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Introduction

The aim of the present paper is the analysis.of interactions between the structure footing
and the subsoil, surface of which undergoes subsequent changes of configuration. The in-
fluence of the deformation of subsoil upon the structure behaviour has a deep significance
in the problems concerning the foundation of buldings on the grounds suffering mining
damage. Elastic plates and beams as well as arbitrary deformable structures of rigid foo-
tings were considered. The following two facts were taken into account: 1° — the possi-
bility of losing the contact between the structure foundation and the subsoil, 2° — a diffe-
rent character of the reaction of subsoil in primary and secondary deformations of the
subsoil, according to the concept of a partly elastic subsoil, given in [1]. The solutions
were obtained for the special case of structures with a rigid footing.

Denotations. The symbol &, stands for the sum ay+a,+ ... +a,, at the same time
@y = a, for n = 0. Thus, a, = a,—a,_, are increments of quantities @,_, forn = 1,2, ...,
K—1. The quantities aq, ay, ..., a, are referring to subsequent states of the structure
foundation, the subsoil, as well as their mutual interactions. The subsequent states are
distinguished by indices 0,1, ..., K. The state distinguished by the index O is an initial
state, the states denoted by the indices 1, 2, ..., K—1 are subsequent intermediate states,
whereas the state denoted by the index K is a final state. It is assumed that with the passage
from the n-th state to the state n+ 1, at least one of the quantities occuring in the problem
under consideration is changed.

1. Deformations of the subsoil boundary surface

The subject of consideration will by now the deformations of the subsoil boundary
surface, which will occur in geological processes or mining exploit i.e. without any outer
loads acting at the subsoil from the structure. Let us consider Fig. 1, where 4, is the bounda-
ry surface of the underformed subsoil in the vicinity of the bulding structure we are intere-
sted in. It is assumed that 2 is a regular region on the plane Ox,x,. Each point P(x,, x3)
in the region 2 can be projected along x, — axis on the boundary surface 4, of the un-
deformed subsoil. Hence 4, will given by the formula

Xy = fg(xy, X3); (%, x3) € 2. (1.1)
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It 1s assumed that:
1° — A, is a smooth surface, i.e. there exist the derivatives

oy - Oilg

— fy 3 =
) 0,3 .
0x, 0x3

U, =

2° — A, is a shallow surface, i.e.

Xy

Fig. 1

The conditions given above concerned the boundary surface A, of the initially un-
deformed subsoil. Let us deal now with a description of the unloaded but deformed sub-
soil boundary surface, due to the effects of n subsequent changes of geological processes,
where n = 1, 2, ..., K. This boundary surface will be denoted by 4,, being the result
of n subsequent subsoil deformations, cf. Fig. 2. The parametric equation of the surface
a4, is:

X, =a(x/,x3), i, x3)el, n=1,2;..,K (1.2)

Like in the case of the surface 4,, it is demanded here, as well, that the surface 4, be
smooth, i.e.:
i, r ou,

U1 = ax ’ un.3 ax >
1 3

and shallow

ou,
0Xy

€1, a=1,3.

Increments i,(x;, x3)—,_,(x;, x3) for n = 1,2, ..., K will be designated by u,(x;, x3)
i.e.
Uu(Xy, X3) = (X, X3) =y (X, Xx3), for n=1,2,..,K

assuming also that wy(x;, x3) = @,(x,, x3) (compare the denotations in the beginning
of the paper).
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Fig. 2
2. Deformations of the structure foundation footing

Let us assume, on the basis of Fig. 3, that in the region £ the bulding structure pro-
Jection IT upon the plane x, = 0 was given. In the projection those structure elements
are neglected which cannot have a contact with the subsoil. Moreover it is assumed that
IT is a subregion of 2, IT c Q. The structure footing after it is founded on the surface
subsoil 4, is designated by S,. The parametric equation of the footing S, will be

Xy = @(xy, x3), (X1, x3) €ll. @.n

X3

Xy

Fig. 3

Like in the case of deformations of the boundary subsoil surface, it will be assumed that:
1" — S, must constitute a smooth surface, i.e. there exist the derivatives

