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This work concerns modeling of time-varying resistance during transient cavitating liquid
pipe flow. The wall shear stress is presented in the way introduced by Zielke as the integral
convolution of liquid local velocity changes and a weighting function.
A new procedure for determination, so-called, a universal laminar-turbulent weighting func-
tion, which combines functions of Zielke and Vardy and Brown or Zielke and Zarzycki, is
presented. Based on these weighting functions, the method of simulation transients in the
pressure lines in a wide range of Reynolds numbers is presented. It eliminates numerical pro-
blems associated with the change of laminar flow into turbulent and vice versa. An example
application of this method for simulation of water hammer is presented. The calculation
results are compared against experiments presented by Bergant and Simpson, and good
agreement is found.
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1. Introduction

One of the most common methods used for unsteady pipe flow simulation is the method of
characteristics (MOC). To use this method, a model of the wall shear stress (and thus the
hydraulic resistance) has to be assumed. The most popular and easiest, in terms of numerical
calculations, is the assumption of a quasi steady model. Its determination is based on the formula
of Darcy-Weisbach. This assumption, however, is correct only for slow changes in the liquid
velocity field in the pipe cross-section, i.e. for low frequencies in the case of pulsating flow, and
in the case of waterhammer for the first-wave cycle. This model does not take into account a
time-varying velocity gradient in the radial direction, and thus the variable energy dissipation.
The assumption of quasi-steady flow significantly deviates from the reality, especially for fast

transients. In this case, it is appropriate to present the instantaneous wall shear stress τ as a
sum of the quasi-steady τq and unsteady τu components, i.e.

τ = τq + τu (1.1)

There are two main groups of the unsteady wall shear stress τu models. In the first group, the
wall shear stress is proportional to the acceleration of the liquid, both the local acceleration
(Daily et al., 1956; Cartens and Roller, 1959; Sawfat and Polder, 1973) and convective accele-
ration (Brunone et al., 1991). Vitkovsky et al. (2000) improved the model of Brunone et al. by
introducing a “ sgn |v|” to the component of the convective acceleration.
The second group of models of the unsteady wall shear stress τu is based on the history

of the instantaneous local velocity changes of flow. These models, unlike the first group, better
reflect the experiment not only in the degree of attenuation of pressure waves, but also its shape.
They are based on the two-dimensional (2D) equation of motion, so they take a time-dependent
distribution of the liquid velocity field in cross-section of the pipe.
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Zielke (1968) first introduced the unsteady wall shear stress τu as a integral convolution of
a weighting function and mean local acceleration of the liquid. His model concerned the unste-
ady laminar flow. Using this model to simulate transients requires a large computer memory.
The computation time grows exponentially in this case as the number of time steps increases.
Therefore, the model underwent further improvements by Trikha (1975), Kagawa et al. (1983),
Suzuki et al. (1991), Schohl (1993) making it much more efficient.
In the case of unsteady turbulent flow, the models of unsteady shear stress τu are based

mainly on the distribution of eddy viscosity coefficient in the pipe cross-section which was
determined for a steady flow. The authors of these solutions use different numbers of flow layers
in which the distribution of eddy viscosity is described. There are two-layer models (Vardy et
al., 1991, 1993; Vardy and Brown, 1995, 2003), three-layer (Brown et al., 1969) and four-layer
(Ohmi, 1976, Zarzycki 1994, 2000; Zarzyski and Kudźma, 2004).
It is worth to mention that the above cited models are related to smooth pipes, however,

Vardy and Brown in 2004 applied the idealized viscosity distribution model for the flow in a
rough pipe. Rahl and Barlamond (1996) and then Ghidaoui and Mansour (2002) reported that
the use of Vardy and Brown two-layer model to simulate waterhammer gives good consistency
with the experiment.
The main problem of this work is focused on simulations of unsteady cavitating pipe flows

taking into account the time-dependent hydraulic resistance. The majority of authors in their
publications assume that unsteady friction, in case of turbulent flow, is dependent on a fixed
Reynolds number (representing the flow before the transient) which influences the shape of
the weighting function. A novelty of this work is an attempt to take into account, during the
numerical calculation of transient, a variable Reynolds number which constantly modifies the
shape of the weighting function.

