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In this paper, we present a novel method to investigate the buckling behavior of short clam-
ped carbon nanotubes (CNTs) with small-scale effects. Based on the nonlocal Timoshenko
beam kinematics, the strain gradient theory and variational methods, the higher-order go-
verning equation and its corresponding boundary conditions are derived, which are often not
considered. Then, we solve the governing differential equation and determine exact critical
buckling loads using a linear polynomial plus trigonometric functions different from the pu-
rely trigonometric series. We also investigate the influences of the scale coefficients, aspect
ratio and transverse shear deformation on the buckling of short clamped CNTs. Moreover,
we compare the critical strains with the results obtained from the Sanders shell theory and
validate them with molecular dynamic simulations which are found to be in good agreement.
The results show that unlike the other beam theories, this model can capture correctly the
small-scale effects on buckling strains of short CNTs for the shell-type buckling.
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1. Introduction

Since discovering carbon nanotubes (CNTs) by Iijima (1991) more than a decade ago, scientists
have been exploring possible uses for carbon nanotubes, which exhibit superior electrical, chemi-
cal and mechanical properties. Owing to these properties, CNTs can be applied as nano-probes,
nano-needles, reinforcing fibers in composites, nano-actuators, nano-vessels for hydrogen storage
and gene delivery systems and nanoscale electronic devices in nano-electromechanical systems
(Zhang et al., 2009; Wang et al., 2010).

Meanwhile, the application of short CNTs has prompted significant effort to reduce the size
of these nanoscale devices. Seidel et al., (2005) showed that short CNTs, with lengths less than
20 nanometers, are useful in molecular electronics and CNT field-effect transistors (CNTFETs).
In addition, they are smaller than many large proteins in the bloodstream, so tubes of that
length could find uses as biomedical sensors.

As a result, the importance of carbon nanotubes is realized and both theoretical and experi-
mental works are carried out (Muc, 2011; Yakobson et al., 1996). One property in particular that
has been extensively studied is the buckling of single-walled carbon nanotubes (SWCNTs) un-
der axial compression. In fact, nanotubes are highly susceptible to buckling under compression,
which is a structural instability. Once the buckling of CNTs occurs, the load-carrying capabi-
lity would suddenly reduce and lead to possible catastrophic failure of the nanotubes, which
can significantly limit the loading strengths of the probing tips and compressive strengths of
nanocomposites. Even the physical properties such as conductance of a carbon nanotube can be
influenced by the occurrence of buckling (Postma et al. 2001). Hence, it is crucial to understand
the mechanism of nanotube buckling and even predict the onset of buckling in order to improve
the nanotube applications.
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To this end, continuum mechanical modeling methods and Molecular dynamics (MD) simu-
lations therefore play important roles in investigating the key characters of the structural and
mechanical properties of CNTs. Yakobson et al. (1996) conducted some of the early studies that
explored the buckling behavior of SWCNTs under various conditions including bending, com-
pression, and twisting. They proposed that classical mechanics can be employed to predict the
buckling strain of SWCNTs under strain based upon certain approximations. However, at atomic
length scale, the material microstructure becomes increasingly important and small-scale effects
cannot be ignored. In order to improve the CNT constitutive relations, many authors adopted
Eringen’s equations of nonlocal elasticity introduced by Eringen and Edelen (1972) and Eringen
(1972, 1976, 1983, 2002), and incorporated them into several continuum models (Feliciano et al.,
2011; Kumar et al., 2008; Lu et al., 2006; Peddieson et al., 2003; Reddy, 2007; Reddy and Pang,
2008; Sudak, 2003; Wang B. et al., 2010; Wang C.M., et al., 2007; Wang Q. et al., 2006; Wang
Q., 2005; Wang Q. and Wang C.M., 2007; Wang Y.Z. et al., 2010; Yang et al., 2010; Zhang et
al., 2004). The use of nonlocal elasticity relations in either Euler-Bernoulli or Timoshenko beam
models were shown to be accurate for the buckling strains of the long CNTs (Silvestre et al.,
2011; Zhang et al., 2009).
In addition, for short SWCNTs with large diameters, the nonlocal shell model with the

