{ix\alpha}^{(\mu)} \exp(j\mu\omega t), \quad i = 1, 2, \quad \alpha = 2, 3, 5, 6.$$

W wyniku podstawienia (2.2) do jednorodnych równań różniczkowych drgań giętnych *i*-tego odcinka wału oraz uwzględnienia relacji między siłami $p_{ix\alpha}$ i przemieszczeniami $u_{ix\alpha}$ uzyskuje się dla uściślonego modelu wału ¹) wyrażenia [2]:

(2.4)
$$u_{ix}^{(\mu)} = C_{ix}^{(\mu)} a_i^{(\mu)},$$

(2.5)
$$p_{ix}^{(\mu)} = A_{ix}^{(\mu)} a_i^{(\mu)},$$

gdzie:

$$u_{ix}^{(\mu)} = \{u_{ix}^{(\mu)}\}, \quad p_{ix}^{(\mu)} = \{p_{ix\alpha}^{(\mu)}\}, \quad \alpha = 2, 3, 5, 6, \\ a_i^{(\mu)} = \{a_{iq}^{(\mu)}\}, \quad q = 3, 4, \dots, 10, \quad i = 1, 2.$$

Macierze $C_{ix}^{(\mu)}$, $A_{ix}^{(\mu)}$ tworzy się z analogicznych macierzy wyznaczonych w [2] przez odrzucenie kolumn: 1-ej, 2-ej, 11-ej, 12-ej oraz wierszy: 1-go i 4-go.

Warunki ciągłości przemieszczeń i równowagi sił w przekroju $x_{11} = l_1$ prowadzą do zależności [2]:

(2.6)
$$a_2^{(\mu)} = B_1^{(\mu)} a_1^{(\mu)} + F_1^{(\mu)} f^{w(\mu)}.$$

Macierze $B_1^{(\mu)}$, $F_1^{(\mu)}$ tworzy się z macierzy $B_i^{(\mu)}$, $F_i^{(\mu)}$ określonych w [2], natomiast $f^{w(\mu)}$ jest macierzą kolumnową amplitud μ -tych składowych wymuszeń zewnętrznych:

$$f^{w(\mu)} = \{f^{w(\mu)}_{\alpha}\}, \quad \alpha = 2, 3, 5, 6$$

Zgodnie z przyjętą w [1] konwencją znaków, warunki brzegowe analizowanego wału mają postać:

$$(2.7) p_{102} = -f_{12}, p_{103} = -f_{13}, p_{105} = f_{15}, p_{106} = f_{16},$$

$$(2.8) p_{212} = f_{22}, p_{213} = f_{23}, p_{215} = -f_{25}, p_{216} = -f_{26}.$$

¹⁾ Z uwzględnieniem wpływu tłumienia wewnętrznego, momentów sił bezwładności obrotu, odkształceń postaciowych od sił poprzecznych i stałej siły poosiowej $f_0^{w(0)}$

Z uwzględnieniem (2.3), (2.5) i (2.6) warunki (2.7) i (2.8) prowadzą do zależności:

$$\bar{B}^{(\mu)}a_1^{(\mu)} + \tilde{B}^{(\mu)}f^{w(\mu)} = f^{(\mu)},$$

w której oznaczono:

(2.9)

$$\begin{split} \widehat{B}^{(\mu)} &= \begin{bmatrix} A^{(\mu)} \\ B^{(\mu)}B^{(\mu)}_1 \end{bmatrix}_{\mathbf{g}}, \quad \overline{B}^{(\mu)} &= \begin{bmatrix} 0 \\ B^{(\mu)}F^{(\mu)}_1 \end{bmatrix}_{\mathbf{g}\times \mathbf{4}}, \\ f^{(\mu)} &= \{f^{(\mu)}_1, f^{(\mu)}_2\}, \quad f^{(\mu)}_i = \{f^{(\mu)}_{i2}, f^{\mu}_{i3}, f^{(\mu)}_{i5}, f^{(\mu)}_{i6}\}, \quad i = 1, 2. \end{split}$$

Macierz $A^{(\mu)}$ powstaje z macierzy $A^{(\mu)}_{1x_1}$ przez podstawienie x = 0 oraz pomnożenie pierwszego i drugiego wiersza przez (-1); macierz $B^{(\mu)}$ powstaje z macierzy $A^{(\mu)}_{2x}$ przez podstawienie $x = l_2$ oraz pomnożenie trzeciego i czwartego wiersza przez (-1).

Amplitudy μ -tych składowych przemieszczeń wału w miejscach podpór łożyskowych zapisać można w postaci macierzy kolumnowej

$$u^{(\mu)} = \{u_{10}^{(\mu)}, u_{2l}^{(\mu)}\},\$$

która zgodnie z (2.4) i (2.6) wyraża się zależnością:

(2.10)
$$u^{(\mu)} = \overline{C}^{(\mu)} a_1^{(\mu)} + \widetilde{C}^{(\mu)} f^{\forall (\mu)},$$
$$\overline{C}^{(\mu)} = \begin{bmatrix} C_{10}^{(\mu)} \\ C_{2l}^{(\mu)} B_1^{(\mu)} \end{bmatrix}_8, \quad \widetilde{C}^{(\mu)} = \begin{bmatrix} 0 \\ C_{2l}^{(\mu)} F_1^{(\mu)} \end{bmatrix}_8 \times$$

Ogólna zależność pomiędzy amplitudami składowych reakcji i przemieszczeń wału w miejscach podpór łożyskowych jest następująca [1]:

$$\mathbf{\hat{u}}^{(r)} = -\mathbf{U}^{(r)}R^{(r)}\mathbf{f}^{(r)},$$

przy czym r jest liczbą uwzględnianych harmonicznych, a $\mathbf{u}^{(r)}$ i $\mathbf{f}^{(r)}$ oznaczają macierze kolumnowe:

$$\mathbf{u}^{(r)} = \{ u^{(-r)} u^{(-r+1)}, \dots u^{(0)}, u^{(r-1)}, u^{(r)} \},$$

$$\mathbf{f}^{(r)} = \{ f^{(-r)}, f^{(-r+1)}, \dots, f^{(0)}, \dots, f^{(r-1)}, f^{(r)} \}.$$

Dla analizowanego układu macierze $U^{(r)}$ i $\mathbb{R}^{(r)}$ mają przy pominięciu składników dotyczących drgań podłużnych i skrętnych postać:

