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The paper presents a review and verification of integral fatigue criteria. The review signals
the key assumptions and criteria structure elements. The verification has been developed
drawing on the experimental data reported in literature containing fatigue life for uniaxial,
combined proportional and non-proportional loads. The verification involves a comparison
of computational fatigue life with the experimental one. To determine the quality of the
results generated, statistical parameters were used. As a result of the analysis the best and
the worst criteria were pointed to.
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1. Introduction

A continuous attempt at cutting down machinery manufacturing and operation costs can be
seen in the changes in the engineering design strategy from Infinite-Life Design through Safe-
Life Design to Damage-Tolerant Design. The need to minimize the costs results in successive
design strategies, with more and more precise calculation models at their disposal, demonstrating
lower and lower safety coefficient values. Bearing that in mind, a change in the machinery design
strategy can trigger structure damage not found earlier. It surely concerns the effects of the non-
proportional fatigue load. What is characteristic for that kind of load is rotation of the main
axes of stresses and deformations throughout the fatigue process. The rotation of the main axes
activates many slip systems and can have an essential effect on fatigue properties. Depending
on the material type and the degree of load non-proportionality, this type of forced behaviour
can result in even a 10-fold decrease in fatigue life (Ellyin et al., 1991; Socie, 1987) and a 25%
decrease in fatigue limit (McDiarmid, 1987; Nishara and Kawamoto, 1945).
It is assumed that the right approach to defining the fatigue criteria under non-proportional

load conditions can be the integral approach (Weber et al., 2004). It is based on the assumption
that for the right fatigue behaviour evaluation it is necessary to integrate the value of the damage
parameter in all the planes going through the material point considered.
The aim of this paper is to evaluate the possibility to evaluate fatigue life with the use

of fatigue criteria. The analysis was made applying the three most frequent integral criteria:
the Zenner criterion (Zenner, 1983; Zenner et al., 2000) and the two Papadopoulos criteria
(Papadopoulos, 1994, 2001). The results were compared with the McDiarmid fatigue criterion
(McDiarmid, 1992), based on the competitive to the integral approach to critical plane and,
commonly applied in many fields of material fatigue, namely the Huber-Mises-Hencky criterion.
Interestingly, there are many reports offering the analysis or computational verification of

fatigue criteria. The most essential reports of that type include e.g., the report by Garud (1981)
with an extensive description of the computational models developed until 1981 and the paper
by You and Lee (1996), with a presentation of the criteria developed 1980 through 1995. There
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are also papers available on specific groups of criteria, e.g. the reports by Macha and Sonsino
(1999) on the energy criteria and the report by Karolczuk and Macha (2005), being a discussion of
criteria based on the critical plane idea. A high study value is provided by the comparative studies
of multiaxial criteria including their computation verification, e.g. the paper by Papadopoulos
et al. (1997), Wang and Yao (2004), Niesłony and Sonsino (2008), Walat et al. (2012) as well
as by Łagoda and Ogonowski (2005). None of the above studies, however, focuses on integral
criteria.
The criteria covered by this analysis have been verified drawing on the results of the experi-

mental tests of 7075-T651 aluminium alloy (Mamiya et al., 2011), 1045 steel – for the data repor-
ted in McDiarmid (1992) as well as Verreman and Guo (2007), and the tests of X2CrNiMo17-12-2
steel (Skibicki et al., 2012). The types of materials have been selected in terms of their various
sensitivity to non-proportional load; the lowest value for aluminium, average for carbon steels
and the highest value for austenitic steels (Socie and Marquis, 2000).
The experimental data derived from those papers provide fatigue life values for sinusoidally

variable loads: uniaxial, namely tensile-compressive (marked with R) as well as torsion (S), pro-
portional combined loads, namely compliant at the phase of tensile-compressive and torsion (P )
and non-proportional combined loads obtained as a result of a simultaneous tensile-compressive
and torsion with the phase shift equal 90◦ (N). For combined loads P and N , the ratio of the
amplitudes of shear to normal stress is an important load-defining parameter

λ =
τxya
σxa

(1.1)

Further in this paper, a description of the criteria analysed, the method of analysis of the
calculation results, analysis of the load results and conclusions are to be found.