appropriate small length scale parameter can provide critical strains that are in good agreement
with MD results (Silvestre et al., 2011). However, for short SWCNTs with small diameters, more
work has to be done to refine the nonlocal beam and shell models for better prediction of critical
strains (Silvestre et al., 2011).
In this paper, we investigate the use of the more refined Timoshenko beam theory for mo-

deling the buckling behavior of CNTs with small aspect ratios. The nonlocal Timoshenko beam
model results are compared with the Sanders thin shell model results and validated against
MD simulations results. It will be shown herein that unlike the other beam models, the current
Timoshenko beam model can correctly reproduce the buckling strains of short CNTs that are
length dependent, and these results are relatively close to those predicted by MD simulations.

2. Nonlocal Timoshenko beam theory

The nonlocal elasticity model was first presented by Eringen (1972). According to this model,
the stress at a reference point in the body is dependent not only on the strain state at that
point, but also on the strain state at all of the points throughout the body. The constitutive
equation of the nonlocal elasticity can be written as follows

[1− (e0a)2∇2]σij = Cijklεkl (2.1)

where Cijkl is the elastic modulus tensor of the classical isotropic elasticity; and σij and εkl are
the stress and strain tensors, respectively. In addition, e0 is a nondimensional material constant,
determined by experiments, and a is an internal characteristic length (e.g., a lattice parameter,
granular distance). Therefore, e0a is a constant parameter that showing the small-scale effect
in nano-structures.
The assumed displacement field of the Timoshenko beam kinematics is

u1(x, y, z, t) = u(x, t) + zφ(x, t) u2(x, y, z, t) = 0 u3(x, y, z, t) = w(x, t) (2.2)

where φ denotes the rotation of the cross section at the point x about the y-axis. The remaining
nonzero axial and transverse shear strains are given by

εxx =
∂u

∂x
+ z
∂φ

∂x
γ ≡ 2εxz =

∂w

∂x
+ φ (2.3)
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Using Eq. (2.1), the nonlocal stress tensor components are

σxx − (e0a)2
∂2σxx
∂x2

= Eεxx σxz − (e0a)2
∂2σxz
∂x2

= KSGγ (2.4)

The nonlocal stress resultants of the axial force, shear, and bending moment are derived from
the above equations, respectively

NNL − (e0a)2
∂2NNL
∂x2

= EA
∂u

∂x
QNL − (e0a)2

∂2QNL
∂x2

= KSGAγ

MNL − (e0a)2
∂2MNL
∂x2

= EI
∂φ

∂x

(2.5)

where E, G, A and I are Young’s modulus, shear modulus, cross-sectional area of beam and
area moment of inertia of the beam cross section, respectively. Additionally, KS denotes the
shear correction factor, defined by

Q = KS

∫

A

σxz dA (2.6)

This factor corrects the assumption of constant shear strain on the cross section of the beam in
the Timoshenko model, depending on the material and geometry of the cross section.

3. Strain gradient elasticity

Solving Eq. (2.4), the nonlocal axial and shear stresses as a function of the displacement field
can be determined as follows

σ(x, z) = E
[

ε(x, z) + (e0a)
2 ∂
2ε(x, z)

∂x2
+ (e0a)

4 ∂
4ε(x, z)

∂x4
+ . . .

]

τ(x) = KSG
[

γ(x) + (e0a)
2 d
2γ(x)

dx2
+ (e0a)

4d
4γ(x)

dx4
+ . . .

]

(3.1)

Assuming (e0a)
2 ≪ 1, and neglecting the higher powers of the nonlocal parameter, (e0a)4,

(e0a)
6, etc., the solution could be simplified to

σ(x, z) = E
[

ε(x, z) + (e0a)
2∂
2ε(x, z)

∂x2

]

τ(x) = KSG
[

γ(x) + (e0a)
2 d
2γ(x)

dx2

]

(3.2)

In fact, Eqs. (3.2) can be thought of as constituting a strain gradient form of the nonlocal beam
model (Peddieson et al., 2003). Considering the strain gradient approach, for a Timoshenko beam
subjected to an external compressive and conservative force field N0, and laterally distributed
load p(x), the total potential energy Π, is given by Kumar et al. (2008) is generalized in the
presence of shear deformation effects as follows

Π =

∫

V

[Eε2(x, z)