5*

$$\begin{split} \hat{\Pi}_{1} &= \ \hat{\Pi}_{2} = \frac{1}{2} \begin{bmatrix} 1 & j & 0 & 0 \\ -j & 1 & 0 & 0 \\ 0 & 0 & 1 & j \\ 0 & 0 & -j & 1 \end{bmatrix}, \quad \check{\Pi}_{1} = \check{\Pi}_{2} = \frac{1}{2} \begin{bmatrix} 1 & -j & 0 & 0 \\ j & 1 & 0 & 0 \\ 0 & 0 & 1 & -j \\ 0 & 0 & j & 1 \end{bmatrix}, \\ \tilde{D}^{(\mu)} &= \begin{bmatrix} \tilde{D}^{(\mu)}_{ij} \end{bmatrix}, \quad i, j = 1, 2, \quad \mu = -r, -r+1, \dots, 0, \dots, r-1, r, \\ \tilde{D}^{(\mu)}_{il} &= \begin{bmatrix} \tilde{d}^{(\mu)}_{il22} & \tilde{d}^{(\mu)}_{il23} & \tilde{d}^{(\mu)}_{il25} & \tilde{d}^{(\mu)}_{il36} \\ \tilde{d}^{(\mu)}_{il22} & \tilde{d}^{(\mu)}_{il33} & \tilde{d}^{(\mu)}_{il35} & \tilde{d}^{(\mu)}_{il36} \\ \tilde{d}^{(\mu)}_{il622} & \tilde{d}^{(\mu)}_{il33} & \tilde{d}^{(\mu)}_{il35} & \tilde{d}^{(\mu)}_{il36} \\ \tilde{d}^{(\mu)}_{il622} & \tilde{d}^{(\mu)}_{il33} & \tilde{d}^{(\mu)}_{il35} & \tilde{d}^{(\mu)}_{il36} \\ \tilde{d}^{(\mu)}_{il622} & \tilde{d}^{(\mu)}_{il33} & \tilde{d}^{(\mu)}_{il35} & \tilde{d}^{(\mu)}_{il36} \\ \tilde{d}^{(\mu)}_{il52} & \tilde{d}^{(\mu)}_{il53} & \tilde{d}^{(\mu)}_{il56} \\ \tilde{d}^{(\mu)}_{il52} & \tilde{d}^{(\mu)}_{il53} & \tilde{d}^{(\mu)}_{il56} \\ \tilde{d}^{(\mu)}_{il52} & \tilde{d}^{(\mu)}_{il53} & \tilde{d}^{(\mu)}_{il56} \\ \tilde{d}^{(\mu)}_{il52} & \tilde{d}^{(\mu)}_{il56} & \tilde{d}^{(\mu)}_{il56} \end{bmatrix}. \end{split}$$

W odróżnieniu od $d_{ij\alpha\beta}^{(\mu)}(i \neq j)$ współczynniki podatności dynamicznej $d_{ij\alpha\beta}^{(\mu)}$ uwzględniają wpływ filmu olejowego w łożyskach [1], [2].

Zależności (2.9) i (2.10) można dla wszystkich rozpatrywanych harmonicznych napisać w postaci:

(2.12)
$$\overline{\mathbf{B}}^{(r)} \mathbf{a}_{1}^{(r)} + \widetilde{\mathbf{B}}^{(r)} \mathbf{f}^{w(r)} = \mathbf{f}^{(r)},$$
$$\mathbf{u}^{(r)} = \overline{\mathbf{C}}^{(r)} \mathbf{a}_{1}^{(r)} + \widetilde{\mathbf{C}}^{(r)} \mathbf{f}^{w(r)},$$

gdzie:

$$\mathbf{a}_{1}^{(r)} = \{a^{(-r)}, a_{1}^{(-r+1)}, \dots, a_{1}^{(0)}, \dots, a^{(r-1)}, a_{1}^{(r)}\}, \\ \mathbf{f}^{w(r)} = \{f^{w(-r)}, f^{w(-r+1)}, \dots, \overline{f}^{w(0)}, \dots, \overline{f}^{w(r-1)}, \overline{f}^{w(r)}\}, \\ \overline{\mathbf{B}}^{(r)} = \begin{bmatrix} \overline{B}^{(-r)}, \overline{B}^{(-r+1)}, \dots, \overline{B}^{(0)}, \dots, \overline{B}^{(r-1)}, \overline{B}^{(r)} \end{bmatrix}_{\mathbf{B}(2r+1)} \\ \tilde{\mathbf{B}}^{(r)} = \begin{bmatrix} \tilde{B}^{(-r)} & 0 \\ \tilde{B}^{(-r+1)} & 0 \\ \vdots & \vdots \\ \tilde{B}^{(r)} \end{bmatrix}_{\mathbf{B}(2r+1)\times r^{4}(2r+1)} \\ \overline{\mathbf{C}}^{(r)} = \begin{bmatrix} \overline{C}^{(-r)}, \overline{C}^{(-r+1)}, \dots, \overline{C}^{(0)}, \dots, \overline{C}^{(r-1)}, \overline{C}^{(r)} \end{bmatrix}_{\mathbf{B}(2r+1)\times r^{4}(2r+1)} \\ \vdots \\ \tilde{\mathbf{C}}^{(r)} = \begin{bmatrix} \tilde{C}^{(-r)} & 0 \\ \tilde{C}^{(-r+1)} & 0 \\ \vdots \\ \tilde{C}^{(r)} \end{bmatrix}_{\mathbf{B}(2r+1)\times 4(2r+1)} \\ \end{bmatrix}$$

416

Z równań (2.11) i (2.12) wyznaczyć można nieznane macierze kolumnowe:

(2.13)
$$\mathbf{a}_{1}^{(r)} = -(\overline{\mathbf{C}}^{(r)})^{-1} \{ \widetilde{\mathbf{C}}^{(r)} + \mathbf{U}^{(r)} R^{(r)} [E + \overline{\mathbf{B}}^{(r)} (\overline{\mathbf{C}}^{(r)})^{-1} \mathbf{U}^{(r)} R^{(r)}]^{-1} [\widetilde{\mathbf{B}}^{(r)} - \overline{\mathbf{B}}^{(r)} (\overline{\mathbf{C}}^{(r)})^{-1} \overline{\mathbf{C}}^{(r)}] \} \mathbf{f}^{w(r)}.$$

(2.14)
$$\mathbf{f}^{(r)} = [E + \overline{\mathbf{B}}^{(r)} (\overline{\mathbf{C}}^{(r)})^{-1} \mathbf{U}^{(r)} R^{(r)}]^{-1} [\widetilde{\mathbf{B}}^{(r)} - \overline{\mathbf{B}}^{(r)} (\overline{\mathbf{C}}^{(r)})^{-1} \widetilde{\mathbf{C}}^{(r)}] \mathbf{f}^{w(r)},$$

