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Abstract

Different boundary-value problems are considered concerning the elastic-plastic and
fracture behaviour of brittle fibres-ductile matrix composites under thermal loading
conditions in both the cases of absence and presence of cracks within the matrix phase.
A model of the plastic deformation process is proposed with regard to a single unit cell
of the fibre-reinforced composite. Numerous details of the deformation process within
this unit cell are investigated by use of the above mentioned model including the possible
failure mechanisms of the fibre-matrix bond. If applied together with the known crack
model of the Dugdale type the proposed model for the plastic deformation process of
a composite unit cell is shown to imply useful conclusions concerning the thermal crack
growth of radial Dugdale type cracks within the matrix phase.

Introductio n

The investigation of the interaction between the stress fields caused by the presence
of different inhomogeneities is a problem of great practical importance. This is actually
the basic problem of the mechanics of the composite materials. Of special interest from
the point of view of fracture mechanics of the composite structures are the questions
concerning the interaction between the structural components and existing cracks within
these structures. Both the cases of mechanical and thermal loading of cracked composites
have been since long studied and different models of interaction have been already con-
sidered by means of both micromechanical analysis and macromechanical theories. The
essential features of these two different approaches were characterized in a paper by
SMITH [1]. The fibre-reinforced composites consisting of ductile matrices strengthened
by continuous brittle fibres form a large class of the commonly used composite materials.

1 On leave from the Department of Mathematics and Mechanics, Sofia University, Sofia 1090,
Bulgaria
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Thereby numerous investigations concerning the plastic behaviour of  fibre- reinforced
composites  have  been  performed  for  example  in  the  papers  of  H IL L  [2],  SPENCER  [3],
MULHERW  et  al.  [4],  COOPER  and  PIG G OTT  [5].  Comprehensive  surveys  about  the  state

of  the  art  are  given  in  the  Conference  Proceedings  of  the  1975  ASME  Winter  Annual
Meeting  [6]  as  well  as  in  the  books  of  SPENCER  [7],  KOPIOV  and  OVCINSKIJ  [8]  and  P I G-

GOTT  [9].  Further, a  problem  of  basic  interest  represents  the  micromechanical  aspect  in
thermal  cracking  of  unidirectionally  reinforced  composites.  Thereby,  definite  progress  has
been  already  made  in a  series  of  papers by  HERRMANN  [10 - 12] and  HERRMANN  and  asso-
ciates  [13- 15]  concerning  the  elastic  and  viscoelastic  behaviour  of  a  cracked  unit  cell
of  a  low  fibre  concentration composite under the conditions  of  different  thermal  loading.
I n  a recent work  by  HERRMANN  and  MIHOVSKY  [16] the plastic behaviour  of  an uncracked
unit  cell  and  the mechanisms  of  failure  of  the  fibre- matrix  interface  have  been  analyzed
for  the  case  of  isothermal  longitudinal  extension  of  the  composite.  The  model  of  the
plastic  deformation  process  proposed  in  [16]  is  especially  attractive  for  the  study  of  the
behaviour  of  cracks  situated  within  the  matrix  phase.  I t  is  shown  in  the  present  paper
that this model is applicable  to the problem of thermal loading of the composite. Moreover,
if  combined  with  the  Dugdale  model  solution  of  HERRMANN1  [11]  for  a  crack  situated
within  the matrix  phase  this  above  mentioned  model  of  the  plastic  deformation  process
implies  useful  conclusions  concerning  the  fracture  behaviour  of  the  considered  unit  cell
of  a unidirectionally  reinforced  composite.

Statement  of  tbc  problem

A  unidirectionally  reinforced  fibrous  composite  with  continuous fibres  and  relatively
small  fibre volume  fraction  is considered. The fibre  material  is  linear elastic with  Young's
modulus Ef,  Poisson's  ratio vt  and  the  thermal  expansion  coefficient a.f.  The  material
of  the  matrix  is  elastic- perfectly  plastic  with  corresponding  elastic  constants Em  and vm,
thermal  expansion  coefficient <xm and  tensile  yield stress ay.  The  thermoelastic  properties
of  the fibre  and matrix  materials  as  well  as  the  yield  stress  of  the  latter  are  assumed  to
be  temperature independent.