2. Mathematical models of transient cavitating pipe flow

In order to simulate transient cavitating pipe, flow two common models of cavitation – CSM
(column separation model) and BCM (bubbly cavitation model) are used. The first model, CSM,
is a discrete model. It assumes that cavitation takes place at a given place of liquid flow and
that leads to a disturbance of this flow continuity. In this case, the liquid flow in all flow areas
is described by equations [30]:
— continuity equation

∂p

∂t
+ ρlc

2 ∂v

∂x
= 0 (2.1)

— momentum equation

∂p

∂x
+ ρl
∂v

∂t
+ ρlg sin γ +

2

R
τ = 0 (2.2)

where: v = v(x, t) is the mean velocity of the liquid in the pipe cross-section, p = p(x, t) –
mean pressure in the pipe cross-section, R – inner radius of the pipe, τ – wall shear stress,
ρl – liquid density, g – acceleration due to gravity, γ – the angle of inclination of the hydraulic
line, c – velocity of pressure wave propagation, t – time, x – distance along pipe.
The next model, BCM, is a continuous, homogeneous cavitation model, where cavitation is

assumed to take place along the axis of a pipeline. The fundamental flow equations are given
below (Shu, 2003):
— continuity equation

1

c2
∂p

∂t
+ (ρl − ρv)

∂α

∂t
+ ρm

∂
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( v

α

)

= 0 (2.3)
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— momentum equation

ρm
∂

∂t

( v

α

)

+
∂p

∂x
+
2

R
τw + ρmg sin γ = 0 (2.4)

where: ρm is the density of mixture, α – coefficient of liquid phase concentration, ρv – vapour
density.

The mixture density ρm can be expressed

ρm = αρl + (1− α)ρv (2.5)

It should be noted that the system of equations (2.1), (2.2) and (2.3), (2.4) is not closed,
because it contains three variables: v, p and τ . Thus the main emphasis is placed on the work
on modeling the unsteady wall shear stress τ .

Among all methods enabling the solution of equations of this type, particularly noteworthy
is the method of characteristics (MOC), which perfectly interprets the essence of the natural
phenomenon of unsteady flow, and at the same time, characterized by rapid convergence as well
as ease of taking into account different boundary conditions and high accuracy of calculation
results.

Method of characteristics enables one to solve partial differential equations of quasi-linear
hyperbolic type (2.1), (2.2) and (2.3), (2.4) in a simple way (Shu, 2003; Wylie and Streeter,
1993). The solution is to find the equivalent to the four ordinary differential equations which is
then solved using finite differences schemes. An approximation of the finite difference method
of the first order gives satisfactory results (Streeter and Lai, 1962).

Zielke in his work (Zielke, 1966, 1968) presented the inverse Laplace transform of a hydraulic
line impedance, shown by Brown (Brown, 1962; Brown and Nelson, 1965), and received the
following relation describing the instantaneous wall shear stress

τ(t) =
λρv|v|

8
︸ ︷︷ ︸

τq

+
2µ

R

t∫

0

w(t− u)
∂v

∂t
(u) du

︸ ︷︷ ︸

τu

(2.6)

where λ is the coefficient of friction.

The first component τq in equation (2.6) represents the quasi-steady wall shear stress while
the second τu (which is the integral convolution of local fluid acceleration and a weighting
function) takes into account the impact of unsteady flow on the wall shear stress. It can be
easily seen that for a fixed flow, in which there is no local acceleration of the liquid, τu = 0.

Zielke (1968) presented also the proper weighting function for laminar flow. For turbulent
flow there are two well known weighting functions: Vardy’s and Brown’s (Vardy and Brown,
2003, 2004) and Zarzycki’s (Zarzycki, 2000; Zarzycki and Kudźma, 2004).