(2.15)
$$\mathbf{u}^{(r)} = -\mathbf{U}^{(r)}R^{(r)}[E + \overline{\mathbf{B}}^{(r)}(\overline{\mathbf{C}}^{(r)})^{-1}\mathbf{U}^{(r)}R^{(r)}]^{-1}[\widetilde{\mathbf{B}}^{(r)} - \overline{\mathbf{B}}^{(r)}(\overline{\mathbf{C}}^{(r)})^{-1}\widetilde{\mathbf{C}}^{(r)}]\mathbf{f}^{w(r)},$$

przy czym E jest macierzą jednostkową. Przemieszczenia oraz siły wewnętrzne w przekroju x pierwszego odcinka wału określone sa zgodnie z (2.1) do (2.5) zależnościami:

(2.16)
$$u_{1x} = C_{1x}^{(0)} a_{1}^{(0)} + \sum_{\nu=1}^{r} \left[(C_{1x}^{(\nu)} a_{1}^{(\nu)} + C_{1x}^{(-\nu)} a_{1}^{(-\nu)}) \cos \nu \omega t + j (C_{1x}^{(\nu)} a_{1}^{(\nu)} - C_{1x}^{(-\nu)} a_{1}^{(-\nu)}) \sin \nu \omega t \right],$$
$$p_{1x} = A_{1x}^{(0)} a_{1}^{(0)} + \sum_{\nu=1}^{r} \left[(A_{1x}^{(\nu)} a_{1}^{(\nu)} + A_{1x}^{(-\nu)} a_{1}^{(-\nu)}) \cos \nu \omega t + j (A_{1x}^{(\nu)} a_{1}^{(\nu)} - A_{1x}^{(-\nu)} a_{1}^{(-\nu)}) \sin \nu \omega t \right].$$

Wielkości te oraz wymuszenia (2.1) odnoszą się do lokalnych układów współrzędnych, wirujących wraz z wałem. Podobnie wyznacza się przemieszczenia oraz siły wewnętrzne w drugim odcinku, wyliczając uprzednio z zależności (2.6) macierze kolumnowe $a_2^{(\mu)}$ dla $\mu = -r, -r+1, ..., 0, ..., r-1, r.$

3. Przyklad obliczeniowy

Do obliczeń przyjęto uproszczony model wału, pomijając wpływ tłumienia wewnętrznego, momentów sił bezwładności obrotu, odkształceń postaciowych od sił poprzecznych i stałej siły poosiowej. Konsekwencją tego uproszczenia jest mniej złożona postać elementów macierzy $C_{ix}^{(\mu)}$, $A_{ix}^{(\mu)}$, $\overline{B}^{(\mu)}$, $\overline{C}^{(\mu)}$ i $\widetilde{C}^{(\mu)}$. W szczególności pominięcie tłumienia wewnętrznego wału prowadzi do identycznej postaci w/w macierzy dla $\mu = -\nu$ i $\mu = \nu$ $(\nu = 1, 2, ..., r)^{2}$. Zależności (2.4), (2.5), (2.6), (2.9) i (2.10) przyjmują postać [1]:

(3.1)

$$u_{ix}^{(\mu)} = C_{ix}^{(\nu)} a_{i}^{(\mu)}, \quad \nu = |\mu|,$$

$$p_{ix}^{(\mu)} = A_{ix}^{(\nu)} a_{i}^{(\mu)},$$

$$a_{2}^{(\mu)} = B_{1}^{(\nu)} a_{1}^{(\mu)} + F_{1}^{(\nu)} f^{w(\mu)},$$

$$\overline{B}^{(\nu)} a_{1}^{(\mu)} + \widetilde{B}^{(\nu)} f^{w(\mu)} = f^{(\mu)},$$

$$u^{(\mu)} = \overline{C}^{(\nu)} a_{1}^{(\mu)} + \widetilde{C}^{(\nu)} f^{w(\mu)}.$$

²⁾ Przy uwzględnieniu tłumienia w konstrukcji podpierającej wał (linię wałów) macierze podatności łożysk dynamicznej $\tilde{D}^{(-\nu)}$ i $\tilde{D}^{(\nu)}$ są zespolone sprzężone. Przy pominięciu tłumienia w filmie olejowym łożysk, podporach łożyskowych i w fundamencie macierze te stają się rzeczywiste i jednakowe. Założenie o idealnie sprężystym podparciu linii wałów prowadzi do identycznej postaci macierzy $\tilde{D}^{(\mu)}$ dla wszystkich μ .

Występujące tu macierze określono poniżej:

Do obliczeń przyjęto, że oba odcinki obliczeniowe są identyczne:

$$l_1 = l_2 = l, \quad (\lambda_2)_1 = (\lambda_2)_2 = \lambda_2, \quad (\lambda_3)_1 = (\lambda_3)_2 = \lambda_3, \quad A_{1x}^{(\nu)} = A_{2x}^{(\nu)} = A_{x}^{(\nu)},$$
$$C_{1x}^{(\nu)} = C_{2x}^{(\nu)} = C_{x}^{(\nu)}.$$

Macierze $B_1^{(v)}$ oraz $F_1^{(v)}$ przyjmują wówczas postać:

$$B_{1}^{(0)} = \begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3l & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 3l^{2} & 2l & 1 & 0 & 0 & 0 & 0 & 0 \\ l^{3} & l^{2} & l & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 3l^{2} & 2l & 1 & 0 \\ 0 & 0 & 0 & 0 & l^{3} & l^{2} & l & 1 \end{bmatrix},$$

$$B_{1}^{(\nu)} = \begin{bmatrix} \cos \lambda_{2} l & \sin \lambda_{2} l & 0 & 0 & 0 & 0 & 0 & 0 \\ -\sin \lambda_{2} l & \cos \lambda_{2} l & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & \operatorname{ch} \lambda_{2} l & \operatorname{sh} \lambda_{2} l & 0 & 0 & 0 & 0 \\ 0 & 0 & \operatorname{sh} \lambda_{2} l & \operatorname{ch} \lambda_{2} l & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & \cos \lambda_{3} l & \sin \lambda_{3} l & 0 & 0 \\ 0 & 0 & 0 & 0 & -\sin \lambda_{3} l & \cos \lambda_{3} l & \sin \lambda_{3} l & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & \operatorname{ch} \lambda_{3} l & \operatorname{sh} \lambda_{3} l \\ 0 & 0 & 0 & 0 & 0 & 0 & \operatorname{sh} \lambda_{3} l & \operatorname{ch} \lambda_{3} l \end{bmatrix},$$

$$F_{1}^{(0)} = \begin{bmatrix} 1/6EI_{2} & 0 & 0 & 0\\ 0 & 0 & 0 & -1/2EI_{2}\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0\\ 0 & 1/6EI_{3} & 0 & 0\\ 0 & 0 & 1/2EI_{3} & 0\\ 0 & 0 & 0 & 0\\ 0 & 0 & 0 & 0 \end{bmatrix},$$

$$F_{1}^{(\nu)} = \begin{bmatrix} 0 & 0 & 0 & 1/2EI_2\lambda_2^2 \\ -1/2EI_2\lambda_2^3 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1/2EI_2\lambda_2^2 \\ 1/2EI_2\lambda_2^3 & 0 & 0 & 0 \\ 0 & 0 & -1/2EI_3\lambda_3^2 & 0 \\ 0 & 0 & 1/2EI_3\lambda_3^2 & 0 \\ 0 & 0 & 1/2EI_3\lambda_3^2 & 0 \\ 0 & 1/2EI_3\lambda_3^3 & 0 & 0 \end{bmatrix}.$$