2
− (e0a)2

E

2

(∂ε(x, z)

∂x

)2]

dv +

∫

V

[KSGγ
2(x)

2
− (e0a)2

KSG

2

(dγ(x)

dx

)2]

dv

+

L
∫

0

(

N0
du

dx

)

dx−
L
∫

0

pw(x) dx− 1
2

L
∫

0

N0
(dw

dx

)2
dx

(3.3)

where N0 is an external and axial compressive load. Thus, the second term is added to the
original equation for capturing the shear deformation effects in Timoshenko beam theory. Fur-
thermore, Chang et al. (2002) prove the original form of this equation for strain gradient theory
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without higher-order stress. They used the characteristic size coefficient (d2/6) instead of the
nonlocal parameter and derived the potential energy density using integration by parts. The last
three terms of Eq. (3.3) are also the work done by the axial load, lateral load and Von Karman
effect, respectively.

Substituting Eq. (2.3) into Eq. (3.3) and integrating over the cross-sectional area, the follo-
wing expression is obtained for Π

Π =
1

2

L
∫

0

[

EA
(du

dx

)2
+ EI

(dφ

dx

)2
+KSGA

(dw

dx
+ φ
)2]

dx

− 1
2
(e0a)

2

L
∫

0

[

EA
(d2u

dx2

)2
+ EI

(d2φ

dx2

)2
+KSGA

(d2w

dx2
+
dφ

dx

)2]

dx

+

L
∫

0

(

N0
du

dx

)

dx−
L
∫

0

pw(x) dx− 1
2

L
∫

0

N0
(dw

dx

)2
dx

(3.4)

4. Governing differential equations and boundary conditions

The classical axial force NCL acting on the beam cross-section is defined as

NCL = EA
du

dx
(4.1)

Using the above expression for NCL and ignoring the laterally distributed loads p for buckling
analysis, the variation of Eq. (3.4) with respect to u(x) and equating to zero, it can be written
as

δu(Π) =

L
∫

0

[

NCL
dδu

dx
− (e0a)2

(dNCL
dx

)d2δu

dx2
+N0

dδu

dx

]

dx = 0 (4.2)

Integrating by parts, we get

δu(Π) = [NCLδu]
x=L
x=0 −

L
∫

0

[dNCL
dx
δu
]

dx−
[

(e0a)
2
(dNCL
dx

)dδu

dx

]x=L

x=0

+

L
∫

0

[

(e0a)
2
(d2NCL
dx2

)dδu

dx

]

dx+
[

N0δu
]x=L

x=0
−
L
∫

0

[dN0
dx
δu
]

dx = 0

(4.3)

Integrating by parts again, we obtain

δu(Π) = [NCLδu]
x=L
x=0 −

L
∫

0

[d,NCL
dx
δu
]

dx−
[

(e0a)
2
(dNCL
dx

)dδu

dx

]x=L

x=0

+
[

(e0a)
2
(d2NCL
dx2

)

δu
]x=L

x=0
−
L
∫

0

[

(e0a)
2
(d3NCL
dx3

)

δu
]

dx

+
[

N0δu
]x=L

x=0
−
L
∫

0

[dN0
dx
δu
]

dx = 0

(4.4)
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Assuming the strain gradient approach in Eq. (3.2)1 for the nonlocal axial force NNL and by
some simplification, we obtain

δu(Π) =
[

NCL + (e0a)
2
(d2NCL
dx2

)

+N0
]

δu

∣

∣

∣

∣

x=L

x=0

−
L
∫

0

[dNCL
dx
+ (e0a)

2
(d3NCL
dx3

)

+
dN0
dx

]

δu dx−
[

(e0a)
2
(dNCL
dx

)dδu

dx

]x=L

x=0

= (NNL +N0)δu
∣

∣

∣

x=L

x=0
−
[

(e0a)
2
(dNCL
dx

)dδu

dx

]x=L

x=0
−
L
∫

0

[dNNL
dx
+
dN0
dx

]

δu dx = 0

(4.5)

Thus, the governing equation and boundary conditions in the x direction are derived from Eqs.
(4.2)-(4.5), as follows

d

dx
(NNL +N0) = 0 (NNL +N0)δu

∣

∣

∣

x=L

x=0
= 0

− (e0a)2
(dNCL
dx

)