2. Description of the criteria analysed

2.1. McDiarmid criterion

The McDiarmid criterion involved the use of the critical plane approach. In the case of that
criterion, it is the plane determined by the tangent stress of the highest value τmax. To calculate
the limit state, besides τmax, the effect of normal stress in the same plane σmax is considered
(McDiarmid, 1992). The mathematical criterion can take the following form

τmax
τaf A,B

+
σmax
2σu
= 1 (2.1)

where τaf A and τaf B are torsion fatigue limits, for the case of an increase in cracking type
A or B (Socie and Marquis, 2000), and σu is a monotonic tensile strength. By transforming
formula (2.1), we obtain a relationship defining the equivalent stress

σMD = τmax + kσmax ¬ τaf A,B (2.2)

where

k =
τaf A,B
2σu

(2.3)

2.2. Criterion according to Huber-Mises-Hencky

The criterion according to the hypothesis by Huber-Mises-Hencky (abbreviated to HMH) for
fatigue loads can be given as follows

σHMH =
√

3J2 ¬ σaf (2.4)
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where: σHMH is the value of equivalent stress, J2 – the second invariant of the deviator of stress
state, and σaf – tensile-compressive fatigue limit. For axial load and torsion, J2 is expressed by
the formula

J2 =
1

3
σ2x + τ

2
xy (2.5)

where: σx and τxy are sinusoidally variable patterns of normal and shear stresses, respectively.
In this paper, the criterion has been used to calculate the equivalent stress in two ways. The
first approach assumes that the parameters representing the cycle of fatigue load are amplitudes
of sinusoidal patterns, and then the equivalent stress can be calculated as follows

σaHMH =
√

σ2xa + 3τ
2
xya (2.6)

The second approach involves the occurrence of the in-phase displacement between load com-
ponents, and so the mathematical formula expresses the cycle-maximum value of the equivalent
stress

σmaxHMH = max
t

(√

σ2x + 3τ
2
xy

)

(2.7)

Among a few physical interpretations of the second invariant of deviator J2, there is an
integral interpretation proposed by Novozhilow (in Zenner et al., 2000). It equates J2 with the
root mean square of tangent stresses τγϕ calculated for all the possible planes passing through
the neighbourhood of the point considered (Fig. 1). Using that interpretation the idea of integral
criteria presented further in this paper is given with the HMH criterion as an example.

Fig. 1. Tangent stress in the plane Fig. 2. Coordinates of the normal line in

the spherical coordinate system

For the purpose of integration, it is convenient to define the position of plane ∆ as tangent
to the sphere with unitary radius. In the contact point of the plane and the sphere, there is
found a unitary normal vector n, the direction and the sense of which in the spherical system
are described by angles ϕ and γ (Fig. 2).
The square of the root mean square of all tangent stresses can be expressed as (Zenner et

al., 2000)

τ2rms =
1

Ω

∫

Ω

τ2γϕ dΩ (2.8)

where τγϕ is the tangent stress, Ω – unitary-radius sphere surface area

Ω = 4π (2.9)
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and dΩ is an elementary plane according to the following formula

dΩ = sin γ dϕdγ (2.10)

Substituting (2.9) and (2.10) to (2.8), we receive

τrms =

√

√

√

√

√

1

4π

π
∫

γ=0

2π
∫

ϕ=0

τ2γϕ sin γ dϕdγ (2.11)

In the case of the state of stress in two dimensions, the square of the tangent stress in the
plane, the position of which is determined in the spherical coordinate system, is defined by the
formula (Zenner and Richter, 1977)

τ2γϕ = sin
2 γ[(σ2x + τ

2
xy) cos

2 ϕ+ τ2xy sin
2 ϕ+ 2σxτxy sinϕ cosϕ]

− sin4 γ[σ2x cos4 ϕ+ 4σxτxy sinϕ cos3 ϕ+ 4τ2xy sin2 ϕ cos2 ϕ]
(2.12)

Having substituted τ2γϕ according to (2.12) to formula (2.11) and integrated, the following
is obtained

τrms =

√

2

15
(σ2x + 3τ

2
xy) =

√

2

15
σHMH (2.13)