Zależności (2.13) do (2.15) zachowują swą postać, przy czym macierze $\mathbf{\overline{B}}^{(r)}$, $\mathbf{\overline{C}}^{(r)}$, $\mathbf{\overline{C}}^{(r)}$ i $\mathbf{\overline{C}^{(r)}$ i $\mathbf{\overline{C}}^{(r)}$ i $\mathbf{\overline{C}^{(r)}$ i $\mathbf{\overline{C}}^{(r)}$ i $\mathbf{\overline{C}^{(r)}$ i $\mathbf{\overline{C}^{(r)}$ i \mathbf

$$\begin{split} \overline{\mathbf{B}}^{(r)} &= \left[\neg \overline{B}^{(r)}, \overline{B}^{(r-1)}, \dots, \overline{B}^{(0)}, \dots, \overline{B}^{(r-1)}, \overline{B}^{(r)} \right], \\ \widetilde{\mathbf{B}}^{(r)} &= \begin{bmatrix} \widetilde{B}^{(r)} & 0 \\ & \widetilde{B}^{(r-1)} \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ &$$

1

4

$$\tilde{C}^{(r)} = \begin{bmatrix} \tilde{C}^{(r)} & & 0 \\ \tilde{C}^{(r-1)} & & 0 \\ & \tilde{C}^{(0)} & & \\ & & \tilde{C}^{(0)} \\ & & & \tilde{C}^{(r-1)} \\ 0 & & & \tilde{C}^{(r)} \end{bmatrix}, \quad \tilde{B}^{(r)} = \begin{bmatrix} 0 \\ B^{(r)} F_1^{(r)} \end{bmatrix}, \quad \bar{C}^{(r)} = \begin{bmatrix} C_0^{(r)} \\ C_1^{(r)} B_1^{(r)} \end{bmatrix}, \quad \tilde{C}^{(r)} = \begin{bmatrix} 0 \\ C_1^{(r)} F_1^{(r)} \end{bmatrix}, \quad v = 0, 1, 2, \dots, r.$$

Macierze $A^{(\nu)}$ i $B^{(\nu)}$ tworzy się z macierzy $A_x^{(\nu)}$ analogicznie jak występujące w (2.9) macierze $A^{(\mu)}$ i $B^{(\mu)}$ z macierzy $A_{1x}^{(\mu)}$ i $A_{2x}^{(\mu)}$.

Do obliczeń przyjęto:

- rząd uwzględnianych harmonicznych r = 2,
- pole przekroju poprzecznego wału $A = 9 \text{ cm}^2$,
- gęstość materiału wału $\rho = 7,85 \cdot 10^{-3} \text{ kg/cm}^3$,
- moduł Younga $E = 2,1 \cdot 10$ N/cm²,
- główne centralne momenty bezwładności przekroju poprzecznego wału $I_2 = 12 \text{ cm}^4$

$$I_3 = \frac{1}{3} 2,25^3 \text{ cm}^4,$$

- długość obliczeniowego odcinka wału l = 100 cm,

— prędkość kątowa wirowania wału $\omega = 75$ rad/s.

Zgodnie z twierdzeniem o wzajemności prac obrano macierze podatności dynamicznej konstrukcji podpierającej w postaci symetrycznej, przy czym pominięto wpływ tłumienia. Dla analizowanego układu przyjęto:

$$\tilde{D}^{(-2)} = \tilde{D}^{(2)} = d_2 \tilde{D}^{(0)}, \quad \tilde{D}^{(-1)} = \tilde{D}^{(1)} = d_1 \tilde{D}^{(0)}, \quad \tilde{D}^{(0)} = k D.$$

Współczynniki d_1 , d_2 i k zmieniano w trakcie obliczeń, ograniczając się do dwóch wariantów macierzy D:

- z uwzględnieniem sprzężeń pomiędzy podporami łożyskowymi poprzez fundament:

$$D = D_{\mathcal{A}} = \begin{bmatrix} D_{11} & D_{12} \\ D_{21} & D_{22} \end{bmatrix},$$
$$D_{11} = D_{22} = \begin{bmatrix} 3 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 0,066 & 0 \\ 0 & 0 & 0 & 0,03 \end{bmatrix}, \quad D_{12} = D_{21} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 0,044 & 0 \\ 0 & 0 & 0 & 0,02 \end{bmatrix},$$

- z pominięciem sprzężeń pomiędzy podporami łożyskowymi poprzez fundament:

$$D = D_B = \begin{bmatrix} D_{11} & 0\\ 0 & D_{22} \end{bmatrix},$$

Z uwagi na symetrię analizowanego układu wyznaczano drgania jedynie pierwszego odcinka z zależności:

$$u_{1x} = w_x^{(0)} + w_x^{(1)} \cos \omega t + v_x^{(1)} \sin \omega t + w_x^{(2)} \cos 2\omega t + v_x^{(2)} \sin 2\omega t,$$

$$w_x^{(0)} = \{w_{x\alpha}^{(0)}\}, \quad w_x^{(\nu)} = \{w_{x\alpha}^{(\nu)}\}, \quad v_x^{(\nu)} = \{v_{x\alpha}^{(\nu)}\}, \quad \nu = 1, 2, \quad \alpha = 2, 3, 5, 6$$

$$w_x^{(0)} = C_x^{(0)} a_1^{(0)}, \quad w_x^{(\nu)} = C_x^{(\nu)} (a_1^{(\nu)} + a_1^{(-\nu)}),$$

$$v_x^{(\nu)} = j C_x^{(\nu)} (a_1^{(\nu)} - a_1^{(-\nu)}).$$

Przykładowe wyniki obliczeń wartości amplitud poszczególnych harmonicznych drgań u_{1x2} i u_{1x3} przedstawiono na rys. 2 do rys. 6. Amplitudy harmonicznych wyznaczano z zależności (3.2), po uprzednim wyliczeniu wartości elementów macierzy kolumnowej $a_1^{(2)}$ zgodnie z (2.13). W wyniku obliczeń stwierdzono, że niezerowe macierze kolumnowe $a_1^{(r)}$ i $a_1^{(-r)}$ są zespolone sprzężone, a macierz kolumnowa $a_1^{(0)}$ jest rzeczywista.

