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In this study, steady laminar free convection boundary layer flow on a horizontal plate is
investigated through analytical solutions. By transforming the governing non-dimensional
boundary layer equations into an ordinary differential equation, the application of the Ho-
motopy Analysis Method can be practical. So in this case, the analytical results for different
Prandtl numbers and constant M values which portray the power index are achieved. The
trend goes on large amounts of (M ≫ 1) and the results are compared with other efforts.
Furthermore, the effects of different values of Prandtl number and M values on temperature
and velocity profiles are verified.
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1. Introduction

Steady free convection boundary layer flow past a horizontal plate is a very practical and basical
issue that is worthy enough to be discussed perfectly. So researchers in the heat transfer field
paid tangible attention toward this problem. Here, because of the significant effect of buoyancy
on the flow field, going through depth of the layer pressure gradient changes. Despite being pre-
determined at the edge of the boundary layer, it should be founded as a part of solving process in
accordance with velocity and temperature. Former studies verified the effect of buoyancy for this
problem, and in their effort it is gotten that they focused on flows over plates which are smoothly
cooled or heated. Stewartson (1958) concentrated on an isothermal horizontal semi-infinite plate
and his results, which were later discussed by Gill et al. (1965), announced the existence of
similarity solutions just for below and above a cooled and heated surface, respectively. Rotem
and Claassen (1969) and Raju et al. (1984) discussed on the heated downward-facing or cooled
upward-facing plates numerically. Identically, Clifton and Chapman (1969) utilized an integral
method for this problem. Jones (1973), and Pera and Gebhart (1973) performed their study on
an inclined plate with a isothermal condition. Also Yu and Lin (1988), and Lin et al. (1989)
verified an arbitrary inclined plate. Afzal et al. (1986), Lin and Yu (1988), Brouwers (1993)
and Chen et al. (1993) studied the influence of suction or blowing on the free convection of a
horizontal flat plate. Ackroyd (1976) surveyed the non-Boussinesq effects.

Chen et al. (1986) verified different occasions for a plate (horizontal, inclined, and vertical)
with changing wall temperature or surface heat flux. A finite-difference method was applied to
have a numerical solution for the non-dimensional form of the governing equation. Mahajan
and Gebhart (1980) and Afzal (1985) studied higher order effects in free convection flow over
horizontal surfaces. Daniels (1992) studied an insulated horizontal wall over which there was a
thermal boundary layer flowing. In this flow, the velocity and temperature fields are coupled by
buoyancy. Many researchers worked on free convection and made great effort on this issue such
as Rotem and Classen (1969), Goldstein et al. (1973) and Kitamura and Kimura (1995) who
had technical papers.
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However, little by little more theoretical studies were performed on scrutinizing the effect of
buoyancy on thermal boundary layers over horizontal flat surfaces in which wall temperature
and surface heat flux vary. The Homotopy Analysis Method was another approach which was
handled by other researchers in many previous papers (Liao, 1992, 2003; Hayat and Sajid, 2007;
Domairry and Nadim 2008, Domairry and Fazeli 2009; Abouei Mehrizi et al., 2011). Here, the
main aim is to consider free convection boundary layer equations governing the flow on a heated
horizontal flat plate facing upward when the non-dimensional surface temperature is given by
Tw(x) = x

M . In this form, M is a positive constant and x is the coordinate measured along the
plate.

2. Description of the problem and governing equations

Consider the problem of free convection boundary layer flow on a heated horizontal flat plate
facing upward when the non-dimensional surface temperature is given by Tw(x) = xM , where
x is the coordinate measured along the plate from the leading edge and M is a constant. The
governing boundary layer equations in dimensional form are
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Subject to the boundary conditions

u = v = 0 T = Tw(x) at y = 0

u = 0 T = T∞ p = p∞ as y →∞
(2.2)

where x and y are the coordinates measured along the plate and normal to it, respectively,
(u, v) are the velocity components along the (x, y) axes, p is the pressure, T is the local fluid
temperature, gr is the acceleration due to gravity, ρ is the fluid density, β is the coefficient of
thermal expansion, υ is the kinematic viscosity and α is the constant thermal diffusivity of the
fluid.