A  unit  cell  of  this  fibre- reinforced  composite  in  the  sense  of  the  well- known  model
of  two  coaxial  fibre- matrix  cylinders  is  studied  in  the  following  where  if  referred  to  a  cy-
lindrical  coordinate  system (r,Q,z)  the fibre  and  the matrix  occupy  the regions  (0  < r  ^
< ff,  0  <  0 < 2n,  —oo < z <  + co)  and (r{  <  ;•   *£  /• „,, 0  < 0  < In,  - CO < z <  + oo),
respectively.  Thus, equation  /•   =  /y is  the equation  of  the fibre- matrix  interface.

The  following  is  assumed  with  regard  to  the cracked  composite  unit  cell.  The crack  is
situated  within  the matrix  phase  and  is  presented  in  the cross  section  of  the  unit  cell  (cf.
Fig.  1) by  a  straight  line cut along  the polar  axis 6 = 0.  The crack  occupies  the  segment
n  < r Ą rr  so  that rt  and r,  denote the  radial  coordinates  of  the  left  and  the  right  crack
tip,  respectively.  The crack  length  of  the actual  crack  is  2/  =  r,—ri.

The  well- known  elastic- plastic  model  of  a  crack  proposed  by  DUG DALE  [17]  will  be
applied in the following analysis.  The crack of length 2L — Rr — Ri shown  in F ig. 1 presents
the  imaginary  crack  in the sense  of  this model. The segments Rt  < r  <  r(  and r,  < r  ^ Rr
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Fig.  1. Dugdale  type  crack  configuration  in the cross  section  of a  composite  unit  cell

present  the thin  plastic  zones  at  the tips  of the actual  crack. The plastic zone  lengths at
the  left  and the  right crack  tips are thus si — rt—Ri  and s, = Rr—rr,  respectively.

A quasi-static thermal loading of the unit cell will be considered which implies a tem-
perature distribution over the cross section of the form (cf. Fig. 1 for notation)

0
rm

(1)

The temperatures Tf and Tm do not depend on the axial coordinate z and are constants
at each given instant of the deformation process so that the latter is viewed as a sequence
of stress-strain states of the cell corresponding to a sequence of stationary temperature
distributions of the form (1).

From the viewpoint of a quasi-static crack propagation behaviour such loading con-
ditions are of interest only which result in the appearance of tensile circumferential stresses
within the uncracked matrix phase. According to HERRMAMN [18] these conditions are
satisfied for the elastic state of the unit cell provided the inequality

(1 +vf) oif(Tf  To)  (1 +vm) am(Tm To) > 0, (2)

holds true where TQ is the temperature of the unstressed initial state. Under the simplifying
assumption To — 0 relation (2) is obviously satisfied if, for example, 7/ = 0 and T„  < O.
This case will be actually considered in the following calculations. The thermal loading
process will be thus viewed as a process of monotonous quasi-static decrase of the itself
negative temperature of the matrix phase. The accepted loading conditions provide ob-
viously an axisymmetric state of stress within the uncracked composite cell. The axial
symmetry together with the standard assumptions of perfect fibre-matrix contact and
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generalized  plane  strain  imply  the  evident  result  that  the  normal  stresses  within  the  un-
cracked unit cell are at the same time principal ones and depend on the radial coordinate
only.

The elastic state of the considered unit cell for both cases of absence and presence
of a crack in the matrix phase has been described in detail by Herrmann [11, 18]. These
elastic solutions concern a cell with a traction-free external surface r — rm and traction-
free or partially loaded crack surfaces in the sense of the applied Dugdale model. These
same conditions are supposed to apply in the here considered elastic-plastic problem
as well.

The condition of axial symmetry together with the assumed scheme of loading implies
certain obvious features of the elastic-plastic state of the uncracked unit cell in accordance
with the above mentioned elastic solution [11]. These are that the plastic zone presents
itself an infinitely long cylinder (/y < /• ^ rc, 0 ^ 8 < 2n, — co < z < +oo; re < rm)
and spreads with developing thermal loading, i.e. with decreasing matrix temperature,
into the matrix coating. The equation of the current elastic-plastic boundary could be
then written in the form rc = rc(Tm).

Finally, it will be assumed that the crack length 2/ is small compared with the radius
rm and that the crack itself is situated relatively far-away from the fibre. This implies
the possibility of neglecting the effect of the crack on the stress-strain state within the
matrix region just surrounding the fibre where the plastic deformation process actually
develops. Then, the latter could be viewed as an axisymmetric one as in the case of an
uncracked unit cell.