Dla przypadku istnienia sprzężeń pomiędzy podporami łożyskowymi poprzez fundament wykonano obliczenia przy wymuszeniach momentem gnącym $f_5^{\nu} = 10^3 \cos 150t$ [Ncm] (rys. 2) oraz siłą poprzeczną $f_2^{\nu} = 10^3 \cos 150t$ [N] (rys. 3). Jak wynika z rys. 2 i 3, drgania

Rys. 2. Amplitudy drgań wału w przypadku sprzężeń pomiędzy podporami łożyskowymi poprzez fundament przy $f_5^w = 10^3 \cos 150t$ [Ncm], $k = 10^{-5}$, $d_1 = 0.25$, $d_2 = 0.15$, $D = D_A$, $v_{x^2}^{(2)}$, $w_{x^3}^{(3)}$, $w_{x^2}^{(2)}$ — amplitudy według zależności (3.2); $\overline{w}_{x^{(2)}}^{(2)}$ — amplituda drgań giętnych pierwszego odcinka wału w płaszczyźnie utworzonej przez osie x_{11} , x_{13} w przypadku sztywnego zamocowania końców wału.

Rys. 3. Amplitudy drgań wału w przypadku sprzężeń pomiędzy podporami łożyskowymi poprzez fundament przy $f_2^w = 10^3 \cos 150t$ [N], k = $= 10^{-4}$, $d_1 = 0.25$, $d_2 = 0.15$, $D = D_A$. $w_{x2}^{(2)}$ $w_{x2}^{(2)}$, $v_{x3}^{(2)}$ amplitudy według zależności (3.2); $\overline{w_{x2}^{(2)}}$ - amplituda drgań giętnych pierwszego odcinka wału w płaszczyźnie utworzonej przez osie x_{11}, x_{12} w przypadku sztywnego zamocowania końców wału.

giętne występują nie tylko w płaszczyznach działania wymuszeń, lecz także w płaszczyznach do nich prostopadłych (pomimo założonego braku sprzężeń równań różniczkowych, opisujących drgania giętne w płaszczyznach x_{11} , x_{12} oraz x_{11} , x_{13}). Przy pominięciu tłumienia w układzie harmoniczne składowe drgań wału o częstości równej częstości wymuszeń są w płaszczyźnie działania wymuszenia zgodne w fazie z wymuszeniem, a w płaszczyźnie prostopadłej do płaszczyzny działania wymuszenia — przesunięte w fazie o $\pi/2$. W płasz-

czyznach działania wymuszeń pojawiają się ponadto stałe składowe przemieszczeń wału $(w_{x3}^{(0)} i \ w_{x2}^{(0)})$. Występujące przy tym siły odśrodkowe są zaniedbywalne (w analizowanych przypadkach przyspieszenia odśrodkowe nie przekraczają 10% przyspieszenia ziemskiego). Przyjęte wymuszenia nie wywołują drgań giętnych o częstości $\omega = 75$ rad/s ($a_1^{(1)} = a_1^{(-1)} = 0$).

Przy założeniu braku podatności filmu olejowego w łożyskach, podpór łożyskowych i fundamentu (D = 0) drgania giętne występują jedynie w płaszczyznach działania wymuszeń, a ich częstości są równe częstościom wymuszeń. Amplitudy drgań przy D = 0 przedstawiono na rys. 2 i 3 liniami kreskowymi.

W celu zilustrowania wpływu pominięcia sprzężeń pomiędzy podporami na drgania wału zastąpiono przy niezmienionych wymuszeniach macierz D_A macierzą blokowo diagonalną D_B . Wyniki obliczeń przedstawiono na rys. 4 i 5.

Rys. 4. Amplitudy drgań wału w przypadku braku sprzężeń pomiędzy podporami łożyskowymi poprzez fundament przy $f_5^{w} = 10^3 \cos 150t$ [Ncm], $k = 10^{-5}, d_1 = 0.25, d_2 = 0.15, D = D_B.$

Rys. 5. Amplitudy drgań wału w przypadku braku sprzężeń pomiędzy podporami łożyskowymi poprzez fundament przy $f_2^w = 10^3 \cos 150t$ [N], $k = 10^{-4}$, $d_1 = 0.25$, $d_2 = 0.15$, $D = D_B$.

Transformacja harmonicznych wielkości z ruchomego układu współrzędnych do nieruchomego układu współrzędnych odniesienia fundamentu (i odwrotnie) zmienia przy częstości wirowania wału ω częstości tych harmonicznych o $\pm \omega$. Macierze podatności dynamicznej fundamentu $\tilde{D}^{(0)}$, $\tilde{D}^{(-2)}$ i $\tilde{D}^{(2)}$ nie wpływają zatem na powyższe obliczenia (dotyczące wymuszeń z częstością 2ω) i mogły być zastąpione blokami zerowymi. Przy wymuszeniach zawierających harmoniczne nieparzystych rzędów obliczenia wymagają znajomości macierzy $\tilde{D}^{(0)}$ i $\tilde{D}^{(\mu)}$ dla parzystych wartości μ .

W kolejnym wariancie obliczeniowym przyjęto wymuszenie siłą poprzeczną $f_2^w = 10^3 \cos \omega t$ [N] (rys. 6). Rząd uwzględnianych harmonicznych w przykładowych obliczeniach wynosi r = 2 i w tym przypadku wymuszenia przyjęto: $k = 10^{-4}$, $d_2 = 0,25$, $D = D_A$. W celu zilustrowania wpływu ograniczenia analizy do harmonicznych rzędu r = 1wykonano również obliczenia przy $d_2 = 0$ i niezmienionych pozostałych parametrach.

Rys. 6. Amplitudy drgań wału w przypadku pominięcia harmonicznych rzędu wyższego od $r = 2(d_2 = 0,25)$ i w przypadku pominięcia harmonicznych rzędu wyższego od r = 1 ($d_2 = 0$) przy $f_2^{w} = 10^3 \cos 75t$ [N], $k = 10^{-4}$, $D = D_A$.

Z rys. 6 wynika, że pominięcie wpływu wyższych harmonicznych może być przyczyną błędnego wyznaczenia punktów węzłowych i zaniżenia wartości amplitudy analizowanej harmonicznej drgań.

4. Uwagi końcowe

Przedstawiony powyżej sposób rozwiązania może być również stosowany, gdy drgania asymetrycznego wału opisują się sprzężonymi równaniami różniczkowymi. Przykładowo, gdy wał posiada jedną płaszczyznę symetrii, drgania giętne w płaszczyźnie prostopadłej do płaszczyzny symetrii i drgania skrętne opisują się dwoma sprzężonymi równaniami różniczkowymi cząstkowymi czwartego rzędu [3]. Prowadzi to m.in. do odpowiedniego zwiększenia wymiarów macierzy w zaleźnościach obliczeniowych.