δ
du

dx

∣

∣

∣

∣

x=L

x=0

= 0

(4.6)

Performing variation with respect to w(x) for Eq. (3.4) and equating to zero, it gives

δw(Π) =

L
∫

0

[

KSGA
(dw

dx
+ φ
)dδw

dx
− (e0a)2KSGA

(d2w

dx2
+
dφ

dx

)d2δw

dx2

]

dx

−
L
∫

0

(

N0
dw

dx

dδw

dx

)

dx = 0

(4.7)

Integrating by parts, we obtain the governing equation and boundary conditions for w as

dQNL
dx
= N0

d2w

dx2

[

QNL −N0
dw

dx

]

δw

∣

∣

∣

∣

L

0

= 0

[

−(e0a)2KSGA
(d2w

dx2
+
dφ

dx

)]dδw

dx

∣

∣

∣

∣

L

0

= 0

(4.8)

In the same way, applying the variational operator to φ(x) for Eq. (3.4) and equating to zero,
we obtain

δφ(Π) =

L
∫

0

[(

EI
dφ

dx

)dδφ

dx
−
(

(e0a)
2EI
d2φ

dx2

)d2δφ

dx2
+KSGA

(dw

dx
+ φ
)

δφ
]

dx

−
L
∫

0

[

(e0a)
2KSGA

(d2w

dx2
+
dφ

dx

)dδφ

dx

]

dx = 0

(4.9)

Using integration by parts, the governing equation is given by

dMNL
dx

= QNL (4.10)

and the following boundary conditions are derived

[

MNL − (e0a)2KSGA
(d2w

dx2
+
dφ

dx

)]

δφ

∣

∣

∣

∣

L

0

= 0
[

−(e0a)2EI
d2φ

dx2

]dδφ

dx

∣

∣

∣

∣

L

0

= 0 (4.11)
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Substituting the nonlocal shear force and bending moment defined in Eqs. (2.5)2,3 into the
governing Eqs. (4.8)1 and (4.10), and omitting the similar terms from both sides of the equations,
we obtain

KSGA
(d2w

dx2
+
dφ

dx

)

+ (e0a)
2N0
d4w

dx4
= N0

d2w

dx2

EI
d2φ

dx2
= KSGA

(dw

dx
+ φ
)

(4.12)

Solving Eq. (4.12)1 for φ gives

dφ

dx
=

1

KSGA

[

N0
d2w

dx2
− (e0a)2N0

d4w

dx4

]

− d
2w

dx2
(4.13)

By differentiating Eq. (4.12)2 and inserting Eq. (4.13) in Eq. (4.12)2, the transverse equilibrium
equation in terms of the lateral displacement for an axially loaded beam using a nonlocal strain
gradient theory is obtained as

[EI(e0a)
2N0

KSGA

]d6w

dx6
+
[

EI − EI

KSGA
N0 − (e0a)2N0

]d4w

dx4
+N0

d2w

dx2
= 0 (4.14)

where N0 is an external axial compressive load. This equation is similar to that obtained by
Reddy and Pang (2008) for buckling of the nonlocal Timoshenko beam using Hamilton’s Prin-
ciple.
In addition, for solving the above equation, six boundary conditions are required (three for

each end) but eight boundary conditions appear in Eqs. (4.8)2,3 and (4.11). It means that there
is one additional boundary condition for each end. So, the main objective is to select three
independent boundary conditions which can satisfy all four boundary conditions for each end.
In the next part, the boundary conditions for various beam supports are obtained.
The nondimensional form of Eq. (4.14) using length of the beam L, as a nondimensionalizing

parameter can be rewritten as

(L4µΩ)
d6w

dx6
+ L2

( 1

π2r
−Ω − µ

)d4w

dx4
+
d2w

dx2
= 0 (4.15)

where Ω and µ are the nondimensional forms of shear deformation and nonlocal parameters,
respectively, and r is the ratio of the critical buckling loads as follows

Ω =
EI

KSGAL2
µ =
(e0a

L

)2
r =
NNLcr
NLcr

(4.16)

where NNLcr is obtained from solving the Eq. (4.14) and N
L
cr is that given by classic Euler

columns for simply supported end conditions.
We may simply switch to nonlocal Euler-Bernoulli beam model by ignoring the shear de-

formation terms. Additionally, the local Timoshenko beam model is obtained by letting the
nonlocal parameter to be zero and by setting the shear deformation and nonlocal parameters to
zero, the local Euler-Bernoulli beam model appears.