For effective solution of the second component of the wall shear stress τu (2.6), the weighting
function must be a finite expression of exponential terms (preferably no more than 30 phrases).
In our latest article (Urbanowicz and Zarzycki, 2012) was presented the new weighting functions
of effective type, which are characterized by an increased range of applicability, and a very good
degree of fit to their prototypes, i.e. the classical weighting function according to Zielke for
laminar flow (Zielke, 1968) and according to the Vardy and Brown (2003, 2004) (alternatively
according to Zarzycki (2000) and Zarzycki and Kudźma (2004)) for turbulent flow.

In this work, a novelty is the inclusion in the model describing unsteady flow in pipes a
time-varying hydraulic resistance which is calculated in an effective manner for both laminar
and turbulent flow.
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3. The universal weighting function

For some time, one can note two types of approaches for modeling unsteady hydraulic resistance:

• The older approaches (Bergant et al., 2006; Shu, 2003; Vitkovsky et al., 2004) assume the
shape of weighting function selection before the simulation on the basis of known Reynolds
number Re = Reo (constant) – for the steady flow shortly before the onset of the transient.
When the number Reo is less than or equal to the critical value = 2320, the shape of the
weighting function is consistent with the shape of the classic weighting function for the
laminar flow by Zielke (1968) but when there is a turbulent flow, the shape is determined
using a well-known classical turbulent weighting function by Vardy and Brown (2003)
(alternatively by Zarzycki (2000)). This approach assumes constancy of the chosen shape
for the entire course of the transient simulation.

• In later approaches (Kudźma, 2005; Kudźma and Zarzycki, 2005; Zarzycki and Kudźma,
2004), changes in the shape of a weighting function due to Reynolds number variation
are taken into account. There is no assumption of a single weighting function based on
initial conditions, but to date, together with any change in the current local Reynolds
number Rec (in the range of turbulent flow) its new shape is determined.

To the best knowledge of authors, there are no papers on the simulation and experimental
verification of the transient turbulent cavitating flow in a long liquid line associated with the
starting of turbo-machinery with focus on unsteady friction problems. Hence, it can only be
considered as authors using the first approach described above could determine a weighting
function – probably from the known Reynolds number after reaching a steady state Res. Such
an approach is rather simplistic to the problem of modeling unsteady hydraulic resistance.

New efficient weighting functions described in detail in our preview article (Urbanowicz and
Zarzycki, 2012) are suitable for simulation of transient flows in the case of the first of those
approaches.

Fig. 1. Courses of weighting functions (determined at Recr = 2320): (a) log-linear scale, (b) log-log scale

Detailed analysis of the second approach shows that transition from the laminar weighting
function to the turbulent one and vice versa raises the problem of numerical nature. This issue
is related to inconsistency of the laminar and turbulent weighting functions for a critical number
of Recr = 2320 (see Fig. 1). It is reflected in the variation of pressure and velocity flow simulated
runs in the form of abrupt faults. In connection with a different number of components that
make up the effective weighting function for laminar flow (26 terms) and the effective weigh-
ting function for turbulent flow (16 terms of Vardy-Brown function – alternatively 24 terms of
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Zarzycki’s function) (Urbanowicz and Zarzycki, 2012) the current numerical procedure for the
transition from one type of flow into another assumes parameters from the equation:

τu =
2µ

R

k∑

i=1

(

yi(t)e
−ni∆t̂ +mie

−ni
∆t̂
2 [v(t+∆t)− v(t)]

︸ ︷︷ ︸

yi(t+∆t)

)

(3.1)

which takes into account the history in changes of velocity to be equal to zero yi(tt) = 0 (where
tt – time of transition). This assumption is valid as an initial condition (for a steady flow), but
it certainly is a source of error when there is transition from laminar to turbulent unsteady flow.

To avoid the above mentioned problems by using the second approach, in the present work
an effective universal laminar-turbulent weighting function model is proposed. Its shape in the
case of laminar flow will coincide with Zielke’s function (unchanging when Rec ¬ 2320) while
for turbulent flow with Vardy’s and Brown’s turbulent weighting function (alternatively with
Zarzycki’s turbulent weighting function).