With this in mind the thermal stress field within the cracked matrix phase could be
considered to be a superposition of the following two fields. The first one is the elastic-
plastic stress field for the uncracked unit cell while the second one is the field resulting
from the presence of a Dugdale type crack.

The plastic deformation process

The model of the plastic deformation process proposed in [16] will be generalized in
the present paper with regard to the considered thermal loading problem. The possibility
for such a generalization follows from the fact that this model is based in general upon
certain effects of the fibre-reinforcement which are common for both the isothermal [16]
and the here considered thermal problem. Firstly, to these effects belongs the so-called
„shrinkage effect", i.e. the appearance of compressive radial stresses over the fibre-matrix
interface. One comes up with this effect provided relation (2) is satisfied which is actually
the here considered case. Secondly, in accordance with the elastic solution [18] the fibre
acts as a stress concentrator. Because of the local nature of this stress concentration effect
one could expect that especially for the considered composites with low fibre volume
fractions intensive plastic deformation and even fracture processes may develop within
the immediate surrounding of a fibre whereas at a certain distance from the fibre-matrix
interface the matrix material may deform still elastically. Thirdly, it is well-known from
experimental observations that because of the strengthening effect of the fibre the be-
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haviour  of  the  composite  „i n  the  fibre  direction"  is  rather elastic-like than perfectly-
plastic. This implies the reasonable assumption that the fibre, consisting itself of linearly
elastic material with a high stiffness, contributes due to the assumed perfect fibre-matrix
contact to the development of a relatively large elastic part el of the total axial strain ss

within the plastificated region and prevents thus the occurrence of a corresponding large
plastic part ef. In other words in the course of the deformation process one should per-
manently account for the current elastic part of the axial strain. It is obvious that for
the considered regime of thermal loading both the ee

z and e!|-strains should be mono-
tonously increasing in absolute value functions in dependence of the absolute value of the
matrix temperature. A reasonable restriction concerning the behaviour of the e^-strain
is associated with the assumption that the matrix material is a perfectly-plastic one and
its elastic response is thus limited. One should expect correspondingly that for the considered
unit cell and type of loading there exists a certain critical value e% of sz such that upon
reaching this value the current increments of the ej-strain become negligible with respect
to the corresponding increments of e?z. Due to the concentration effect of the fibre this
critical value e| should be first achieved over the fibre-matrix interface.

The account for the just introduced limiting characteristic %% implies the following
natural description of the plastic deformation process. The plastic deformations appear
first over the fibre-matrix interface and the plastic zone rf ^ r < rc spreads consequently
into the matrix phase. Within this zone both the e\ and e£-strains increase simultaneously
up to the instant when el\r=rf  = et. At this instant a second plastic zone rf s? r < Rc

where Rc < rc appears within which the relation e*  = ee
z holds true while the e?-strain

further increases. The second plastic zone also spreads into the matrix phase having the
first one, which occupies now the region Rc ^ r ^ rc, at its front r — Rc.

The model of the plastic deformation process just considered implies a simple possible
scheme of an approximate analysis of the elastic-plastic behaviour of the uncracked com-
posite cell.

Analysis of the uncracked unit cell

In accordance with the standard assumption of the plasticity theory the total axial
strain at each instant of the plastic deformation process is a sum of an elastic and a plastic
part. As usually it will be assumed that the matrix material is plastically incompressible
which implies the validity of the following relation within the plastic zone

(temp)

where e% is the deviatoric axial elastic strain and e(slr) and e(lemw are the relative volume
changes associated with the thermal stresses and the thermal expansion respectively, i.e.

.wo = i _ 2 ^ ( f f p + ( r e + ( T i ) , (4)

.-= 3aMrm. (5)
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I n  equation  (4)  as  well  as  in  the  following  analysis  or,-,  /  =  r,0, z  denote  the  normal
stresses  within  the plastic zone.

I t will be  further  accepted that the stresses  and the elastic  strains  are as  usually  related
by  the Hooke's  law  so  that one has in  particular

az  =  Eme
e

z+vm(ar + ag).  (6)

In equation  (6) as well as  in the rest  of  the paper  the notation

^ = e j ł {« ( l l t ) ,  (7)

is  used  so  that e'  means  (cf.  equation  (3))  the part  of  the  axial  elastic  strain  due  to  the
thermal  stresses.