W szeregu przypadkach wymiary macierzy mogą być zmniejszone. Niech punktem wyjścia do rozpatrzenia tego problemu będzie linia wałów z asymetrycznymi odcinkami wykonującymi drgania giętne, skrętne i podłużne opisane niesprzężonymi równaniami

różniczkowymi cząstkowymi, podparta konstrukcją charakteryzującą się macierzami podatności dynamicznej $\tilde{D}^{(\mu)}(\mu = -r, -r+1, ..., 0, ..., r)$ z elementami sprzęgającymi w/w drgania. Macierze $\tilde{D}^{(\mu)}$ są wówczas stopnia 6n(n - liczba łożysk), a macierze kwadratowe w zależności analogicznej do (2.11)

(4.1)
$$\mathbf{u}^{(r)} = -\mathbf{U}^{(r)} \mathbf{R}^{(r)} \mathbf{f}$$

są stopnia 6n(2r+1) [1].

W przypadku gdy sprzężenia pomiędzy podporami łożyskowymi poprzez fundament są zaniedbywalnie małe, macierze podatności dynamicznej stają się blokowo diagonalne:

(4.2)
$$D^{(\mu)} = \begin{bmatrix} D_{ii}^{(\mu)} \\ \vdots \end{bmatrix}_{6n}^{6n}, \quad D_{ij}^{(\mu)} = 0 \quad (i \neq j), \quad i, j = 1, 2, ..., n$$

i zależność (4.1) może być zastąpiona *n* zależnościami:

(4.3)
$$\mathbf{u}_{i}^{(r)} = -\mathbf{U}_{i}^{(r)} R_{i}^{(r)} \mathbf{f}_{i}^{(r)}$$

lub z uwzględnieniem ortogonalności macierzy kosinusów kierunkowych między osiami nieruchomego układu i ruchomych układów współrzędnych

(4.4)
$$\mathbf{f}_{i}^{(r)} = -\mathbf{U}_{i}^{(r)}\mathbf{R}_{i}^{(r)}\mathbf{u}_{i}^{(r)}.$$

Macierze tu występujące mają postać [1]:

424

WYMUSZONE DRGANIA GIĘTNE WAŁU

$$\begin{split} \tilde{\Pi}_{i} &= \left[-\tilde{\Pi}_{i}^{\prime}, \tilde{\Pi}_{i}^{\prime} \right], \quad \check{\Pi}_{i} &= \left[-\check{\Pi}_{i}^{\prime}, \check{\Pi}_{i}^{\prime} \right], \quad \hat{\Pi}_{i} &= \left[-\hat{\Pi}_{i}^{\prime}, \hat{\Pi}_{i}^{\prime} \right], \\ \tilde{\Pi}_{i}^{\prime} &= \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}, \quad \check{\Pi}_{i}^{\prime} &= \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & -j \\ 0 & j & 1 \end{bmatrix} \exp(-j\delta_{i}), \\ \hat{\Pi}_{i}^{\prime} &= \frac{1}{2} \begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & j \\ 0 & -j & 1 \end{bmatrix} \exp(j\delta_{i}). \end{split}$$

Wielkość δ_i jest kątem obrotu lokalnego ruchomego układu współrzędnych, w którym opisywane są drgania wału u_i w miejscu *i*-tego łożyska, mierzonym względem układu X_1, X_2, X_3 w kierunku wirowania wału w chwili $t_0 = 2 k \pi / \omega, k = 0, 1, 2, ...$ Jeśli w przekroju łączącym odcinki *i*-ty oraz (i+1)-y działają siły $f_i = \{f_{i\alpha}\}$ i osie lokal-

nych układów współrzędnych tych odcinków są do siebie odpowiednio równoległe, to współczynniki rozwiązań dla tych odcinków związane są relacją [2]:

(4.5)
$$a_{i+1}^{(\mu)} = B_i^{(\mu)} a_i^{(\mu)} + F_i^{(\mu)} f_i^{(\mu)}$$

a amplitudy μ -tych składowych przemieszczeń wału w miejscu *i*-tego łożyska wyrażają się zależnością [2]:

(4.6)
$$u_i^{(\mu)} = C_{il}^{(\mu)} a_i^{(\mu)}$$

(4.7)
$$\mathbf{a}_{i+1}^{(r)} = \mathbf{P}_i^{(r)} \mathbf{a}_i^{(r)},$$

gdzie $P_i^{(r)}$ może być traktowana jako macierz przejścia, wiążąca współczynniki rozwiązań poszukiwanych harmonicznych dla dwóch odcinków sąsiadujących z podatnym łożyskiem w przypadku braku sprzężeń pomiędzy podporami łożyskowymi poprzez fundament:

(4.8)
$$\mathbf{P}_{i}^{(r)} = \mathbf{B}_{i}^{(r)} - \mathbf{F}_{i}^{(r)} \mathbf{U}_{i}^{(r)} \mathbf{U}_{i}^{(r)} \mathbf{C}_{il}^{(r)}.$$

Poszczególne macierze mają postać:

Na podstawie zależności (4.7) i wyznaczonych w [1] i [2] macierzy przejścia (wiążących współczynniki rozwiązań dla sąsiednich odcinków w przypadku wymuszeń skupionych, mas dyskretnych i skokowych zmian stałych materiałowych) można wyrazić macierze kolumnowe współczynników rozwiązań dla poszczególnych odcinków w funkcji jednej niewiadomej macierzy kolumnowej współczynników rozwiązań dla wybranego *j*-tego odcinka $\mathbf{a}_{j}^{(r)}$, którą można wyznaczyć z warunków brzegowych linii wałów. Zatem w tym przypadku macierze występujące w zależnościach obliczeniowych mają w porównaniu z układem wyjściowym *n*-krotnie zmniejszone wymiary. Jeśli ponadto macierze $\tilde{D}_{ii}^{(\mu)}$ są diagonalne

(4.9)
$$\tilde{D}_{ii}^{(\mu)} = [-\tilde{d}_{ii11}^{(\mu)}, \tilde{d}_{ii22}^{(\mu)}, \dots, \tilde{d}_{ii66}^{(\mu)}], \quad \tilde{D}_{ij}^{(\mu)} = 0 \ (i \neq j)$$

i spełnione są warunki

$$(4.10) \quad \tilde{d}_{i122}^{(\mu)} = \tilde{d}_{i133}^{(\mu)}, \quad \tilde{d}_{i155}^{(\mu)} = \tilde{d}_{i166}^{(\mu)}, \quad i, j = 1, ..., n, \quad \mu = -r, -r+1, ..., r-1, r,$$

to drgania podłużne, skrętne i giętne (w obu płaszczyznach) oraz ich harmoniczne ulegają rozprzęgnięciu i mogą być liczone oddzielnie w oparciu o zależność:

(4.11)
$$f_{i\alpha}^{(\mu)} = -(\tilde{d}_{i\alpha}^{(\mu)})^{-1} u_{i\alpha}^{(\mu)}, \quad \alpha = 1, ..., 6.$$