Detailed analysis of the courses of classical weighting functions according to Zielke (1968),
Vardy and Brown (2003) and Zarzycki (2000) shows that for the critical Reynolds number
(Recr = 2320) these functions have different shapes (Fig. 1). The function according to Zarzycki
in the range of dimensionless time (10−10 < t̂ < ∞) takes values greater than the weighting
function according to Zielke. In practice, it means that the simulation results with its usage will
be characterized by increased damping. The function according to Vardy and Brown for the range
of dimensionless time 7.244 · 10−4 < t̂ <∞) takes instead values smaller than Zielke’s function.
That means that simulations with its use will be characterized by lower attenuation than when
Zielke’s or Zarzycki’s functions are used. It was also noted that the shape of this function is
greatly changed with the increase of Re. The larger the Reynolds number characterizing the
transient flow the faster values of this function tend to zero (see Fig. 2).

Fig. 2. Runs of the Vardy and Brown weighting function: (a) log-linear scale, (b) log-log scale

Figure 3 presents a schematic procedure for determination of the universal laminar-turbulent
weighting function. In the case of laminar flow, the universal weighting function is characterized
by a shape consistent with Zielke’s weighting function (Zielke, 1968). As soon as there is a
turbulent flow, the coefficients representing the effective function must be appropriately scaled.
This process is modeled with the use of the procedure presented by Vitkovsky et al. (2004).

Assuming that the shape of the universal weighting function in the case of turbulent flow
should be convergent to the original model of Vardy and Brown (2003), the process of finding
the current coefficients should be carried out according to the scheme shown in Fig. 3 (an
alternative procedure is presented in Appendix – there the function for the case of turbulent
flow are convergent to the original model of Zarzycki (2000)).
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Fig. 3. Schematic determination of the current form of the universal weighting function wc in the
numerical process. It retains the shape consistent with the classical weighting function according to

Vardy and Brown (2003)

Universal coefficients, needed for determination of the current form of the universal weighting
function are calculated (for Recr = 2320) before the start of the simulation using following
formulas

m1u =
m1

A∗
m2u =

m2

A∗
· · · m26u =

m26

A∗

n1u = n1 −B
∗ n2u = n2 −B

∗ · · · n26u = n26 −B
∗

(3.2)

where

A∗ =

√

1

4π
B∗ =

Reκ

12.86
=
2320κ

12.86
κ = log

15.29

Re0.0567
= log

15.29

23200.0567

and mi, ni are the coefficients of the laminar effective weighting function presented in our
previous paper (Urbanowicz and Zarzycki, 2012).

Degrees of match of the universal weighting function with the classical counterparts are
shown by the graphs presented in Fig. 4.

Qualitative analysis of the new universal function matching shows that it is difficult to note
any significant deviations, for Reynolds numbers Re  104 (Figs. 4b-4e), from its classical
counterpart. The quantitative analysis for the dimensionless time range 10−9 ¬ t̂ ¬ 10−3,
and Reynolds numbers 2320 ¬ Re ¬ 107 shows that the absolute percentage error does not
exceed 11% (for the case presented in Appendix, the percentage absolute error in the same
ranges did not exceed 14%).

The relative percentage error, as shown in Fig. 4f, is large but only for values of dimensionless
time t̂ > 10−3. The values of weighting function for the dimensionless time t̂ > 10−3 are very
small – as shown in Fig. 5. This means that if the dimensionless time step is significantly small
during numerical calculations, these errors will not affect significantly the result of simulation
of the wall shear stress.
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Fig. 4. Comparison of the universal weighting function (maintaining the shape consistent with the
model of Vardy and Brown) with the classical models

Fig. 5. The values of turbulent weighting function for the dimensionless time 10−3
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4. Numerical example

In order to compare the accuracy of unsteady (with the use of a universal weighting function)
and quasi-steady models of friction in relation to experimental data, simulations of a simple
waterhammer case (tank – long liquid line and cut-off valve) were conducted.
The computed results (using transient cavitating pipe flow models – CSM (Wylie and Stre-

eter, 1993) and BCM (Shu, 2003)) were compared with the experimental data reported by
Bergant and Simpson (1996, 1999).