It can be noted that the term in round brackets is the square of the equivalent stress according
to the HMH hypothesis for the state of stress in two dimensions. A comparison of equations (2.11)
and (2.13) provides

√

2

15
σHMH =

√

√

√

√

√

1

4π

π
∫

γ=0

2π
∫

ϕ=0

τ2γϕ sin γ dϕdγ (2.14)

After transformations, we obtain a formula for the integral form of the HMH criterion

σHMH =

√

√

√

√

√

15

8π

π
∫

γ=0

2π
∫

ϕ=0

τ2γϕ sin γ dϕdγ ¬ σaf (2.15)

2.3. Zenner criterion

The general form of the Zenner criterion is identical with notation (2.15). Zenner, however,
considers the observation that besides the tangent stress, the fatigue life of the material is
also affected by normal stress (Zenner, 1983). The author factors in that fact by generalising
quantity τγϕ in a form of

τγϕ = aτ
2
γϕa + bσ

2
γϕa (2.16)

where the coefficients of the effect of the tangent stress τγϕ and normal stress σγϕ can be
calculated as

a =
1

5

[

3
(σaf
τaf

)2

− 4
]

b =
2

5

[

3−
(σaf
τaf

)2]

(2.17)

For the purpose of this paper, the effect of mean stress values, which are also considered in
the Zenner criterion, has been disregarded. Thanks to coefficients a and b, the criterion can be
applied for a greater group of materials. The HMH criterion is applied in the case of materials
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for which τaf/σaf = 1/
√
3, whereas the Zenner criterion can be used for ductile materials for

which the ratio of fatigue limits falls within the range 0.5 < τaf/σaf < 0.8.

Finally, the mathematical formula describing the equivalent stress according to Zenner as-
sumes the form of (Karolczuk and Macha, 2005; Mamiya et al., 2011)

σZ =

√

√

√

√

√

15

/8π

π
∫

γ=0

2π
∫

ϕ=0

(aτ2γϕa + bσ
2
γϕa) sin γ dγ dϕ ¬ σaf (2.18)

2.4. Papadopoulos criterion 1 (1997)

Papadopoulos based his criterion on the statement that plastic microdeformation along the
slip direction in the plane of crystal slip is proportional to the tangent stress Ta acting in the slip
direction (Papadopoulos, 1994). He notes, at the same time, that cracking of single plastically-
flowing crystals is not the most critical event since, in the engineering approach, the initiation of
cracking occurs upon breaking of a few material grains and successive coalescence of the emerging
microcracks (Papadopoulos, 1994). The author states that the useful criterion in the engineering
approach should consider an elementary volume V . That volume is defined by Papadopoulos
as a cubic neighbourhood of the point investigated the size of which in the statistical sense
ensures that grains of a various crystallographic orientation are equally represented. Besides the
tangent stress, fatigue life is also affected by the normal stress. To sum up, the criterion considers
averaged values of the shear stress acting in the direction of slip Ta and the maximum values of
normal stress N

σP1 =
√

〈T 2N 〉+ α(maxt 〈N〉) ¬ τaf (2.19)

(20) where
√

〈T 2N 〉 stands for the root mean square of the amplitude of the tangent stress acting
in the slip direction, maxt〈N〉 is the maximum value of the mean for the normal stress, reported
during the load cycle, while α is the quantity calculated based on material constants in the
following way

α =

σaf−τaf√
3
τaf
3

(2.20)

The value of the amplitude of stress Ta depends not only on the position of plane ∆ but
also on the direction of slip L, defined with angle χ (Fig. 3). To simplify the calculations, the
author introduces auxiliary quantities

a = τa cos γ cosϕ cos θ b = −τa cos γ cosϕ sinϑ
c = σa sin γ cos θ − τa cos(2γ) sinϕ cos θ d = τa cos(2γ) sinϕ sin θ

Ca,b =

√

√

√

√

a2 + b2 + c2 + d2

2

√

(a2 + b2 + c2 + d2

2

)2

− (ad− bc)2)

(2.21)