5. Buckling solutions

Here we consider analytical solutions based on a linear polynomial plus trigonometric functions
different from the purely trigonometric series, for nonlocal Timoshenko beams under a constant
axial compressive load, using the buckling equation obtained in Eq. (4.14) for the clamped end
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conditions. This sixth order equation exhibits different solutions depending on the ratio r, and
the nonlocal and shear deformation parameters µ and Ω. The discriminant of the characteristic
equation corresponding to differential Eq. (4.14) is defined as follows

∆ =
[EI

N0
− EI

KSGA
− (e0a)2

]2
− 4
[EI(e0a)

2

KSGA

]

= L4
[( 1

π2r
−Ω − µ

)2
− 4µΩ

]

(5.1)

If ∆ > 0, one of the solutions is

w(x) = c1 + c2x+ c3 sin(Px) + c4 cos(Px) + c5 sin(Qx) + c6 cos(Qx) (5.2)

where c1, c2, . . . , c6 are constants of integration and determined by six boundary conditions.
P and Q are given by

P =

√

√

√

√

√

EI
N0
− EI
KSGA

− (e0a)2 −
√
∆

2
[

EI(e0a)2

KSGA

] Q =

√

√

√

√

√

EI
N0
− EI
KSGA

− (e0a)2 +
√
∆

2
[

EI(e0a)2

KSGA

] (5.3)

If ∆ < 0, the other solution is defined as

w(x) = c1 + c2x+ c3e
Rx cos(Sx) + c4e

Rx sin(Sx) + c5e
−Rx cos(Sx) + c6e

−Rx sin(Sx) (5.4)

where R and S are

R =
1

2











KSGA

EI(e0a)2



2 +
EI
KSGA

+ (e0a)
2 − EI

N0

e0a
√

EI
KSGA





2










1

4

S =
1

2











KSGA

EI(e0a)2



2−
EI
KSGA

+ (e0a)
2 − EI

N0

e0a
√

EI
KSGA





2










1

4

(5.5)

The first solution in Eq. (5.2) is found to be valid depending on the sign of ∆. Therefore, the
second solution is not used in this research and is only stated for completeness.

5.1. Clamped beams

Regarding the classical continuum mechanics for clamped boundary conditions, the deflection
and rotation of the cross-section are zero at each boundary. Thus, we use these classical as well
as the newly derived boundary conditions in Eqs. (4.8)2,3 and (4.11) to derive the following
boundary conditions. To this end, we satisfy all four boundary conditions, as defined in Eqs.
(4.8)2,3 and (4.11) for each end

w = 0
dw

dx
= 0 [N0(e0a)

2]
d5w

dx5
+ (KSGA−N0)

d3w

dx3
= 0 (5.6)

Substituting these boundary conditions in Eq. (5.2) and setting the determinant of the coefficient
matrix to be zero, the critical buckling load is derived as

Ncritical =
4π2L2EIKSGA

L4KSGA+ 4π2L2EI + 4π2L2(e0a)2KSGA+ 16π4EI(e0a)2
(5.7)

The critical buckling load using the dimensionless parameters µ and Ω is

Ncritical =
4π2EI

L2

[ 1

1 + 4π2(µ+Ω) + 16π4(µΩ)

]

(5.8)

This equation may be transformed into the nonlocal Euler-Bernoulli theory, for the shear para-
meter set to zero, Ω = 0, or classical Timoshenko beam theory, for the nonlocal parameter set
to zero, µ = 0, or classical Euler-Bernoulli beam theory, for both the shear and the nonlocal
parameters set to zero, Ω = µ = 0.
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6. Numerical results

6.1. Comparison of critical buckling loads for beam theories

In this section, we consider numerical solutions for CNTs modeled as nanobeams with circular
cross sections. The numerical results are presented in the form of graphs and tables for different
types of end conditions, using the following effective properties of carbon nanotubes (Reddy and
Pang, 2008)

E = 1000GPa G = 420GPa d = 1nm

KS = 0.877 I =
πd4

64
= 0.049 (nm)4 A =

πd2

4
= 0.785 (nm)2

(6.1)

A plot of the critical buckling loads for the nonlocal clamped Timoshenko beam with different
values of shear deformation and nonlocal parameters is presented in Fig. 1.