Bergant and Simpson conducted an experiment on a test rig installed at the University
of Adelaide (Fig. 6). The rig comprises of copper pipe with internal diameter D = 0.0221m
and length L = 37.2m connecting two pressurized tanks. The liquid used in the experiment was
water having kinematic viscosity ν = 1·10−6m2/s. The measured sound speed was c = 1319m/s
and the initial flow velocity v0 = 1.40m/s (Re = 30940) and v0 = 1.50m/s (Re = 33150).

Fig. 6. Test rig

The downstream valve was rapidly closed in the pipe line during flow. Pressure fluctuation
was measured at the endpoint of the line (near the valve). From the above parameters, it followed
that it was a case of turbulent flow. The results of simulations compared to experimental data
are shown in Figs. 7 and 8.

Fig. 7. Pressure variations at the valve: v0 = 1.4m/s (Re = 30940), pt = 2.158 · 10
5Pa (a) quasi-steady

friction model, (b) unsteady friction model

From the above graphs showing the runs of pressure changes (at the valve), it is clear that
the use of unsteady hydraulic resistance in simulation brings the results much closer to the
experimental observations. In the case of cavitating flow, the model of friction used affects
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Fig. 8. Pressure variations at the valve: v0 = 1.5m/s (Re = 33150), pt = 3.139 · 10
5Pa (a) quasi-steady

friction model, (b) unsteady friction model

not only the maximum pressure values for consecutive amplitudes of pressure, but also the
duration of the cavitation. Therefore, the role of the friction model is essential for the modeling
of transients in the pressure lines with cavitation.

4.1. Quantitative analysis

A quantitative analysis of transient flow, especially valuation of maximum pressures values
and times of its occurrences, is very important from the point of view of automatic control
engineering.
In many available articles concerning transient flow with cavitation, there are no shown

mathematical quantitative methods useful for comparison of simulated runs in relation to the
experimental ones. All authors concentrated only on qualitative estimation.
The quantitative analysis in this research work is estimated by two parameters (pp and tp)

characterizing the degree of matching with the experimental course.

Fig. 9. An example of pressure course during transient pipe flow with cavitation

Parameter pp is determined on the basis of maximum pressures (Fig. 9 – p1 to pn) of
successive amplitudes of the analyzed course in the following way

pp =
n∑

i=1

|ppi|

n
(4.1)

where

ppi =
pis − pie
pie

· 100% (4.2)
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and pie is the value of maximum pressure on the analyzed i-th amplitude, based on the analysis
of experimental results, pis – maximum pressure on the analyzed i-th amplitude, based on the
simulated results.
Similar analysis can be carried out for the time of occurrence of the pressure amplitudes

(their maxima) (Fig. 9 – t1 to tn)

tp =
n∑

i=1

|tpi|

n
(4.3)

where

tpi =
tis − tie
tie

· 100% (4.4)

and tie is the time of occurrence of the i-th amplitude of pressure, based on the analysis of
experimental results, tis – time of occurrence of the i-th amplitude of pressure, based on the
analysis of simulated results.
When the values of pp and tp get smaller, then the discrepancy between the simulated and

experimental results is smaller.
The results of quantitative analyses of the pressure runs, presented in Section 4, are shown

in Tables 1 and 2.