The symbol θ in the above notations stands for the phase shift angle. Using the above

auxiliary quantities, the equation for root mean square
√

〈T 2N 〉 can assume the following form

√

〈T 2N 〉 =
√
5

√

√

√

√

√

√

1

4π

π
∫

γ=0

2π
∫

ϕ=0

√

√

√

√

√

1

2π

2π
∫

χ=0

(C2a cos
2 χ+ C2b sin

2 χ) dχ) sin γ dγ dϕ (2.22)
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Finally, the notation can be then simplified to

√

〈T 2N 〉 =

√

√

√

√

√

5

8π2

π
∫

γ=0

2π
∫

ϕ=0

2π
∫

χ=0

(C2a cos
2 χ+ C2b sin

2 χ) sin γ dγ dϕdχ (2.23)

The mean value of the normal stress has been defined as the mean of normal stresses in all
possible positions of the plane ∆ passing through the elementary volume V , namely

〈N〉 = 1
4π

π
∫

γ=0

2π
∫

ϕ=0

N sin γ dγ dϕ (2.24)

2.5. Papadopoulos criterion 2 (2001)

In his second criterion, Papadopoulos (2001) gives up the considerations over microdamage
in theelementary volume V . The criterion is further based on the integral approach and also
relates the effect of shear and normal stresses to each other, but remains greatly simplified to
the form of

σp2 = max Ta + α∞σH,max ¬ γ∞ (2.25)

where ,max Ta is denoted by the author as the value of generalised shear stress, while σH,max
stands for the cycle-maximum hydrostatic stress.
The quantity maxTa is a function of the position of plane ∆ in a spherical coordinate

system, described with angles γ and ϕ (Fig. 2). The walue Ta is determined from the formula

Ta =

√

√

√

√

√

1

π

2π
∫

χ=0

τ2a dχ (2.26)

where τa is the amplitude of the tangent stress τ acting along the slip direction. The quantity τ
is the projection of the vector of stress acting in the plane ∆ on the slip direction, represented
by the vector m. The location of the vector m is described with the angle χ which is formed by
it together with the unitary vector l. In the plane ∆, the vectors l and r form an orthogonal
frame of reference (Fig. 4). The coordinates of the vectors n and m, needed to determine τ ,
are as follows

l =







− sinϕ
cos γ
0






m =

[

− sinϕ cos χ− cosγ cosϕ sinχ
cosϕ cos χ− cosγ sinϕ sinχ sin γ sinχ

]

(2.27)

Fig. 3. Geometric interpretation of the amplitude Fig. 4. Description of the slip direction

of tangent stress Ta acting in the slip direction
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Stress τ can assume the following form

τ = nσm (2.28)

where σ stands for the stress state tensor. The value of amplitude τa is determined based on
the maximum and minimum value reached by the vector τ in the time of cycle, which can be
given as follows

τa =
1

2
(max τ −min τ) (2.29)

The quantities α∞ and γ∞ are material parameters. The quantity γ∞ equals torsional
fatigue limit τaf , and α∞ is defined from the following formula

α∞ = 3
( τaf
σaf
− 1
2

)

(2.30)

The method of parameters determination method is described in Papadopoulos (2001).

3. Method of analysis of calculations results

The equivalent stresses calculated with the criteria analysed, similarly as in papers by McDiarmid
(1992) and Papadopoulos (2001), can become related with computational life by means of the
Basquin equation (Stephens et al., 2001)

σeq = AN
B
cal (3.1)

where A and B are coefficients of the Basquin equation, and Ncal is the number of cycles
calculated. The coefficients A and B are obtained from the approximation of the results of
uniaxial sample tensile-compressive or torsion life testing. The choice which uniaxial samples
should be used comes from nature of the equivalent stress. As for the HMH and Zenner criteria,
the coefficients A and B have been calculated based on tensile-compressive fatigue life, and
for the McDiarmid and Papadopoulos criteria, based on torsion life. By transforming equation
(3.1), we obtain a relationship which allows determination of computational fatigue life

Ncal =
(σeq
A

)

1

B
(3.2)

The criteria of analysis made in the present paper involve the comparison of experimental
life Nexp with life Ncal calculated according to formula (3.2). The comparison was made using
two statistical parameters described in paper by Walat and Łagoda (2011). The first of them is
the mean statistical dispersion of life