-, oW, L, oW,
0o, = y  Wo3 = ——,
0.1 axl 0,3 ax3
2’ — S, is a shallow surface; i.e
aw°<l,' 2 = 1 435,
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Founding a bulding structure on the subsoil and assuming that the possibility of its being
loaded can occur at many time instants, deformations shown in Fig. 4 will take place
and instead of (2.1) we shall obtain

Xy = Oy(xy, X3), (%, x3) €11, 2.2)

The above formula being the parametric equation of the surface S,. It can be seen that the
structure footing will pass from S, to S, and the subsoil boundary surface will pass from
Ay to 4,.In bothcasesn = 1, 2, ..., K. Itis required here, as well, that each S, should have
the properties 1’, 2'.

Xy

Fig. 4

It is to be pointed out that the consequence of the assumptions 2° and 2’ will be the
possibility of neglecting the friction forces between the subsoil and structure footing.
Increments W,(x;, X3)—W,_, (x;, x3) forn = 1, 2, ..., Kwill be designated by w,(x,, x3)

i.e. °
wn(xlixl'a) = ﬁ’n(xli xJ)—ﬁ)n—l(xlixJ) fOI' h = 1!2! "':K! (23)

assuming also that wo(x,, x3) = Wo(xy, X3).

3. Interaction between the structure footing and the subsoil

Founding the structure on the subsoil, the deformation of the subsoil is caused. The
cause of the deformation can be both, the action of external forces transferred through
the structure footing on the subsoil, as well as the deformations of the subsoil boundary
surface resulting from the mining exploit. The first subsoil deformation due to the loadings
is distinguished as a primary one and occurring after it, a secondary one. The notion of
a subsoil primary deformation is usualy treated as a certain stipulated notion, being not
strictly defined. Namely, there appear some doubts whether the very small subsoil displa-
cement, caused by the foundation transferring only small loods, can be recognized as pri-
mary. In such a case, the soil parosity remains practically the same after the deformation
as it was before. Such cases occur seldom in practice. For practical purposes a minimal
penetration A of the structure fooling in a subsoil should be taken into account, which,
in a sufficient way, would condition the possibility of treating further subsoil deformation



STRUCTURES ON THE PARTLY 497

as secondary. Having taken into account the above remark, a definition of primary subsoil
deformations will be formulated, cf. Fig. 5.

By the subsoil deformation at the point P(x,, x3) €/l after the n-th change of its
configuration we shall mean the number 5,,(x1, Xx3) defined by

6‘;!(x1’ x3) = ﬁ'In(xl’ x3)—ﬁn(x1, X3), h = Os l’ sevy K, (31)

assuming that it is not negative. When Sn(xl, Xx3) < 0 then the subsoil deformation is
assumed to be equal to zero.
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By the primary deformation (or more precisely A-primary, where h >0 is a given
"number) at the point (x, x3) € /I we shall mean the deformation 6,(x;, x5) fulfilling the
conditions:

for n =0 o(xy, x3) > h
8,(x,, x3) > h and

8,:(xy,x5) <h for I[=0,1,..,n-1.
The above conditions result from the inequalities

Wa(Xy, X3) > Un(xy, X3)+h,

wi(xy, x3) € #(xy, x3)+h for [I=0,1,..,n—1,
Wwhere the positive number 4 is interpreted as a minimal penetration of the structure footing
in the subsoil, the exceeding of which changes physical properties of the foundation.

Let us designate by p,(x,, x3) the subsoil reaction to structure footing after the n-th
change of its configuration, p.(x;, x3) < 0. The reaction increments for n = 1,2, ..., K
will be denoted by p,(x,, x3) i.e. pu(Xy, X3) = Pa(X1, X3)— P (%1, x3) forn = 1,2, ..., K
assuming also that po(x,, X3) = Po(xy, X3).