Fig. 1. Plot of the ratios of buckling loads for different values of µ and Ω

As illustrated in Fig. 1, the solid lines for Ω = 0 denote Euler-Bernoulli beams which are the
upper bound solutions. By increasing the shear deformation parameter, Ω, the critical buckling
loads decrease. The effect of shear deformation is quantified for different boundary conditions.
This effect is negligible for L/d ratios more than 20 (or Ω less than 0.0005), but significant by
increasing the Ω, for L/d ratios less than 20. As we are discussing about the short CNTs (i.e.,
2 < L/d < 8), this effect is visible. In fact, the shear effect is independent of µ parameter. It is
effective for deep beams in the whole analyzed range of µ.

Moreover, the intersections of the curves and the y-axes (i.e., µ = 0) are the ratios of the
local critical buckling loads. Specifically, for Ω = 0, these values are the same as the local
Euler-Bernoulli beam solutions.

Furthermore, the comparison of the ratio of the critical buckling loads, r, for clamped end
conditions and with respect to the nonlocal Euler-Bernoulli, Timoshenko and exact Timoshenko
solutions are presented in Table 1.

As it may be observed from Table 1, the first row of the table indicates the local form (i.e.,
µ = 0), and in this state the solution of the nonlocal Timoshenko beam without higher-order
boundary conditions and exact nonlocal Timoshenko beam are the same. This is because of
ignoring the nonlocal parameter that leads to ignoringthe higher-order boundary conditions.

In general, the shear deformation and nonlocal parameters have the effect of reducing the
buckling loads. This effect is the most significant for clamped beams (up to 7%) and the least
significant for cantilever beams (about 1%).
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Table 1. Comparison of the ratio of the critical buckling loads for clamped beams with respect
to nonlocal Euler-Bernoulli, Timoshenko and exact Timoshenko solutions

Ω = 0.00170 Ω = 0.00075 Ω = 0.00042

µ NEBT NTBT Exact r µ NEBT NTBT Exact r µ NEBT NTBT Exact r

0 4.0000 3.7491 3.7491 0 4.0000 3.8845 3.8845 0 4.0000 3.9342 3.9342

0.0025 3.6407 3.4317 3.4123 0.0011 3.8335 3.7273 3.7228 0.0006 3.9030 3.8403 3.8389

0.0100 2.8678 2.7365 2.6880 0.0044 3.4080 3.3238 3.3096 0.0025 3.6408 3.5861 3.5808

0.0225 2.1184 2.0458 1.9855 0.0100 2.8678 2.8079 2.7850 0.0056 3.2727 3.2285 3.2188

0.0400 1.5509 1.5117 1.4536 0.0178 2.3492 2.3089 2.2813 0.0100 2.8679 2.8339 2.8207

6.2. Validation of critical buckling strains

In this subsection, the numerical results for critical buckling strains obtained from this con-
tinuum mechanics theory are compared with those obtained from MD simulations and the
Sanders shell theory (Silvestre et al., 2011). Since the MD simulations referenced herein consider
the CNTs with fixed ends, we also consider the NTBT model with fully clamped boundary
conditions. In addition, CNT(5,5) is analyzed with a diameter d = 6.71 Å and CNT(7,7) with
a diameter d = 9.40 Å, for different lengths. Both nanotubes are modeled using a thickness
h = 0.66 Å, Young’s modulus E = 5.5TPa and Poisson’s ratio ν = 0.19 (Yakobson et al., 1996).
The lengths of CNTs used in the following table are extracted from the work done by Silvestre
et al. (2011). The results from MD simulations, nonlocal Timoshenko beam and Sanders shell
models are compared in Table 2.