TN = 10
E (3.3)

where E is calculated from the formula

E =
1

n

n
∑

i=1

log
Nexp,i
Ncal,i

(3.4)

where n stands for the number of the results compared.
The second parameter used is the life estimation mean-squared error

TRMS = 10
ERMS (3.5)
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where

ERMS =

√

√

√

√

1

n

n
∑

i=1

log2
Nexp,i
Ncal,i

(3.6)

The measure TN assumes the following values: 1 in the case where the mean experimental
and computational life are equal; more than 1, when the experimental life values are higher
than the computational ones; lower than 1, when the experimental life values are lower than the
computational ones. The measure TN is insensitive to the statistical dispersion of life. It can
assume the same value for the results with a low and high statistical dispersion. The quantity
TRMS is a measure of statistical dispersion. It assumes the value equal to 1 when the mean and
the statistical dispersion of experimental and computational life are identical as well as values
higher than 1 in other cases. Unlike TN , based on TRMS , however, we have no information on
whether the computational life values are higher or lower than the experimental ones.

With the above properties of measures in mind, it seems that to make a complete evaluation
of the results, both measures must be applied.

4. Analysis of the results

The results of calculations have been presented in comparative computational and experimental
life plots (Figs. 5, 6, 7 and 8). For each material, plots have been made for equivalent stress
formulas: σMD, σ

a
HMH , σ

max
HMH , σZ , σP1, σP2. The points of the plot were marked compliant

with the nature of the load, namely R, S, P and N . The number after the letter symbol stands
for the value of coefficient λ. Solid lines mark the scatter band of factor 2, and dashed lines –
the scatter band of factor 3.

Fig. 5. Comparison of the experimental life values with the calculated ones for 7075-T651
(Mamiya et al., 2011)
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Fig. 6. Comparison of the experimental life values with those calculated for 1045 steel
(McDiarmid, 1992)

Fig. 7. Comparison of the experimental life values with the ones calculated for 1045 steel
(Verreman and Guo, 2007)
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Fig. 8. Comparison of the experimental life values with the computational ones for X2CrNiMo17-12-2

For each material, criterion and the type of a sample, the measures TN and TRMS have
been calculated. The results are broken down in Tables 1, 2, 3 and 4. For better understanding,
the results for which the computational life falls within the scatter band of factor 2, namely for
value TN falling in the range 0.5-2, and value TRMS in the range 1-2, are marked with a double
underscore. The results for which the computational life falls within the scatter band of factor
between 2 and 3, namely for value TN falling in the range 0.3(3)-0.5 as well as 2-3 and values
TRMS in the range 2-3, are marked with a single underscore.

As for uniaxial loads R and S for aluminium alloy 7075-T651, the results most frequently fall
within the scatter band of factor 2, for the Zenner criterion, σP1 and HMH according to σ

a
HMH .

As for the proportional load, the evaluation of the criteria by McDiarmid and HMH according
to σmaxHMH are relatively worst. For the non-proportional load, the best results were reported for
the McDiarmid criterion and the first Papadopoulos criterion. For that material, the greatest
errors are about 20-fold higher. Most often the Zenner and Papadopoulos criterion according
to σP1 gives the results which fall within the scatter band of factor 2.

Table 1. Values TN and TRMS for 7075-T651 aluminium alloy (Mamiya et al., 2011)

σMD σaHMH σmaxHMH σZ σP1 σP2

TN TRMS TN TRMS TN TRMS TN TRMS TN TRMS TN TRMS

R 1.00 1.36 0.56 1.70 1.00 1.36 1.00 1.36 0.60 2.36 0.33 3.67

S 4.45 5.95 1.00 2.13 4.45 5.95 0.92 2.66 1.00 2.13 1.00 2.13

P 2.01 2.29 1.21 1.70 2.01 2.29 0.83 1.46 1.11 1.67 0.80 1.80

N 1.79 2.59 0.05 19.06 0.16 7.50 0.09 12.56 0.52 2.03 0.11 9.20

As for uniaxial loads of 1045 steel (Verreman and Guo, 2007), only the life values predicted
based on the McDiarmid and HMH criteria according to σmaxHMH do not fall within the scatter
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band of factor 3. For the proportional load, the results acceptable were only reported for the
Papadopoulos criterion. As for the non-proportional load for which λ = 2, satisfactory results
were recorded based on the HMH criteria according to σmaxHMH and both criteria by Papadopoulos.
For the loads demonstrating the highest degree of non-proportionality, namely N0.5, none of the
criteria gives the results falling within the assumed scatter bands. For that group of data, the
biggest errors reach about 6-thousand. For that material, the second criterion by Papadopoulos
most frequently gives the results in the scatter band of factor 2.