~Analogously, the deformation increments will be defined by §,(x,, x3) = 5,.(x1, X3)—
—3dn_1(xy, x3). Let us introduce the following basic assumptions about the interaction
between the structure footing and the subsoil:

1° —if 5,,(x, , X3) is a primary deformation at the point (x,, x;) € /] then the reaction
Increment at this point is equal to:

Pa(X1, X3) = —k(xy, x3) 6,(xy, x3)
where k denotes the known Winkler coefficient.

forn >0

12 Mech. Teoret. i Stos. 3-4/84
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2°—if 8,(x,, x3) is not a primary deformation at the point but it is positive,
8a(x,; X3)> 0, then the reaction increment of this point is equal to:
PalXy, X3) = —xk(xy, X3) 8,(xy, Xx3)
where x, 2 > 1 designates the subsoil inelasticity coefficient [1].
3° —if 6,(x,, x3) is not positive at the point (x,, x3) €1/, 8n(xy, x3) < 0, then the
total reaction at this point is equal to:
Pu(X1,x3) =0 Qe.  pu(x1, X3) = =Py (X1, X3).

On the basis of the assumptions introduced above it is possible to call the subsoil
interacted with the structure footing, a partly elastic subsoil (or more precisely the A-
partty el/astic subsoil since the quantity 4 in included in the definition of this subsoil).

J. Kwiatek in his paper [1] suggested the notion of a partly elastic subsoil affected both
by outer loads as well as by the changes of the boundary surface subsoil curvatures under
the structure footing, and proposed and evaluated the coefficient », which is to be applied
both at the secondary loadings as well as at the unloadings. The numerical values of the
coefficient » was given in [1] on the basis of experiments. According to the theoretical
model suggested above, it seems that the experimental model penetration should be de-
fined to a conventional minimum depth A, A > 0, according to the interpretation of this
quantity accepted above. _

In many problems it can be assumed that the condition 50(x1 , X3) > h occurs for each
(x1, x3) €1l i.e. the primary deformation can only take place before the first change of
the configuration i.e. for n = 0. It seems that such an assumption was silently accepted
in the paper [1]. In this case the reaction p (x,, x3) of the foundation after the n-the change
of its configuration is determined by the conditions:

14 Po(x1s x3) = k(x1, x3)8o(xy, x3) for each  (x,, x3) €1l

2 0f 8(xi, x3) >0 then  py(xy, x3) = —xk(xy, X3) 8,(xs, X3),

3 if 8,(x,x) <O then Fu(xi,x) =0 i p,(xi, Xs) = —Pues(ry, X3).
Conditions 2’, 3" hold only if n = 1,2, ..., K, where K is the number of all changes of
the subsoil configurations and changes of the loadings.

4. Elastic plates on the partly elastic subsoil

We are to confine ourselves to the linear theory of thin elastic plates, cf. [2]. It is
assumed here that the plate deflections are relatively small as compared with the plate
thickness. We also assume that the plate edges can shift freely in the plate middle plane.
We restict ourselves to the equilibrium plate problems. The scheme of plate loadings and
deformations is given on Fig. 6, i.e. after the n-th change of the subsoil configuration,
q. being the n-th change of the plate load (thus the possibility of subsequent K changes
of the plate load is assumed).

The governing equation of the plate normal displacement, plate being made of homo-
geneous isotropic material, has a known form

v4 — g =2
b D’
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where: w is the plate deflection, ¢ is the load, D = Eg3/12(1 —»?) is the rigidity of the
plate in which g is the thickness of the plate, E is Young’s modulus, and » is the Poisson’s
ratio. In the Cartesian coordinates x;, x; this equation is

q
W, 3333 F2W, 3311+ W, 1111 = D’
where w = w(xy, x3); (x;, x3) €/1. The deflection w is to fulfill the above equation at

each point of the region J1. This equation has to be complemented with the boundary
conditions on the free edge 91, of the region 17, given at the end of this section.
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Fig. 6

In the case of taking into consideration the reaction of the subsoil, the plate equation
will have the form:

qn(xl ’ x3) +5n(xl L) x3)
D

thus, it will also hold for the increment

V“ﬁ)n(xl > x3) =

for n=1,2,....K, (x,x;3)€ll,

flnﬁf}vg x3) +pa(X1, xsﬁ)r
D
together with the conditions on the free edge /1.
On the basis of the formulae cited above, we shall determine the equation for the ela-
stic plate on the partly elastic subsoil. And so we shall get:
1° — if the deformation 8,(x,, X3) is primary at the point (x,, x3) €17, then