We introduce now the following non-dimensional variables
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Substituting variables (2.3) into equations (2.1) leads to the following non-dimensional equations
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and boundary conditions (2.2) become

u = v = 0 T = Tw(x) = x
M at y = 0

u→ 0 T → 0 p→ 0 as y →∞
(2.5)
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Further, we look for a similarity solution of these equations of the form (Chen et al. 1986)

ψ = x(M+3)/5f(η) T = xMθ(η)

p = x(4M+3)/5g(η) η = yx(M−2)/5
(2.6)

where ψ is the stream function, which is defined as

u =
∂ψ

∂y
v = −

∂ψ

∂x
(2.7)

and automatically satisfy continuity equation (2.4)1.
Substitution of (2.6) into equations (2.4)2 to (2.4)4 gives the following ordinary differential

equations

5f ′′′ + (M + 3)ff ′′ − (2M + 1)f ′
2
− (4M + 2)g − (M − 2)ηg′ = 0

g′ = θ
5

Pr
θ′′ + (M + 3)fθ′ − 5Mf ′θ = 0

(2.8)

and boundary conditions (2.5) become

f(0) = f ′(0) θ(0) = 1

f ′(∞) = 0 θ(∞) = 0 g(∞) = 0
(2.9)

where primes denote differentiation with respect to η.
Quantities of physical importance in this problem are the skin friction τw and the heat

transfer at the plate qw, which are given in non-dimensional form by Chen et al. (1986, 1993)

τw = x
(3M−1)/5f ′′(0) qw = x

2(3M−1)/5[−θ′(0)] (2.10)

For large values of M(≫ 1), solutions to equations (2.8) subject to boundary conditions (2.9)
can be found using the transformation

f =M (−3/5)F (z) θ = θ(z) g =M−2/5G(z) z =M−2/5η (2.11)

Substituting (2.11) into equations (2.8) yields
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Subject to the boundary conditions

F (0) = F ′(0) θ(0) = 1

F (∞) = 0 θ(∞) = 0 G(∞) = 0
(2.13)

where primes now denote differentiation with respect to z.
Substituting equation (2.12)2 into equation (2.12)3, we have
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and

F (0) = F ′(0) G′(0) = 1

F (∞) = 0 G′(∞) = 0 G(∞) = 0
(2.15)

Solving the equations, the functions F and G will be calculated, and to evaluate the values of
f ′′(0) and −θ′(0) the following relations are used

f ′′(0) =M1/5F ′′(0) − θ′(0) = −g′′(0) = −M2/5G′′(0) (2.16)
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3. Homotopy analysis solution

For HAM solution of the governing equations, we choose the auxiliary linear operators L1(F )
and L2(G) as follows

L1(F ) = F
′′′ + F ′′ L2(G) = G

′′′ +G′′ (3.1)

Solving Eqs. (3.1) with initial conditions of Eqs. (2.15), one could make the initial guesses

L1(C1 + C2 + C3e
−z) L2(C4 + C5 + C6e

−z) (3.2)

and

F0(z) = 0 G0(z) = −e
−z (3.3)

where ci (i = 1, . . . , 5) are considered as constants. P ∈ [0, 1] denotes the embedding parameter
and ~ indicates non-zero auxiliary parameters. We then construct the following equations.

3.1. Zeroth order deformation equations
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and
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For p = 0 and p = 1 we have

F (z; 0) = F0(z) F (z; 1) = F (z)

G(z; 0) = G0(z) G(z; 1) = G(z)
(3.7)

As the embedding parameter increases from 0 to 1, F (z; 0) and G(z; 0) vary from the initial
guess F0(z), G0(z) to the exact solution F (z) and G(z).
With expanding F (z; q) and G(z; q) in Taylor series with respect to q, we have
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∑
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3.2. mth order deformation equations

According to definition (3.9) the governing equations can be deduced from the zero order
deformation Eqs. (3.4). Define the vector

Fn = [F0(z), F1(z), F2(z), . . . , Fn(z)] (3.10)

Differentiating Eqs. (3.4) m times with respect to the embedding parameter p and then setting
p = 0 and finally dividing them by m!, we have the so-called mth order deformation equation

L1[Fm(z)− χmFm−1(z)] = ~H(z)R1m(z)

L2[Gm(z)− χmGm−1(z)] = ~H(z)R2m(z)
(3.11)

and
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where

χm =

{

0 m ¬ 1

1 m > 1
(3.14)

Finally, according to the third rule of solution expression, the auxiliary function H(z) should
be in the form