Table 2. Values TN and TRMS for 1045 steel (Verreman and Guo, 2007)

σMD σaHMH σmaxHMH σZ σP1 σP2

TN TRMS TN TRMS TN TRMS TN TRMS TN TRMS TN TRMS

R 1.00 1.84 0.98 1.91 1.00 1.84 1.00 1.84 0.95 1.92 0.95 1.92

S 4.62 5.06 1.00 1.64 4.62 5.06 1.12 1.73 1.00 1.64 1.00 1.64

P2 0.39 3.02 0.65 2.06 0.39 3.02 0.22 5.15 0.25 4.00 0.99 1.80

N2 5.85 6.00 0.39 2.56 1.28 1.47 0.31 3.34 1.90 1.93 0.91 1.19

N0.5 6.99 10.34 0.00 1439.35 0.00 6509.40 0.00 6509.40 3.24 4.78 0.01 130.31

For the experimental data for 1045 steel reported in paper by McDiarmid (1992), for uniaxial
and proportional loads all the results fall within the scatter band of factor 3. For the non-
proportional load, the satisfactory results in each case are reported by applying the second
criterion by Papadopoulos. For that group of data, the greatest errors are about 20-folds higher.
The best results were recorded for the HMH criteria according to σmaxHMH , the Zenner and the
Papadopoulos criteria according to σP2.

Table 3. Values TN and TRMS for 1045 steel (McDiarmid, 1992)

σMD σaHMH σmaxHMH σZ σP1 σP2

TN TRMS TN TRMS TN TRMS TN TRMS TN TRMS TN TRMS

R 1.00 1.60 1.00 1.93 1.00 1.60 1.00 1.60 1.18 1.97 1.00 1.93

S 1.06 1.92 1.00 1.71 1.06 1.92 0.98 1.92 1.00 1.71 1.00 1.71

P0.5 1.04 1.50 0.98 1.97 1.04 1.50 1.03 1.50 1.04 1.99 0.98 2.01

P1 1.11 1.47 1.22 2.05 1.11 1.47 1.09 1.47 1.08 2.03 1.48 2.19

P10 0.64 1.56 0.59 1.68 0.64 1.56 0.59 1.70 0.49 2.05 0.45 2.19

P2 1.33 1.57 1.91 2.67 1.33 1.57 1.29 1.56 1.40 2.27 1.66 2.58

P4 1.07 1.07 1.65 1.65 1.07 1.07 1.00 1.00 1.16 1.16 0.48 2.09

N2 9.63 9.88 0.28 3.73 0.38 2.63 0.35 2.86 13.94 15.18 0.60 2.14

N1 14.44 14.86 0.50 2.27 0.71 1.68 0.71 1.68 21.08 21.79 1.47 1.81

N0.5 10.03 10.10 0.42 2.64 0.50 2.07 0.49 2.07 17.72 18.36 1.24 1.65

The results for uniaxial loads for X2CrNiMo17-12-2 steel, for the McDiarmid and the HMH
criteria according to σmaxHMH are unacceptable. As for the proportional load with coefficient
λ = 0.5, only the Zenner criterion gave acceptable results. The first criterion by Papadopoulos
slightly exceeded the admissible values. Unfortunately, for the proportional loads demonstrating
a greater share of tangible stresses, namely for λ = 0.8, both criteria give very bad results.
Here, in turn, life values for HMH according to σmaxHMH fall within the acceptable limits. As for
the non-proportional loads with λ = 0.5, only the second criterion by Papadopoulos generated
satisfactory results. For the non-proportional loads with λ = 0.8, none of the criteria gave results
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falling within the scatter bands of factors 2 and 3. The results obtained according to the Zenner
criterion slightly exceeded that limit. The greatest errors for the non-proportional loads are in
the range of 14-thousand times. For most of the results of that group of data, most frequently
the Zenner criterion and the second criterion by Papadopoulos give the results falling within the
scatter band of factor 2.