Viw(xy, x3) = for n=0,1,..,K, (xq,x3)ell

qn(xl > x3)+kun(xl > x3)
D b

V4wn(x1 s x3)+ %wn(xl » x3) I

for such (x,, x;3) €1, for which
iZ”n('xls x3) > an(xl) x3)+h and
ﬁ",(xl,x;;)S ﬁl(xl,X3)+h for 1=0, 1,...,"—1.
2° —if the deformation &,(x,, x3) is not primary at the point (x,, x3) €/7 and itis
positive, then

k
V4w"(xl ] x3) S —,_{le— Il(x1 ’ xs) = q"(xl - x3) +x u"(xl > x3)

D b

12+
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for such (x,, x,) €1, for which
On(X15 X3) > Uy(Xy, X3)+h
and for which there is such /, 0 < / < n, that
®(x1, x3) > u(xy, X3)+Ah.
3° — if the deformation at the point (x;, x;) € IT does not occur i.e. 8,(x;, X3) < 0,
then

qn(X1, X3)—Pa-1(x1, X3)
D

Véw(xyg, x3) =

for such (x;, x3) for which
®(X1, X3) < (X1, X3).
If a primary deformation of the subsoil takes place at the first loading, i.e. if
@o(Xy, x3) > #o(xy, x3) for each (x;, x;)ell,
then the conditions 1°, 2° 3° will assume the form, respectively:

qo(xy, X3) +kuo(xy, X3)
D

assuming that for all (x;, x;) € /7 the condition is fulfilled

Wo(Xy, X3) = uo(xy, X3)+h

k
1° —V4Wo(x1, x3)+ 3 wO(xl ’ x3) -

which should be'checked after the solution of the problem (after finding wo(x;, X3),

(xl H x3) GH)'
20 ——V“w,,(xl, x3)+ _fl])i "(xl’ xs) L= q,.(xl, x3)+l7)‘kun(xl’ x3)

for such (x,, x3) €Il and n = 1,2, ..., K for which
Wa(Xy, X3) > (1, X3).

20 V“w,,(xl " x3) £ qn(xl ’ x3) _gn—l(xl ’ x3)

X3

on

Xy
Fig. 7
for such (x;, x3)€ll and n =1, 2, ..., K for which
wn(xly x3) < &n(xl’ x3)'

Each of the cases considered is to be complemented, according to the theory of plates,
with the following two boundary conditions (viz. Fig. 7):
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M3cos?a+ Misin?a—2M}j sineecose = 0
n n s a n 2 T n mes (41)
(Q;,cosa+lema)——a§ [M3 (cos?o—sin?a)+ (M5 — M{)sinacosa] = 0

in which the following were designéted

M3, = — M2y = D(1—9) 3)212';;3, 4.2)
0= -2 (T ),

o [o2*w 0w
L Lo n + n
Ql. = ox, ( ox3 ox3? )’

S being on are co-ordinate along the boundary. We are still maintaing the convention
that the quantity after the n-th change of configuration or loading is overlined by a ,,tilde’’
over it, while the quantity increments do not have a ,,tilde” over them.

The solution of the plate problem lies in determining the function w, = w,(x;, X3)»
n=20,1, .., K, fulfiling for each (x;, x3) €Il one of the conditions: 1° 2° or 3° and
such that the boundary conditions (4.1) are fulfilled for all those (x,, x3) € /I for which
the unit normal n exist. After determining wn(x,, x3) from the formulae (4.2), bending
couples M7 and M?% and torques M", can be calculated from Egs. (4.2). If, having deter-
mined wq(x,, x3) it will turn out that for each (x;, x1) € IT exists wo(x;, X3) > to(x;, X3)+
+h then we can only apply the conditions 2’ and 3’ further on, instead of 1°, 2°, 3°.