Let  the  matrix  material  obey  the  von  Mises'  yield  condition,  i.e.  let  the  stresses ai7

i  =  r,d,z  satisfy  the relation

(<Tr- tfo)
2 + ( < r e - ^ )2 + (crz- ~ov)2  -  2a2

y.  (8)

Upon  substituting  for  the  distress  from  equation  (6) into  the  latter  relation  one  obtains

\ ~T~/
 + r

Now it is  a matter of  simple computation to show  that equation  (9) is  identically  satisfied
provided  the stresses  are presented  in the  form

E,„  e'z as

- T^^/ ^- cosO^),  (10)

where  the notations are used

cotan$  =  v_  .  (12)

Equations  (10)  reflect  the  implicit  assumption  that  cr0 > at  which  implies  in  accordance
with equation  (11) that 0  < a>  < n.
Substituting  now  for  the  stresses a,  and ag  from  equations  (10)  into  the  equilibrium
equation

<foy +  ar- 'a6  ^  Q^

one obtains  the equation

Em  del  a,  ,. rfw 2ov  sina)
ft- -  — ^ s i n ( c o  +<b)  ~,-•   7 ^  sin(co +<b)  ~5

dr  |/ 3sin</)  H  dr
where  e* is  an unknown  function  of  the  radial  coordinate  r  and  therefore  the  integration
of  equation  (14)  cannot  be  performed.  But  an  approximate  solution  of  equation  (14)
can  be  obtained  which  is  valid  at  least  within  the  immediate  surrounding  of  the  fibre.
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This  solution  is based  upon  the  assumption  that  within  this region  the elastic parts of  the
£,- and efl-strain components due to the thermal stresses are negligible with respect to
the corresponding plastic parts sp

r and sp
0. This implies the relation

Equation (15) together with equations (4), (6) and (10) gives now

_JL_—™-cosco = — si (16)

The latter relation applies as assumed in a thin layer surrounding the fibre and over the
fibre-matrix interface r — rs in particular where the condition el = z% is first achieved.
The corresponding value to*  s a)(g|) of the angle a> follows from equation (16) to be

(17)
*»(1 +vm)

According to the model of the plastic deformation process proposed in section 3 above
a further increase in thermal loading which corresponds to a further decrease in the matrix
temperature Tm results in the appearance of a second plastic zone /y < r < Rc over the
outer boundary of which equation (17) is valid. Finally, assuming that for the considered
unit cell and the given scheme of loading the quantity s', respectively w* (cf. equation (17))
is approximately constant and introducing the angle o>Ri! as

wK = co(Re), (18)
one obtains

mRc =  a>* (19)
where co* is a constant now.
Now the latter assumption makes equation (14) integrable within the whole second plastic
zone r/ < r ^ Rc. The result of this integration with the boundary condition (o\raRc =
= <*>R.  reads

(20)

Moreover, it could be easily verified that the set of equations (6), (10), (17), (19) and (20)
defines the stress state entirely within the second plastic zone rf < r < Rc, where Rc has
still to be determined.

The stress state defined above allows certain important conclusions concerning the
fracture behaviour of the considered unit cell. To this end we consider the shrinkage
effect again. It is clear from most general positions that this effect is due to the difference
in the lateral contraction of the fibre and matrix materials. Because of the plastic incom-
pressibility of the matrix material this difference should be expected to increase in the
course of the deformation process. In other words developing plastic deformations should
further contribute to the shrinkage effect or, equivalently, the radial stress orr|P=r/ acting
over the fibre-matrix interface should decrease with increasing loading, i.e. with decreas-
ing temperature of the matrix phase. The latter means in accordance with equations (10)
that the angle cor/ should increase in the course of the deformation process remaining
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obviously  larger  than  the angle co*.  Moreover,  equations  (10) show that  there exists  a na-
tural limitation of the shrinkage effect in the sense that this effect achieves its maximum
at a value of a>rf = n—<f>.
The value R* of the radius Rc at this instant, that is

R* - Re\arf = B - 0 , (21)

follows from equation (20) to be

f - exp \J* (nt -« J • (22)

The model of the process applied here leads thus to the conclusion that further decrease
in 0r\r=r f as well as increase in RC is impossible. Further, it would be of interest to examine
the velocity field corresponding to this limiting state of the plastic deformation process
within a unit cell.

To this regard the known concept of the associated flow rule will be applied with
the yield function (9) serving as a plastic potential. Simple computations show that in
accordance with this concept and the plastic incompressibility condition the plastic strain
rates £*, i — r,6, z satisfy the relation

(23)

within the second plastic zone where
a..