Table 4. Values TN and TRMS for X2CrNiMo17-12-2 steel (Skibicki et al., 2012)

σMD σaHMH σmaxHMH σZ σP1 σP2

TN TRMS TN TRMS TN TRMS TN TRMS TN TRMS TN TRMS

R 1.00 1.41 0.86 1.46 1.00 1.41 1.00 1.41 0.94 1.42 1.02 1.41

S 1903.4 1922.1 1.00 1.46 1903.4 1922.1 1.09 1.48 1.00 1.46 1.00 1.46

P0.5 13.00 13.21 3.31 3.44 13.00 13.21 0.99 1.33 2.38 2.50 4.74 4.88

P0.8 1.44 1.62 7.34 7.49 1.44 1.62 0.00 1214.8 0.00 1013.6 5.24 5.37

N0.5 146.64 148.04 0.39 2.68 0.44 2.38 0.44 2.38 24.89 25.27 1.48 1.65

N0.8 14075.7 14203.3 0.13 8.23 228.31 231.99 0.17 2.38 568.2 575.13 48.66 49.63

As for uniaxial loads, in most cases ,all the criteria analysed give satisfactory results. The
worst results are reported by applying the HMH criterion for torsion, which must be due to the
fact that this criterion is applied for a small group of materials resulting from a constant ratio
of fatigue limits τaf/σaf = 1/3.
A similar situation is reported for proportional loads. The life values estimated according

to the HMH criterion are most often encumbered with the greatest error, which is due to the
failure in considering variable material properties expressed with the ratio τaf/σaf .
As for the non-proportional loads for materials sensitive to non-proportionality, namely 1045

and X2CrNiMo17-12-2 steels, the results can show a very high error.
Most frequently, the best results were reported for the second criterion by Papadopoulos, and

the worst results, on the other hand, for the McDiarmid and the HMH criteria. Even though the
Papadopoulos criterion is an integral criterion, however, it does not allow making the statement
that the integral approach is the most adequate one to describe non-proportional loads; first
of all, since the HMH criterion can be also considered as the integral criterion and, second of
all, since it is the Papadopulos criterion, which for non-proportional loads often gave results
demonstrating the statistical dispersion much greater than desired scatter bands of factors 2
or 3.

5. Conclusions

For the experimental fatigue life data used, one can claim that:

• Relatively the best results were reported by applying the second criterion by Papadopoulos
and the Zenner criterion, and the worst – according to the criterion by McDairmid and by
Huber-Mises-Hencky.

• None of the criteria analysed can be applied to estimate fatigue life when exposed to
non-proportional loads.

• The integral approach can be effective under the non-proportional loads conditions, howe-
ver, it does not always guarantee acceptable results.
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e.V., Berlin, 279-284

23. You B.R., Lee S.B., 1996, A critical review on multiaxial fatigue assessments of metals, Inter-
national Journal of Fatigue, 18, 235-244
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Ocena zmęczeniowych kryteriów całkowych w zakresie szacowania trwałości w warunkach
obciążeń jednoosiowych, złożonych proporcjonalnych i nieproporcjonalnych

Streszczenie

Celem niniejszej pracy jest ocena możliwości szacowania trwałości zmęczeniowej za pomocą całkowych
kryteriów zmęczeniowych. Podejście całkowe bazuje na założeniu, że dla prawidłowej oceny zachowań
zmęczeniowych konieczne jest zsumowanie (scałkowanie) wartości parametru zniszczenia na wszystkich
płaszczyznach przechodzących przez rozpatrywany punkt materiału. Analizę przeprowadzono dla trzech
najczęściej spotykanych kryteriów całkowych: kryterium Zennera i dwóch kryteriów Papadopoulosa. Uzy-
skane wyniki porównano z kryterium zmęczeniowym McDiarmida, bazującym na konkurencyjnym w sto-
sunku do całkowego podejściu płaszczyzny krytycznej, oraz powszechnie stosowanym w wielu obszarach
wytrzymałości materiałów kryterium Hubera-Misesa-Hencky’ego.
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