5. Elastic beams on a partly elastic subsoil

The equilibrum of elastic beams on a partly elastic subsoil is treated like the equili-
brium of elastic plates, the basic equation has the form (Fig. 8 for x = x,)

d*w(x)  q(x)
d* ~ EJ

for I, <x<l,

in which the plate rigidity D was replaced by the beam rigidity EJ, and
w = w(x) = w(x,,0).
The boundary conditions have now the form

*w Pw
F T P

for x, = I, and x, = I, (Fig. 8). The interaction conditions 1°—3° and 1'—3’ for the plate
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also hold for the beam if x; = x and if the dependence of the function wy, g, ts, n =
=0, 1, ..., K on the variable x5 is neglected.

X1

Y

X3

Fig. 8
6. Structures with rigid footing on a partly elastic subsoil

Let us assume according to Fig. 9 that any point P(x,, x;) €1l, of the structure on a
rigid footing, is displaced under the influence of structure load and subsoil configuration
changes. Since the structure undergoes only rigid deformations, the position of the point

P(x,, x3) is determined by
Bu(X15 X3) = Dot X3 Pp— X1 P (6.1)

e

X2 X4 2‘
Pn
A=) i I H AR v

X2

Fig. 9
The equilibrium condition of the forces acting upon the structure footing has the form

Rot [ Balxy, x3)dx, dxs =0, (6.2)
I

where R, is a resultant (in the direction of the axis x,) of the loads acting from the structure
on its footing.
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The remaining equilibrium conditions arc

MO+ [ Bulxy, X3)x, dx,dxs = 0,
i V14

6.3)
MO+ [ Palxr, x3)x3dx,dxs = 0,
7

where M$®, M are the couples (with respect to the axis x; and x, respectively) due to
the loadings acting from the structure upon its footing. It is assumed that that equations
of equilibrium not mentioned here are fulfilled identically, i.e. all the forces act parallel
to the axis x,. Equilibrium conditions analogical to (6.1) and (6.2) as well as (6.3) also
hold for the increments:

wn(xl ’ x3) J 19"+x3(p_xl Wn’ (64)
and

Ryt [ pu(xy, x3)dx, dx; =0,
7
MP+ [ pa(xy, x3)x,dxydx; = 0, 6.5)
7

MO+ [ p(xr, ¥3)xsdx, dxy = 0.
Vi

The basic unknowns are now the numbers &,, ¢,, v, for each n = 0, 1, ..., K. Each of
the triples of these number will be determined from the three equations (6.5) assuming
that R, (the increment of the resultant of normal loads acting upon the structure footing)
and M and M{" (the couples increments acting upon the structure footing after the
n-th change of its configuration) are known. The increment of the subsoil reaction p,(x, X3)
is to be distinquished here, by the conditions 1°, 2°, 3° included in section 3. It leads to
the equations:

Rn+ J _k[19+x3¢n_xl y)n'_un(xl ’ x3)]dxl dx3+

i
s f_"k['ﬂ‘i‘xsfpn—xlw_”n(xl’xa)]dxldxa_ fﬁn—l(xly X3)dx,dx; = 0,
3 s
M§13)+ f—kxl [19,,+x3(p,,—x11p,,—u,,(x,,x3)]a'x1dx3+
I
+ f—xkxl[ﬂn'i'xii(pn—xl y)n_uu(xlyxii)]dxl dx3_ fijn—-l(xls x3)xldxldx3 == 0,
i m
Mﬁl)_'_ _{ _kx3 [‘ﬂn+x3q7n_xl y)n_“n(xl ’ x3)]dxl dx3+
I
+ [ =kt xa =1y e, xa)]drndrs = | o (51, 330335, = O,
n: i

where 11} is a set of all those (x,, x3) €I for which &,(x,, x3) is primary and M2 is a set
of all those (x,, x;) €7 for which 8,(x,, x3) is not primary but is positive, and M3
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is a set of all those (x,, x3) €I for which Sn(xl, x3) € 0. It is to be pointed out that
in the general case the regions I7,}, I12  IT? are disjointed and not known a priori. For all
(x,, x3) € IT? there is no contact of the structure footing with the subsoil, i.e. p(x;, x3) = 0
if n =0 then Ry = Ry, M = M§», M = M§» and for n = 0 it is to be assumed
Pn—1 = 0, both in the above and further equations. The above conditions lead to the set
of equations:

8 [ fes, x)dridss 4 k(xy, x3)dx dxs) + f k(xy , x5) xadxy iy +
IIn

IIn IIn
+ 2 fk(xl , X3)X3dx, dxg) + vy, (— fk(x1 > X3) Xy dX, dx;—
n? i

—n fk(xl, X3) X dx, dx3) = R,+ fk(xl, X3)u(xy, X3)dx, dxs+

o 1
+x fk(xx » X3)Un(Xy, X2)dXydxs— fﬁn-—l(xl » Xa)dx, dx;.
o m

Ba( [ Crrs x)xydnydng +x [ kCer, x)xidx dos) +
o

i

+‘Pn( fk(xx,xs)xxxsdxxdxs‘f'” fk(xx,xs)xxxadxxdxs)'f'
m n?

tgn (= [ Ko, xa)(eodridrs —x [ ke, x5) (e1)?dx, ds) = MED +
o m? (6.6)
+ fk(xx » X3) X1 Un(Xy, X3)dx dxs+ fk(xx » X3) Xy Un(Xy , X3)dxy dx3 —
I ar
= fﬁn—l(xl » X3) X dx dx;.
ITW3

Ba( [ KCre, xa)xadrydxg 3 [ kGry, xs)xsdy dxs) +
m o
+u ([ ke x0) (es)dx dxg 5 [R(xy, %) (s, dcs) +

i o

+ Y (— fk(xl » X3) Xy Xy dx; dx;—x fk(xx » X3) Xy X3 dxy dxs) = M{P+
m s
aF f k(xy, Xx3)x3up(Xy , X3)dxy dxs+% fk(xl s X3) X3 Un(Xy, X3)dXdXs—
s m:
= fﬁn—l(xl » X3) X3dxydxs
1
for #,, @,, ya. The total values of the displacements and rotations are equal to By = P+
P14 oo 4P o= Po+ @i+ .. +@Pn; Pa = Po+y;+ ... +9a, respectively. The final
position of the structure footing will be determined by Eq. (6.1).
Essential difficulty in solving the above three equations lies in the fact that regions
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IT}  I12,IT3 are not known in advance but are expressed by the conditions given in Sec. 3.
This means that:
I —(xy, x3) ell;
for n =0 Wwo(xy, x3) > to(xy, X3)+h
for n = 0 w,(xy, x3) > #,(x,, x3) and w,(x;, x3) € w,(x,, x3)+A.
2—(xy, x3) ell?
if w,(xy, x3) > #,(x;, x3) and (x;, x3) does not bélong tp 11).
3— (xy, x3) €Il

if W,(xy, x3) < @,(x,, x3) i.e. the contact between the footing and subsoil does not take
place.

The above problem can be solved in an elementary way, if the deformations are primary
for each (x;, x3) €1 before the first change of subsoil configuration. Thus

Do+ X3P0— X1 9o = to(xy, X3)+h for each (x, x5) ell. 6.7)

The second condition is the lack of contact loss of the structure footing with the subsoil
ie.

Botxs Gy=x P 2 Gy(x, %3) Tfor  each (x,, x)ell, n=l.2, .., K: (68

These conditions can be checked, however, only after the problem has been solved,
since 9, @o, wo and &y, Pa, P, 7 = 1,2, ..., K occurring only in the conditions (6.7),
(6.8) are unknown. When the conditions (6.7), (6.8) are fulfilled, then in Egs. (6.6) for
n = 0 integrals over I7? do not occur (because for n = 0 only primary deformations take
place) and I1} = IT as there is no loss of contact of the structure footing with the subsoil.
By analogy, for n = 1, 2, ..., K integrals over II} do not occur and IT? = I1.