(24)
Of

7= sin

It is easily observed from the latter equations that £r\rmr,~* +°° when co^-v n§.
This result means physically that at this state free plastic flow tends to take place within
a thin layer immediately surrounding the fibre. The behaviour of the composite at this
state will obviously depend upon the interaction between this tendency and the strengthen-
ing effect of the fibre which tends itself to prevent the occurrence of such a singular ve-
locity field. The very nature of these two competing effects implies the reasonable assump-
tion that their interaction results in the occurrence of shearing stresses over the fibre-
matrix interface. Moreover, these shearing stresses should be equal for obvious reasons
to the shear yield stress xy = ay/]/3 of the matrix material.

Let TS be the shear strength of the fibre-matrix interface. If rs < ry then the very reach-
ing of the considered critical state will obviously result in the immediate failure of the
fibre-matrix interface by the so-called debonding effect. If, on the contrary, TS > ry,
then the known mechanism of fibres pull-out (see, for example [9]) will develop, most
probably together with a process of fibre breaking.

Plastic zone size and associated problems

In order to close the solution of the problem for the uncracked unit cell one should
complete the results of the previous section with the temperature dependence of the radius
of the plastic zone. Moreover, when dealing with a given composite material one should
specify the actual value of e*  which should be used in the computations.
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The model of the plastic deformation process proposed above implies a simple approach
to  the  latter  problem.  Starting point  for  this  approach  is the  additional  assumption  that
the  first  plastic  zone presents  itself  a  thin  layer  and  thus  one  may consider  the  relation
Rc — rc  to  hold  approximately  true. This  assumption  appears  as  acceptable  one for  the
following  reasons.  Firstly,  because  of  the  local  nature  of  the  fibre  concentration  effect
and  since  a  low  fibre  volume  fraction  composite  is  considered.  Therefore,  both  the Rc
and /^-radii should be small compared with the value of rm. Secondly, because of the low
resistance of the matrix material with respect to the occurrence of intense plastic defor-
mation such as the deformations within the second plastic zone are. Thus, one may expect
that the transition zone between the elastically deformed matrix region and the second
plastic zone is really a thin one. If so, then the first plastic zone could be simply considered
to play the role of an elastic-plastic boundary, the latter having the form of a thin layer.
Further, because of the thin layer shape of the elastic-plastic boundary a softened version
of fulfillment of the standard elastic-plastic transition conditions of continuity of stresses
and displacements could be applied, namely the following.

Firstly, because of the layer thinness one should not expect a substantial change of
the radial stress within the layer itself which implies the relation

ffr\r=Re = ae
r\r=Rc, (25)

where o*,, i = r,d,z are the stresses acting within the elastic region Rc ^ r < rm of the
matrix phase. Secondly, these stresses should satisfy the yield condition, equation (8),
over the elastic-plastic boundary, that is

[ W - f l ^ + tó-^ + W-oO*]!,.,,. = 2 < (26)

In accordance with the general form of the elastic solution of the problem [11, 18] and
the results of the previous section one may present the latter equations in the form

( ! 1

\ rm Kc l - 2 r m |/3sm >̂

(28)

where the constant C has to be determined actually.
The remaining elastic-plastic transition conditions could be now viewed as satisfied

as well in this way that the corresponding stresses and displacements change continuously
within the layer between their values on its „elastic" and „plastic" surface. Thus, the
equations (27) and (28), respectively, present the just mentioned softened version of the
elastic-plastic transition conditions.

If solved for the unknowns Rc and Cthe set of equations (27) and (28) implies as a matter
of fact the temperature dependence of both Rc and C, respectively, in the form

Rc = Rc(Tm, ez; U, Em, vm, am, rm, ay), (29)

C == C(Tm, ex; %l, Em, vm, am, rm, ay), (30)

where ez itself is a still unknown function of the matrix temperature Tm.

3 Mech. Teoret. i Stos. 1—2/84
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It  is important  to mention at this point  that with Rc and  C once determined  from  the
set  of equations  (27) and  (28) one may consider  the axial stresses az and a%  acting within
the  plastic  and  elastic  regions  of the  matrix  phase,  respectively,  to be known  functions
of  the  same  parameters  as those  in the  presentations  (29) and (30).  The  corresponding
expressions for these stresses can  be easily  given by

1  *
a,  = -—-— (Em£j+2<jj,cosco), rf < r < Rc, (31)

l-2i>„ ,

, 2vmEmC
o z  p . !«t +7i i .. \~2 > tic  ̂ r  ̂ rm, (32)

where both Re and C can be considered now as known functions of the form given by the
equations (29) and (30), respectively.