Przy pominięciu inercyjnych oraz dysypatywnych własności konstrukcji podpierającej, współczynniki podatności nie zależą od częstości i w tym przypadku zależności (4.9) - (4.11) przyjmują postać:

(4.12)
$$\tilde{D}_{ii} = \begin{bmatrix} \tilde{d}_{ii11}, \dots, \tilde{d}_{ii66} \end{bmatrix}, \quad \tilde{D}_{ij} = 0 \ (i \neq j),$$
$$\tilde{d}_{ii22} = \tilde{d}_{ii33}, \quad \tilde{d}_{ii55} = \tilde{d}_{ii66}, \quad i, j = 1, \dots, n,$$
$$f_{l\alpha} = -(\tilde{d}_{ii\alpha\alpha})^{-1} u_{i\alpha} = -\tilde{c}_{ii\alpha\alpha} u_{i\alpha}, \quad \alpha = 1, \dots, 6.$$

Wielkość $\tilde{c}_{ii\alpha\alpha}$ jest współczynnikiem sztywności *i*-tej podpory łożyskowej (łącznie z filmem olejowym) w kierunku α względem nieruchomego układu X_1 , X_2 , X_3 (przy czym zgodnie z poprzednimi oznaczeniami $f_{i\alpha}$ jest siłą reakcji a $u_{i\alpha}$ przemieszczeniem wału w miejscu *i*-tej podpory łożyskowej w kierunku α względem ruchomego układu współrzędnych).

Przyjęcie do obliczeń założenia o braku podatności

(4.13)
$$\tilde{D}^{(\mu)} = 0, \quad \mu = -r, -r+1, ..., r-1, r$$

sprowadza zagadnienie do drgań belek dwustronnie utwierdzonych.

~.....

W przypadku, gdy macierze $\tilde{D}^{(\mu)}$ nie zawierają elementów sprzęgających drgania podłużne i skrętne z drganiami giętnymi, t.j. gdy

$$d_{ij\alpha 1}^{(\mu)} = d_{ij\alpha 4}^{(\mu)} = d_{ij1\beta}^{(\mu)} = d_{ij4\beta}^{(\mu)} = 0, \quad i \neq j,$$

21.00

(4.14)

31.00

500

$$d_{ij\alpha_1}^{\mu} = d_{ij\alpha_4}^{\mu} = d_{ij\beta_3}^{\mu} = d_{ij\beta_4}^{\mu} = 0,$$

$$i, j = 1, ..., n, \quad \alpha, \beta = 2, 3, 5, 6, \quad \mu = -r, -r+1, ..., r-1, r,$$

drgania te mogą być liczone oddzielnie, przy czym wzajemnie sprzężone drgania giętne w obu płaszczyznach mogą być wyznaczane jak powyżej w p. 2 i 3 przy pomocy równań macierzowych o odpowiednio mniejszych wymiarach (w zależności (4.1) wystąpią macierze stopnia 4n(2r+1)). Łatwo stwierdzić na podstawie przykładu obliczeniowego i zależności (2.11), że w tym przypadku istnieje dalsza możliwość zmniejszenia wymiarów macierzy, gdyż w ruchomych układach współrzędnych amplitudy harmonicznych parzystych rzędów nie są sprzężone z amplitudami harmonicznych rzędów nieparzystych. Można zatem (2.11) rozdzielić na dwie zależności:

(4.15)
$$\mathbf{u}^{(r1)} = -\mathbf{U}^{(r1)} \mathbf{R}^{(r1)} \mathbf{f}^{(r1)},$$
$$\mathbf{u}^{(r2)} = -\mathbf{U}^{(r2)} \mathbf{R}^{(r2)} \mathbf{f}^{(r2)}.$$

w których oznaczono:

Jeśli wymuszenia działające na układ nie zawierają składowych stałych i harmonicznych parzystych rzędów, to wystarczy ograniczyć się do analizy drgań o nieparzystych rzędach harmonicznych (i odwrotnie), korzystając z jednej z zależności (4.15). Jak ukazano w p. 3, do analizy drgań przy wymuszeniach stałych oraz przy wymuszeniach zawierających har-

moniczne parzystych rzędów (w ruchomych układach wspólrzędnych) wystarcza znajomość macierzy $\tilde{D}^{(\mu)}$ dla nieparzystych wartości μ (i odwrotnie).

Na wymiary macierzy w zależnościach obliczeniowych wpływa również liczba uwzględnianych harmonicznych r. Liczba ta zależy od najwyższego rzędu uwzględnianej harmonicznej wymuszeń, od wartości amplitud harmonicznych wymuszeń, od intensywności tłumienia w układzie oraz od pożądanej dokładności obliczeń. Jeśli najwyższa uwzględniana harmoniczna wymuszeń jest rzędu k, to wyznaczenie liczby $r = r_m$ wymaga wykonania obliczeń drgań dla jednego z odcinków linii wałów w oparciu o zależności (2.13) i (2.16) kolejno przy $r_1 = k$, $r_2 = k+2$, $r_3 = k+4$ itd., aż różnice pomiędzy wartościami amplitud r_m harmonicznych przy obliczeniach z liczbą $r = r_m$ i wartościami amplitud tych samych harmonicznych przy obliczeniach z liczbą $r = r_{m+1}$ (a także wartości amplitud harmonicznych rzędów wyższych od r_m) staną się mniejsze od przyjętych dopuszczalnych wartości. Odcinek linii wałów wybrany do tych obliczeń winien charakteryzować się możliwie najmniejszym tłumieniem fal giętnych w pętli: odcinek — podpora łożyskowa — fundament — podpora łożyskowa — odcinek (np. o najmniejszej odległości pomiędzy podporami) lub najwyższą wartością amplitud działających nań wymuszeń.

Dla uzyskania należytej dokładności obliczeń celowe jest (zwłaszcza przy długich liniach wałów) prowadzić obliczenia z możliwie dużą liczbą cyfr znaczących oraz właściwie wybrać macierz kolumnową $a_j^{(r)}$, w funkcji której wyraża się pozostałe macierze kolumnowe współczynników rozwiązań. W przypadku, gdy linia wałów składa się z N obliczeniowych odcinków o jednakowych stałych materiałowych i nie występują masy dyskretne, macierz kolumnowa współczynników rozwiązań dla μ -tej składowej drgań ostatniego odcinka wału wyraża się w funkcji macierzy kolumnowej współczynników rozwiązań dla pierwszego odcinka wału zależnością [1]:

$$(4.16) a_N^{(\mu)} = B_{N-1,1}^{(\mu)} a_1^{(\mu)} + B_{N-1,2}^{(\mu)} F_1^{(\mu)} + B_{N-1,3}^{(\mu)} F_1^{(\mu)} f_2^{(\mu)} + \dots + F_1^{(\mu)} f_{N-1}^{(\mu)}.$$