Let’s assume that the assumptions (6.7) and (6.8) are fulfilled and let’s take the coor-
dinate system Ox, x5 on the plane in such a way that:

fk(xl » X3)Xzdxdx; = 0, { k(xy, x3)x,dx,dx; =0,
n I

6.9)
fk(XI, X_-,)xl Xdel ({.\’3 = 0.
7
Moreover, let us denote
A= [k, xdeidss, L= [k, %) (x)%dx, dxs,
- o (6.10)

L= [kxi, %) (e,)?dx, dxs.
¥

If k(x,, x3) = k = const. for each (x,, x3) €lT i.e. if Winkler’s coefficient is constant,
then the coordinate axes on the plane x, = 0 are obviously the main central axes of the
region I7 and A/k, I, [k, I /k are a surface of the region /I, and the main central inertia
moments of this region, respectively. The co-ordinate system x,x; fulfilling the above
conditions always exists because of k(x,, x3) > O the numbers 4, I, I5 are always po-
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sitive. The set of equilibrium equations (6.6) for n = 0 will have the following form now

9o d = Ro+ [ k(xy. x5 uo(xy, x3)dx, dxs,
n
@oly = M®+ fk(-xl, X3) Xauo(Xy, X3)dx, dx;,
n

—poly = MO+ [ k(xy, x3)%,uo(xy, X5)dx, dxs
n

and for the increments n = 1,2, ..., K

DA

R, +x fk(xx s X3)Uy(Xy, X3)dx,dxy,
bé

Paxly = M+ fk(xl, X3)X3Un(Xy, X3)dx, dx;,
b74

—yurly = MO+ [ kQxy, x3)xqu,(x0, x3)dx, doxs
b4

From the above formulae we shall obtain

- 1 [~
Jo = =1 [Ro+ fk(xx, x3)to(Xy, xa)dxxdxs]’

74
~ 11~
Fo = 72 [M(()s)‘i‘ fk(xx, X3)x3uo(xy, xs)dxxdxs]’ (6.11)

o) n
= i
= Yo = —Z [MS =t fk(xx, X3) Xy to(Xy, X3)dx, dxs]'
it

.., K, on the other hand, we shall get

= Po

=V)o

1 i 1 2 =3
Ji = ;)‘FH[R::‘H‘J/C(XU X3) (x4, xa)dxxdxa],

1-— —1) + i [151,‘.3)+x fk(xl , X3) X, 4,(xy, x3)dx,, dx3], (6.12)
xI, #

*
1 I [~ ~

1—— +~—lM,(. Y4 % fk(xl,x:,)xgu,,(xl,X3)dx1,dx3].
® HI3 b7 4

It is to be emphasized that the formulae (6.11) and (6.12) are to hold only when the condi-
tions (6.7) and (6.8) are fulfilled. If the conditions (6.7) and (6.8) are not satisfied, then
the formulae (6.11) and (6.12) do not represent the solution of the problem and cannot

be applied.

In order to draw attention to inelastic features of the subsoil let us consider a case
in which #x = 0 and let us assume that Rg = 0, M{" = 0 and M@ = 0.
This means that we have taken the whole load off the structure under consideration.

bt
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Then, according to the formulae (6.12), for n = K we shall get

75’( = 190(1— —1"),
P
1

Pk = 9’0(1 - —), (6.13)

b3

oenf ]
?

In the above formuale &, o, yo characterize primary deformations of the subsoil
caused by the action of the rigid construction loaded with the resultant force R, and the
resultant couples M§", M§® (according to the formulae (6.11) while d¢, ¢x, Px cha-
racterize analogous deformation of the not loaded structure (as we have assumed Ry = 0,
Mf(” =0, M = 0). Thus, it can be seen that B, @k, Pr characterize inelastic defor-
mations, i.e. deformations that are not accompanied by any forces. Thus, the formulae
(6.13) characterize a certain effect of inelasticity of the subsoil which will allways occur
when 2 # 1. '

If x, is the symmetry axis of the region /7 and when the loads are symmetric in relation
to that axis, and the subsoil surfaces after deformations are cylindrical surfaces of con-
stant curvatures and independent of x;, then M® =0, v, =0, n=12 .., K and
we shall get the special case of the considered problem, which was discussed in [1], where
four states of the subsoil were considered (i.e. K = 3), assuming uy = 0, u; = u,(x,),
u; = u(x,), u3 = 0, where u;(x,) and u,(x,) being assumed as the cylindrical surfaces of
constant curvature of a different sign.