Further, it is a matter of a simple verification that upon satisfying the continuity con-
dition for the radial stresses over the fibre-matrix interface, i.e. the equation

o?|r„ r / = tfUv (33)
one may construct the expressions for the stresses a{, i = r,Q,z acting within the fibre.
Thereby the expression for the axial stress a{ reads

= Efsz+2vf \  ^ ~ + ,°y. x cosK,+tf)|, 0 < r < rf, (34)
\l~£v ] / 3 s0 J

where the value of cor/ follows from equation (20) with r — rs and with the quantity Rc

given in the form of equation (29).
It is easily observed that the axial stresses as presented by the equations (31), (32)

and (34) can be considered now as known functions of Tm and ez and the remaining
parameters of the problem, i.e. sz, ay and Et,Vi,oci, rt where / = / , m. These stresses
have to satisfy the equilibrium condition for the forces, acting in the axial direction, which,
in our self-stress problem is given by the following condition of self—equilibrium

. (35)
rs

By substituting for Rc from equation (29) into equation (35) leads to a relation of the
form

ez = eg(Tm; *sc
z, E j, v,, a,, rt, ay), (36)

where i = /, m. Equation (36) represents in fact the equation of the theoretical ez versus
Tm curve in the framework of the proposed model for the considered two-phase material.

Upon substituting for sz from equation (36) into equation (29) one obtains the de-
sired dependence of the plastic zone radius Rc on the matrix temperature Tm. This depen-
dence is obviously of the form

Rc = Rc(Tm; e§, E,, vt, a(, r,, a,,), (37)

where again / = / , m.
Note that by applying equation (37) to the critical state of the unit cell, i.e. if Rc —

= R* (cf. equation (22)), one obtains the critical temperature T% at which one of the
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failure  modes  of  the fibre-matrix interface described in section 4 occurs. This critical
temperature appears to be of the form

T* = T*(R*, P., E,, vu «i, ru ov)\ i =f,m. (38)

Equation (38) implies itself a simple criterion of failure of the fibre-matrix interface of
the form

Tm - T* (39)

Now it is easily observed that the actual value of e| can be determined by means of
a comparison of the theoretically predicted ez(rm)-curve, equation (36), with a correspond-
ing curve obtained experimentally for the considered composite material.

A simpler approach to the problem consists in the determination of %\ from equation
(38) provided the T% and i??-values in this equation are the values which have been ob-
served experimentally.

The scheme described above does not imply a closed form solution for the quantities
Rc and s% but the associated numerical treatment of the problem is not very complicated.
With this in mind one may consider that the whole problem concerning the elastic-plastic
behaviour of the uncracked unit cell has been solved completely.

The cracked unit cell

It should be remembered in the following that as accepted in section 2 the thermal stress
field within the cracked matrix phase can be considered as a superposition of an elastic-
plastic stress field for the uncracked unit cell and a corrective stress field caused by the
presence of a crack situated along the segment Rt ^ r < Rt, 0 = 0 of the symmetry
line of the cross section of the unit cell. Now the first stress field is known from the preced-
ing analysis, sections 4 and 5. The second stress field will be examined as already mentioned
in the framework of the Dugdale crack model [17].

The thermal stress field in the uncracked elastically deformed matrix region is given by
the following expressions

Rc < '• < ra,

o* =

where C = C(rm, ...) and Rc — i?c(rm, ...) can be considered as known functions of the
temperature Tm in accordance with the results of the previous section.

The corrective stress firl d oft, i,j"— r,d,z can be obtained from the solution of the

following mixed boundary-value problem for a Dugdale type crack with an actual length

2/ = rr — ri  and a fictitious length 2L ~ RrRt (cf. Fig. 1 for notation)

ae\a R <r<r  and r < r < R ( 4 0)

3*
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<f rf)(r, 0) =  0, 6 = 0, Vr ,  (41)
ue(r, 0) =  0,  0 =  0, Rr  <  /• <  i?,.  (42)

The boundary-value problem (40) - (42) has been analyzed in detail by HERRMANN [11].
Applying the results obtained in [11] together with those presented above one immediately
obtains the desired plastic zone lengths si and sr (cf. Fig. 1) for our case from the solutions
of the equation

_L = 0, (43)
l+s K )

where s is the unknown and r0 — (rr+r t)/2. The quantities st and sr correspond to the
upper and lower signs, respectively, in the brackets in equation (43).