H1(z) = H2(z) = e
−z (3.15)

Solving Eqs. (3.11) by mathematical software such as Maple, for example with M = 1 and
Pr = 1, one successively obtains
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he−z[e−3z(72h + 9hz) + e−2z(−860h) + e−z(396h − 360) + 1509h + 720

(3.16)
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4. Convergence of HAM solution

HAM provides us with great freedom in choosing the solution of a nonlinear problem by different
base functions and has a great effect on the convergence region. Therefore, we should ensure
that the solution converges. On the other hand, the convergence and rate of approximation for
the HAM solution strongly depends on the value of the auxiliary parameter h. By means of the
so-called h-curves, it is easy to find out the so-called valid regions of auxiliary parameters to
gain a convergent solution series.
To demonstrate the influence of h on the convergence of solution, we plotted the so-called

h-curve of f(0) and θ(0) by 11th to 17th order approximation of the solution as shown in Fig.
1a and 1b.

Fig. 1. The h-validity of f ′′(0) (a) and θ′(0) (b)

5. Results and discussion

In the literature, the governing equation is solved with an analytical method called HAM and, as
it is portrayed, good and acceptable agreement is achieved in comparison with other efforts. In
Table 1, the amounts of the heat transfer coefficient, −θ′(0) are presented for M = 0 and three
values of the Prandtl number. For Pr = 1, the results by Pop et al. (2009), Raju et al. (1984)
and Lin et al. (1989) are also put in this table, and it is seen that the gratifying correspondence
exists.

Table 1. Amounts of −θ′(0) for M = 0 and different Pr

Pr Present Pop et al. (2009) Raju et al. (1984) Lin et al. (1989)

1 0.3866 0.3905 0.3881 0.3905

7 0.6317 0.6300

10 0.6813 0.6833

Normally, the Prandtl number has a reciprocal relationship with thermal conductivity. So
when Pr increases, because of a higher heat transfer rate at the surface, the heat transfer coeffi-
cient increases, and this trend is shown in Table 1. Subsequently, Table 2 represents the values
of heat transfer coefficient −θ′(0) and skin coefficient f ′′(0) when Pr = 1 but M varies. On the
other hand, Table 3 demonstrates the values of −θ′(0) and f ′′(0) when M = 2 but Pr varies.
Finally, Table 4 shows the amounts of heat transfer coefficient and skin fiction coefficient when
Pr = 7 but M varies. As it is vivid, acceptable agreement is achieved, and by comparing the
results with numerical data, it is gotten that enhancing the value of M makes more inclination
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between the results. Alternatively, for lower values of M and Prandtl number, more precise
results are gained.

Table 2. Amounts of −θ′(0) and f ′′(0) when Pr = 1 but M varies

HAM Numeric Error [%]

M f ′′(0) −θ′(0) f ′′(0) −θ′(0) f ′′(0) −θ′(0)

1 0.9953 0.6537 0.9910 0.6532 0.433 0.076

2 1.0857 0.8142 1.0811 0.8129 0.425 0.159

3 1.1494 0.9311 1.1499 0.9360 0.043 0.523

4 1.2053 1.0366 1.2059 1.0388 0.049 0.211

5 1.2530 1.1118 1.2532 1.1283 0.015 1.462

6 1.2944 1.1867 1.2945 1.2083 0.007 1.787

7 1.3311 1.2751 1.3311 1.2811 0 0.468

8 1.3640 1.337 1.3641 1.3482 0.007 0.830

9 1.3945 1.396 1.3943 1.4106 0.014 1.035

10 1.4213 1.4580 1.4220 1.4692 0.049 0.762

Table 3. Amounts of −θ′(0) and f ′′(0) when M = 2 but Pr varies

HAM Numeric

Pr f ′′(0) −θ′(0) f ′′(0) −θ′(0)

1 1.083 0.8127 1.0811 0.8129

7 0.5149 1.2536 0.4911 1.2480

10 0.4682 1.3709 0.4259 1.3464

Table 4. Amounts of −θ′(0) and f ′′(0) when Pr = 7 but M varies

HAM Numeric Error [%]

M f ′′(0) −θ′(0) f ′′(0) −θ′(0) f ′′(0) −θ′(0)