Table 2. Comparison between critical buckling strains of CNT(5,5) and CNT(7,7) obtained
from MD simulations, Sanders shell theory (SST) and proposed nonlocal Timoshenko beam
theory (NTBT)

L [Å] d [Å] MD NTBT SST
Local Global
buckling buckling

16.09 6.71 0.08146 0.08461 0.08729 0.08779 0.85862

21.04 6.71 0.07528 0.08280 0.08288 0.08050 0.50210

28.46 6.71 0.06992 0.06964 0.07858 0.06955 0.27430

28.29 9.40 0.06514 0.06568 0.06582 0.06164 0.54467

40.59 9.40 0.04991 0.05825 0.05885 0.05384 0.26469

52.88 9.40 0.04710 0.04607 0.05600 0.04776 0.15591

It is seen that the critical buckling strains are in good agreement as compared with the results
obtained from MD simulations as well as Sanders shell theory. Moreover, the results show that
unlike the other beam theories, this model could capture correctly the length-dependent buckling
strains of short CNTs for the mode of shell-type buckling. In fact, the available beam models
are unable to show the correct trend in critical axial buckling strains of short CNTs, while
the proposed nonlocal beam model shows much better agreement with the molecular dynamics
simulation results.

Finally, based on the MD simulation results, the value of nonlocal constant is determined
for CNTs based on an averaging process. The best match between MD simulations and nonlocal
formulations is achieved for a nonlocal constant value of e0a = 0.3 for CNT(5,5) and e0a = 0.53
for CNT(7,7) with good accuracy (the error is less than 10%).
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7. Conclusion

A nonlocal Timoshenko beam model was developed and buckling behavior of CNTs was analyzed
using a mixed approach based on the strain gradient theory and variational method of total
potential energy. This approach provides governing equations and variationally consistent sets
of boundary conditions for various end supports.

In addition, the exact and closed-form eigenvalues of the nonlocal critical buckling loads
for nanobeams with clamped end conditions were investigated, which are more complete and
accurate compared with those available in the literature. These solutions could simply be reduced
to the nonlocal Euler-Bernoulli, classical Timoshenko and classical Euler-Bernoulli beam models
by ignoring the nondimensional shear deformation parameter Ω, nonlocal parameter µ or both
of them, respectively.

Moreover, the small-scale effects and shear deformation parameter are specifically highligh-
ted for this model using higher-order boundary conditions. In this case, it is clearly observed that
the critical buckling loads obtained from Eq. (5.8) for clamped nanobeams are always smaller
than those predicted by the classical model. In fact, the nonlocal parameter µ and shear de-
formation parameter Ω have the effect of reducing the buckling load. For the short CNTs (i.e.,
2 < L/d < 8), the shear effect is visible and effective for the whole analyzed range of µ.
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Analiza wyboczenia krótkich nanorurek węglowych na podstawie zmodyfikowanego

modelu belki Timoszenki

Streszczenie

W pracy zaprezentowano nową metodę analizy problemu wyboczenia krótkich, obustronne zamuro-
wanych nanorurek węglowych (tzw. CTN – Carbon NanoTubes) z uwzględnieniem zjawisk małoskalowych.
Na podstawie nielokalnego sformułowania kinematyki belki Timoszenki opracowano teorię gradientu od-
kształcenia oraz metodę analizy wariacyjnej, wyprowadzono równania konstytutywne wyższego rzędu
i odpowiadające im warunki brzegowe, do tej pory z rzadka stosowane w tego typu zagadnieniach. Na-
stępnie rozwiązano równania modelu, z których wyznaczono dokładną wartość krytycznego obciążenia
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prowadzącego do wyboczenia. Użyto w tym celu kombinacji funkcji wielomianowych i trygonometrycz-
nych zamiast szeregów wyłącznie trygonometrycznych. Zbadano również wpływ współczynników skali,
proporcji oraz odkształcenia postaciowego na wyboczenie utwierdzonych nanorurek CNT. W trakcie sy-
mulacji numerycznych dynamiki molekularnej modelu wykazano dobrą zbieżność otrzymanych wyników
z powłokowym modelem Sandersa. Potwierdzono, że – w odróżnieniu od innych teorii belek – zastoso-
wany model dokładnie odzwierciedla efekty małoskalowe przy opisie powłokowego wyboczenia krótkich
nanorurek CNT.
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