Upon solving equation (43) one obtains the plastic zone lengths as functions of the
temperature Tm and the actual crack length 21, i.e. the relations

St = Si(Tm, 1), i = r, I. (44)

I t is well understood that each of the quantities St,t = r,I depends in addition on the
remaining parameters of the problem as well so that the representations (44) are actually
schematic ones. They imply in an obvious way the relations

R t - Rt(Tm, I), i=r,l.  (45)

The equations (45) present the dependence of the positions of the left and the right tip
of the imaginary crack on the current matrix temperature. That dependence could be now
considered as known from the solution of equation (43). The latter solution could be itself
obtained by means of a numerical treatment [11].

Crack and cell behaviour

As already accepted (cf. equation (38)) let T„  be the value of the matrix temperature
at which one of the two modes of failure of the fibre-matrix interface (cf. section 4) occurs
and let Rf be the value of Rt corresponding to this value of the temperature (cf. equation
(45)). Then Rf defines in fact the position of the left plastic zone tip at the instant of failure
of the fibre-matrix interface. Further, let Ri be the value of i?, at which the crack begins
to grow in accordance with a certain crack growth criterion and let fm be the correspond-
ing matrix temperature, i.e.

^ = A("t0. (46)
Then equation (46) corresponds to the equation (45) but now applied to the instant of
crack growth initiation. It is assumed implicitly that due to the fibre concentration effect
the crack will start to propagate from its left tip toward the fibre.

Itjbllows from the whole scheme of analysis that the values of both quantities Rf
and Ri, respectively, appear as specific ones for each given cracked unit cell or, equiva-
lently, for a given composite material. Thereby both values could be defined from the
present analysis provided the corresponding crack growth criterion is given. The latter
concerns obviously the determination of i?,. Once evaluated for a certain unit cell with
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a  given  crack  configuration  these Rf  and ^-values imply immediately the following
evident conclusions concerning the behaviour of the cracked unit cell. If Rf > Rt then
the fibre-matrix interface fails while the crack is still in rest. If on the contrary Rf < i?j
then the crack growth initiation precedes the failure of the fibre-matrix interface. In this
case the whole scheme of analysis remains further valid (up to the possible failure of the
interface) provided the crack propagates quasi-statically and 2/ is its current length upon
which both Rf and i?, depend. Finally, if Rf = R, then the fibre-matrix interface fails
simultaneously with the initiation of the crack propagation. The further behaviour of
the crack and the unit cell in this case as well as in the first one where Rf > Rt needs
a new approach since the present considerations are based upon the assumption of a per-
fect fibre-matrix contact.

I t should be mentioned that these simple conclusions are valid under the assumptions
made earlier that both the crack length 2/ and the plastic zone radius Rc are small compared
with the geometrical quantities rm and rQ, respectively. That means the crack should not
influence the stress state within the plastic zone #y < r < Rc where the solution of section 4
is thus expected to apply. Moreover, it has been shown in [19] that the approximate ana-
ytical elastic solution of the considered thermal crack problem in a composite unit cell
lobtained in [11] remains still valid even if the restrictions concerning the quantities 21, r0, rm

and rs (the latter quantity plays the role of Rc in the elastic case) are somehow violated.
One may consequently expect that the results of the present elastic-plastic analysis will
also remain valid when the restrictions mentioned above are somehow softened since the
values of Ri, i = r,l used in our considerations are actually obtained from the same
elastic solution [11]. If so, then one comes easily up with a couple of further implications
of the analysis concerning the crack and cell behaviour.