1 0.4523 1.0126 0.4560 1.0144 0.811 0.177

2 0.5149 1.2536 0.4911 1.2480 4.846 0.448

3 0.5507 1.4463 0.5195 1.4291 6.006 1.203

4 0.5785 1.5728 0.5431 1.5809 6.518 0.512

5 0.5991 1.7068 0.5635 1.7135 6.317 0.391

6 0.6100 1.8263 0.5810 1.8325 4.991 0.338

7 0.6341 1.9341 0.5973 1.9410 6.161 0.355

8 0.6496 2.0335 0.6117 2.0405 6.195 0.343

9 0.6625 2.1262 0.6249 2.1336 6.016 0.346

10 0.6751 2.2124 0.6371 2.2209 5.964 0.382

Passing through this information, velocity profiles and temperature profiles are investigated,
too. Figure 2a shows the velocity profiles f ′(η), when Pr = 1 and M has different amounts.
Admitting the information of Table 2, here this picture claims that when there is larger amount
of M , the velocity gradient at the surface is larger and this leads to having larger skin friction.
Furthermore, Fig. 2b admits Table 2, and by demonstrating the temperature profiles θ(η) it
is seen that the temperature gradient at the surface and M values have a direct relationship.
Additionally, Fig. 3a presents the velocity profile when M = 2 but Pr has different amounts.
By changing the amounts of the Prandtl number, this section shows that when there are smaller
values for Pr, larger amounts of the velocity gradient is found at the surface and again this
leads to a large skin friction coefficient. This data reviews the information presented in Table 3.
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Fig. 2. Velocity profiles f ′(η) (a) and temperature profiles θ(η) (b) for Pr = 1 and different values of M

Fig. 3. Velocity profiles f ′(η) (a) and temperature profiles θ(η) (b) for M = 2 and different Prandtl
numbers

Fig. 4. Velocity profiles f ′(η) (a) and temperature profiles θ(η) (b) for Pr = 7 and different values of M

Figure 3b also admits Table 3, and it portrays that when Pr diminishes, the temperature gradient
at the surface increases. It is clear that when it is talked about a higher Prandtl number fluid,
it has high viscosity and this makes the thermal boundary layer thinner and heat transfer rate
higher at the surface. Figure 4a shows the velocity profiles f ′(η) when Pr = 7 and M gets
different amounts. A large skin friction coefficient is obtained by a large velocity gradient at the
surface. This is the reality for large M and is depicted in Fig. 4a correspondent to Table 4. The
last effort in Fig. 4b presents the direct relationship between M and the temperature gradient at
the surface in a way that increasing M increases the temperature gradient, too. And this is said
previously in Table 4. Totally, it can be mentioned that for validating these achievements the
satisfaction of boundary conditions is adequate, and by reviewing Figs. 1 to 4, this is approved
here.
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6. Conclusion

In this effort, steady laminar free convection boundary layer flow on a horizontal plate with
variable wall temperature has been investigated analytically. The subject is scrutinized using
the Homotopy Analysis Method. The issue is based on the variation of two parameters, the
Prandtl number and M , and in this paper it is shown how these two parameters influence the
temperature profile, velocity profile, heat transfer coefficient and skin friction. Also the results
are in good agreement with other works and the gratification of the boundary layers is witnessed.
The results show:

• The homotopy analysis method is an applicable method to solve nonlinear fluid dynamic
problems.

• The velocity gradient at the surface and skin friction increase with increasing values of M
and the Prandtl number.

• The temperature gradient at the surface and M values have direct relationship.

• The temperature gradient at the surface increases by decreasing the Prandtl value.
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Nowa analiza naturalnego opływu konwekcyjnej warstwy przyściennej na poziomej płycie

o zróżnicowanej temperaturze powierzchni

Streszczenie

W pracy zajęto się swobodnym, laminarnym opływem konwekcyjnej warstwy przyściennej na po-
ziomej płycie w ujęciu czysto analitycznym. Bezwymiarowe równania warstwy przekształcono do postaci
różniczkowej zwyczajnej, co pozwoliło na zastosowanie metody homotopii. Otrzymano analityczne wyniki
określające wykładnik potęgowy opływu dla różnych wartości liczby Prandtla oraz stałej M . Badania
rozszerzono na ≫ 1, a rezultaty porównano z opracowaniami innych badaczy. Zweryfikowano również
wpływ liczby Prandtla oraz stałej M na rozkład temperatury i prędkości opływu w rozważanej warstwie.
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