7. Finals remarks

In sections 4,5 and 6 general formuale were introduced describing the footing structure
behaviour on a partly elastic subsoil which undergoes subsequent deformations. The so-
lution of the problem was obtained only for a special case of the rigid footing, the in-
teraction of which with the subsoil is described by the conditions (6.7) and (6.8). These
conditions can be checked, however only obtaining after the solution. If the conditions
(6.7), (6.8) are not fulfilled, then it is generally not possible to get a solution with
elementary metods of the considered problem. Similarly, with elementary methods one
is not able to obtain solutions for elastic plates and beams on a partly elastic subsoil;
the formulae given in Sections 4 and S are limited only to formulate the problem, leaving
open the methods of its solution. The analytic difficulties in obtaining solutions result
from the fact that the problems discussed are characterized not only by equations, but
also by inequalities. The analysis of the problems described with equations and inequa-
lities simultaneously can by found e.g. in the monograph [3]. It is to be pointed out, ho-
wever, that methods of solving problems of that kind numerically are known, and can
be successfully applied for the equations and inequalities given in Secs. 4, 5, 6. Further-
more the case solved at the end of Sec. 6, in spite of a very special character, has a practi-
cal meaning in many engineering problems. In other cases an approximate approaches
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can be applied, for example those discussed in the monograph [4] and making use of the
notion of discretization of problems.
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Pesome

B3AUMOJIENCTBUE KOHCTPYKIIUM C YACTHUYHO VIIPYTUMM OCHOBAHUEM

Ienbio paloThI ABNAETCA OIMMCAHME MOBEACHUSA KOHCTPYKLUMA NOCAIEHHLIX HA OCHOBAaHWM, KOTOpOE
M3MeHsieT KoHburypanuuio. Yyer BIusHUA Oedopmalii OCHOBaHHs HA MoOBeaeHNe KOHCTPYKIMM HMeeT
NIpaKTHIeCKOe 3HaYEHHE B 3aJauax NocageHus o0beKTOB B palioHaX YOBLITKOB YrOJIbHOM NPOMBILLTIEHHOCTH,
PaccmoTrpeno ynpyrue niuTbl B fankd a Taroke nedopmMHpYeMble KOHCTPYKIMM, HMEIOIHE MKECTKHe
OCHOBaHHUs. YuTeHO: | — BO3MOYKHOCTH NOTEPH KOHTAKTa OCHOBBI KOHCTPYKIHII ¢ OCHOBanueM, 2 —
Pa3HOE KauyecTBO OTIOPa 0CHOBaHMA onucaHHoro B [1]. [TonyueHo pelreHuss B 4aCTHOM Cllyyae KOHCTPYK~-
Vi1 C YKECTKHUM OCHOBaHHMEM MHEIOIMM IIPAKTHYECKOe 3HAUEHHE.

Streszczenie <

WSPOLPRACA KONSTRUKCJI Z CZESCIOWO SPREZYSTYM PODLOZEM

Celem pracy jest opis zachowania si¢ konstrukcji spoczywajacych na podiozu doznajgcym zmian kon-
figuracji. Uwzglednfenie wplywu deformacji podloza na zachowanie si¢ konstrukcji ma bowiem znaczenie
praktyczne w problemach posadowienia obiektdw na terenach objetych szkodami gérniczymi. Rozpa-
trywano sprezyste plyty i belki oraz konstrukcje o sztywnych podstawach. Uwzgledniono mozliwo$¢ utraty
podstawy konstrukeji z podtozem oraz rézny charakter odporu podioza przy odksztalceniach pierwotnych
i wtoérnych, zgodnie z koncepcja podana w [1]. Otrzymano rozwiazania dla przypadku szczegdlnego kon-
strukcji o sztywnej podstawie, majacego znaczenie praktyczne.

Praca zostala zlozona w Redakcji 8 czerweca 1983 roku