Let fm be the temperature at which both plastic zones, i.e. the annulus rt < r ^ Rc and
the segment Rt < r < rt join each other, and let Rc = Rc(fm) and Rt = Rt(fm, I) be the
corresponding values of the quantities Rc and iJ;, respectively. Further, let us assume the
validity of the relations fm > T*  and Tm > fm (note that the temperatures T*, fm and
Tm are negative) for the considered unit cell. That means that the two plastic zones meet
each other before the conditions for the failure of the fibre-matrix interface and for crack
growth initiation are fulfilled. Upon reaching this instant, that is with the two plastic
zones adjoined, the behaviour of the cracked unit cell will depend essentially on the in-
teraction between the plastic mechanism of failure of the entirely plastificated segment
r f <: r < rx, 0 = 0 and the brittle mechanism of crack growth at the right crack tip r =
= rr. A possible approach to this problem could be based upon the application of the
rigid-plastic body model and the limit load concept associated with this model (see, for
example [20]). When applying the latter concept to the plastificated segment rs < r ^ ru

d = 0 one may expect that further thermal loading, i.e. further decrease of Tm, will re-
sult in the activation of the crack propagation mechanism at the right crack tip.

Another case of interest is the one for which fm «S Tn and fm > T%. In this case both
plastic zones join each other again but the segment Rt ^ r < n, 0 = 0 presents now
the plastic zone at the left tip of the running crack. Depending upon the plastic zone
thickness d = Rc~r/ and the crack velocity the crack may stop before reaching the elastic-
plastic boundary or at the boundary or may traverse partially or entirely the plastificated
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aimulus  around  the  fibre.  Depending  in  addition  on  the fibre-matrix contact the crack
may stop at the fibre-matrix interface in order to traverse it or to create an interface crack.
The investigation of all these possibilities, being a problem of definite interest, is associated
with considerable difficulties arising from the necessity of solving boundary-value problems
for cracks partially situated within plastificated regions as well as of applying reasonable
criteria of crack propagation and arrest.

Concluding remarks

The analysis presented above implies certain definite conclusions concerning the be-
haviour of a cracked unit cell of a fibre-reinforced composite material under the conditions
of thermal loading. The analysis could be easily transformed to the more general case
Tf # 0 if the temperature difference T = Tm — Tf will actually play the role of the quantity
Tm used in the preceding calculations. In that case the linear coefficient of thermal expansion
Xf will influence the processes of plastification and fracture as well.

The model of the plastic deformation process proposed leads to both closed form
results and to a relatively simple procedure concerning the numerical treatment of the
problem on the whole. The analysis shows that the entire solution of the considered problem
is associated with the necessity of directed experimental investigations concerning the
determination of the specific measure of elastic response el for the fibrous composite
materials.
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P  e 3 10  M e

PA3MEP  nJIACTH ^IECKOH 3OH BI  TPEIH,HHfcI, T H nA  flArflEHJLfl,   B ITPEHBAPHTEJIbHO
HAHPJDKEHHOH  JI,ByXctA3H OH  CPEflE,  C  ^ACTH ^IH O  IUIACTHMECKOM

MATEPHAJIOM.  MATPH U bl

ripe/ yiaraei- cji  Mo.ne.JK.  njiacnraecKoii  fletbopAiauHH  KacawmiriicH  oflHoii  uraefiKH  KOMno3trra ycH-
jieHHoro  BoJioKnaiwH.  M M  nccne#0BajiH  npouecc fledpopiwarum jrqeiiKH n pn y^eTe  B03MOHmoro  pa3py-
ineHHH B jwecTe coeflHueHHH  MaipH irti  H BojioKHa.  I l p a  yyeTe MOflejra  Jlaivie&iH  MM cflejiajm  BŁIBOH M
Kacaroinnecfl  xepMireecKoro  BO3pacTa  paflnanbHbix  Tpemiui  B MaTpHt;e.

S t r e s z c z e n ie

ZASIĘ G  STREFY  UPLASTYCZNIENIA  SZCZELIN  TYPU  DUGDALE'A  WE  WSTĘ PNIE
NAPRĘ Ż ONYM   OŚ RODKU  DWUFAZOWYM   Z  CZĘ Ś CIOWO  UPLASTYCZNIONYM

MATERIAŁE M   MATRYCY

Proponujemy  model  odkształcenia  plastycznego  dotyczą cy  pojedynczej  komórki  kompozytu  wzmoc-
nionego  włóknami.  Zbadany  został   proces  odkształcenia  komórki  przy  uwzglę dnieniu  moż liwego mecha-
nizmu  pę kania  w miejscu  poł ą czenia  matrycy  i  włókna.

Przy  uwzglę dnieniu  modelu  Dugdale'a  wycią gnię to  wnioski  dotyczą ce  termiczengo  wzrostu  szczelin
promieniowych  w  matrycy.

Praca  została  złoż ona  w  Redakcji  dnia  8  czerwca  1983  roku