Wielkości $f_i^{(\mu)}$ mogą tu reprezentować zarówno reakcje łożysk, jak i skupione wymuszenia zewnętrzne. Macierze $B_{N-1}^{(\mu)}$, tworzy się z diagonalnych macierzy przejścia $B_{N-1,i}^{(\mu)}$ [2] przez zsumowanie długości kolejnych odcinków o numerach od i do (N-1) w wykładnikach funkcji eksponencjalnych, występujących w tych macierzach. Amplituda μ -tej składowej drgań giętnych na końcu ostatniego odcinka linii wałów w płaszczyźnie utworzonej przez osie x_{N1} , x_{N2} lokalnego układu współrzędnych tego odcinka wynosi [2]:

(4.17)
$$u_{Nl_{2}}^{(\mu)} = a_{N_{3}}^{(\mu)} \exp[(\lambda_{21}^{(\mu)} + j\lambda_{22}^{(\mu)})l_{N}] + a_{N_{4}}^{(\mu)} \exp[-(\lambda_{21}^{(\mu)} + j\lambda_{22}^{(\mu)})l_{N}] + a_{N_{5}}^{(\mu)} \exp[(\lambda_{23}^{(\mu)} - j\lambda_{24}^{(\mu)})l_{N}] + a_{N_{5}}^{(\mu)} \exp[-(\lambda_{23}^{(\mu)} - j\lambda_{24}^{(\mu)})l_{N}],$$

przy czym l_N oznacza długość ostatniego odcinka obliczeniowego linii wałów. Z uwzględnieniem postaci macierzy $B_i^{(\mu)}$ i $F_i^{(\mu)}$ (określonych zależnościami (2.23) i (2.24) w pracy [2]) otrzymuje się na podstawie (4.16) i (4.17):

(4.18)
$$u_{NI2}^{(\mu)} = a_{13}^{(\mu)} \exp[(\lambda_{21}^{(\mu)} + j\lambda_{22}^{(\mu)})L] + a_{14}^{(\mu)} \exp[-(\lambda_{21}^{(\mu)} + j\lambda_{22}^{(\mu)})L] + a_{14}^{(\mu)} \exp[-(\lambda_{21}^{(\mu)} - j\lambda_{22}^{(\mu)})L] + a_{14}^{(\mu)} \exp[-(\lambda_{21}^{(\mu)} - j\lambda_{22}^{(\mu)})L] + r^{(\mu)},$$

gdzie L jest długością linii wałów, a $r^{(\mu)}$ reprezentuje człony, w których wykładniki funkcji eksponencjalnych zawierają sumy długości (N-1) odcinków, (N-2) odcinków itd. Oznacza to, że jeśli górny kres błędu, z jakim wyznaczona jest macierz $a_{1}^{(\mu)}$, wynosi $\delta_{1}^{(\mu)}$, to wówczas górny kres błędu, z jakim określane są poszczególne człony zależności (4.18), nie przekracza wartości

(4.19) $\Delta_N^{(\mu)} = \delta_1^{(\mu)} \exp(\lambda_m^{(\mu)} L),$

gdzie $\lambda_m^{(\mu)}$ jest większą liczbą spośród wartości modułów

(4.20)
$$\lambda_m^{(\mu)} = \max\left(|\lambda_{21}^{(\mu)} + j\lambda_{22}^{(\mu)}|, |\lambda_{23}^{(\mu)} - j\lambda_{24}^{(\mu)}|\right).$$

W ogólnym przypadku stałe $\lambda^{(\mu)}$ w zależności (4.18) również obarczone są błędem, na jaki składają się głównie niedokładności w ustalaniu wartości współczynników tłumienia materiałowego, momentów bezwładności przekroju poprzecznego wału etc. Jeśli górny kres błedu, z jakim określone są stałe $\lambda^{(\mu)}$, wynosi $\delta_2^{(\mu)}$, to

(4.21)
$$\Delta_N^{(\mu)} = \delta_1^{(\mu)} \exp[(\lambda_m^{(\mu)} + \delta_2^{(\mu)})L].$$

Znajomość $\delta_2^{(\mu)}$ i uwzględnienie takiej spośród wszystkich występujących w obliczeniach danej linii wałów wielkości $\lambda_m^{(\mu)}$, której wartość jest maksymalna, umożliwia oszacowanie wartości $\delta_1^{(\mu)}$ zapewniającej nie przekroczenie wartości $\Delta_N^{(\mu)}$ uznanej za dopuszczalną. Zaleca się przy tym wyznaczać z warunków brzegowych linii wałów macierz kolumnową współczynników rozwiązań dla środkowego odcinka linii wałów i w funkcji tej macierzy wyrażać macierze kolumnowe współczynników rozwiązań dla pozostałych odcinków, gdyż wówczas wartości (4.19), (4.21) ulegają zmniejszeniu w wyniku zastąpienia L przez L/2.

Literatura cytowana w tekście

- 1. KOLENDA, Drgania wymuszone linii walów z uwzględnieniem asymetrili sztywności giętnej i podatności fundamentów. Metoda identyfikacji podatności dynamicznej linii walów, Mech. Teor. i Stos., 4, 16 (1978).
- J. KOLENDA, Uściślony opis drgań wymuszonych linii walów z uwzględnieniem asymetrii sztywności giętnej i podatności fundamentów, Mech. Teor. i Stos., 1, 17 (1979).
- 3. S. KALISKI (red.), Drgania i fale w cialach stalych, PWN, Warszawa 1966.

Резюме

ВЫНУЖДЕННЫЕ ИЗГИБНЫЕ КОЛЕБАНИЯ АСИММЕТРИЧЕСКОГО ВАЛА НА ПОДАТЛИВОМ ФУНДАМЕНТЕ

Рассматривается изгибные колебания вращающегося вала при периодических возмущениях. Анализируемый асимметрический вал установлен на две податливые опоры, присоединенные и податливому фундаменту. Для описания поведения этой системы используется зависимости, определенные в предыдущих статьях автора. Представляется результаты численных расчетов, а также рассматривается проблемы редукции и точности расчетов.

Summary

FORCED FLEXURAL VIBRATIONS OF FLEXIBLE SUPPORTED ASYMMETRICAL SHAFT

Periodically excited flexural vibrations of a rotating shaft are considered. The analysed asymmetrical shaft is supported on two flexible pedestals which are mounted on a flexible foundation. For the description of behaviour of this system the relations determined in previous author's papers are used. The results of numerical calculations are given and problems of a reduction and accuracy of calculations are considered.

POLITECHNIKA GDAŃSKA INSTYTUT OKRĘTOWY

Praca zostala zlożona w Redakcji dnia 9 kwietnia 1979 roku

6 Mech. Teoret. i Stoso. 3/80