Table 1. Quantitative analysis – time-dependent hydraulic resistance

Parameter
CSM BCM
model model

pp [%] (Run I – Re = 30940) 0.7 1.2

pp [%] (Run II – Re = 33150) 2.3 3.1

tp [%] (Run I – Re = 30940) 2.7 2.7

tp [%] (Run II – Re = 33150) 2.8 2.8

Table 2. Quantitative analysis – quasi-steady hydraulic resistance

Parameter
CSM BCM
model model

pp [%] (Run I – Re = 30940) 7.5 8.0

pp [%] (Run II – Re = 33150) 3.7 3.8

tp [%] (Run I – Re = 30940) 7.0 6.4

tp [%] (Run II – Re = 33150) 8.5 8.0

The quantitative analysis shows that the results of simulations with usage of the CSM mo-
del (with taking into account also time-dependent hydraulic losses) have the best aggrement
in simulating maximum pressures. The presented analysis confirms also the conclusion from
qualitative analysis (Figs. 7 and 8) that the results originated from models in which the time-
dependent hydraulic resistance were included match definitely better with the experiment than
models using of quasi-steady ones (see percentage results in Tables 1 and 2).

5. Summary

The presented method enables the determination of variable hydraulic resistance for laminar and
turbulent flow. A new function includes a range of laminar and turbulent flow. The coefficients
of the new function are updated every step of the calculation along with the change of Re.
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Using the proposed approach eliminates numerical problems associated with the transition from
laminar flow into turbulent one and vice versa. In view of the fact that in literature there are
two weighting functions for the turbulent flow, two approaches are presented at the time of
occurrence of turbulent flow.
From the numerical examples showing the runs of pressure changes (at the valve), it is

clear that the use of time-dependent hydraulic resistance in simulation brings the results much
closer to the experimental observations. Important is also the fact that in the case of cavitating
flow, the used model of friction affects not only the maximum pressure values for consecutive
amplitudes of pressure but also the duration of cavitation. Therefore, the role of the friction
model is essential for modeling transients in the pressure lines with cavitation.

A. Appendix

Assuming that the shape of the universal weighting function remained convergent to the model
by Zarzycki in the case of turbulent flow, the process of searching for current coefficients of the
function can be done with the use of the scheme shown in Fig. 10. Universal coefficients, needed
further for determination of the current form of the universal weighting function, are computed
before starting the simulation process from the following relations

m1u = Dm1 m2u = Dm2 · · · m26u = Dm26

n1u = n1 n2u = n2 · · · n26u = n26
(A.1)

where

D =
Re0.005535

0.299635
=
23200.005535

0.299635

and mi, ni are the coefficients of the laminar effective weighting function presented in our
previous paper Urbanowicz and Zarzycki (2012).

Fig. 10. Schematic determination of the current form of the universal weighting function wc in the
numerical process. It retains the shape consistent with the classical weighting function according to

Zarzycki for turbulent flow (Zarzycki, 2000)

Degrees of match of the universal weighting function with the classical counterparts one
shown by the graphs presented in Fig. 11.
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Fig. 11. Comparison of the universal weighting function (maintaining the shape consistent with the
model of Zarzycki) with the classical models
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Uniwersalna funkcja wagi w modelowaniu niestacjonarnych przepływów z kawitacją

występujących w przewodach ciśnieniowych

Streszczenie

Praca dotyczy modelowania zmiennych w czasie oporów podczas nieustalonego przepływu cieczy
w przewodach ciśnieniowych. Naprężenie styczne na ściance przewodu przedstawione zostało w klasyczny
sposób (wg. Zielke) jako całka splotowa z przyśpieszenia cieczy i pewnej funkcji wagowej.
Przedstawiono procedury wyznaczania dwóch uniwersalnych funkcji wagowych laminarno-

turbulentnych (wg. Zielke i Vardy-Browna oraz wg. Zielke i Zarzyckiego). W oparciu o te funkcje przedsta-
wiono metodę modelowania (symulacji) przebiegów przejściowych w przewodach ciśnieniowych w szerokim
zakresie liczb Reynoldsa. Eliminuje on problemy natury numerycznej związane z przechodzeniem min.
z przepływu laminarnego w turbulentny i odwrotnie. Podano przykład zastosowania opracowanej metody
do symulacji uderzenia hydraulicznego. Wyniki obliczeń porównano z wynikami eksperymentalnymi wg.
Berganta i Simpsona, otrzymując dobrą zgodność.
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