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Closed form expressions are obtained for the dynamic response of an
elastic beam rested on a nonlinear foundation in this paper. The nonli-
near governing equation is solved using the Variational Iteration Method
(VIM). An iteration formulation is constructed based on the VIM and
the dynamic responses are then obtained. Frequency responses are pre-
sented in a closed form and their sensitivity with respect to the initial
amplitudes are investigated. A number of numerical simulations are then
carried out and performance and validity of the solution procedure is eva-
luated in the time domain. It is proved that the VIM is quite a reliable
and straightforward technique to solve the corresponding set of coupled
nonlinear differential equations.
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1. Introduction

Vibration analysis of beam-type structures rested on nonlinear foundations
have recently received a remarkable amount of attention due to importan-
ce and various applications of the subject. Surveying the literature reveals
that the ballast dynamic behavior has been proved to be nonlinear in railway
tracks. Dynamic behavior of columns, piles and pipes supported along the-
ir length, typically by soils, are also some other applications of the subject.
It has been proved that the linearization in governing equations can some-
times lead to significant errors in the system modeling and identifications.
Consequently, free and forced vibration analysis of beams supported by non-
linear elastic and visco-elastic foundations have been widely focused in the
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last decade. Applications of the Multiple Scales Method (MSM), Method of
Shaw and Pierre, Method of Normal Forms and Method of King and Vakakis
in free vibration analysis of a simply supported beam rested on a nonline-
ar elastic foundation have been summarized by Nayfeh (2000). Younesian et
al. (2005) and Kargarnovin et al. (2005) employed a perturbation technique
and obtained the main harmonic and also sub-harmonics of an infinite beam
supported by a nonlinear viso-elastic foundation traversed by a moving load.
An analytical solution was obtained by Bogacz and Czyczuła (2008) for the
response of a beam on a visco-elastic foundation subjected to moving distri-
buted loads. Vibrations of structures composed of beams and plates subjected
to various types of moving loads was analytically studied by Bogacz and Fri-
schmuth (2009). Santee and Goncalves (2006) used the Melnikov Method and
obtained the frequency response and bifurcation diagrams for a harmonical-
ly excited beam rested on a nonlinear elastic foundation. Malekzadeh and
Vosoughi (2009) employed the Differential Quadrature Method (DQM) and
numerically studied large amplitude vibration of composite beams on nonli-
near elastic foundations. A weak form Quadrature Element Method (QEM)
was employed by Yihua et al. (2009) and the main natural frequency was nu-
merically obtained for vibrations of beams rested on nonlinear elastic founda-
tions. The Galerkin method was utilized by Senalp et al. (2010) and vibrations
of finite beams on linear and nonlinear elastic foundations were numerically
studied.

The orthogonality conditions for a transverse vibration mode equation of
a one-dimensional plate on an elastic Winkler foundation has been studied by
Zhang (2002). Baghani et al. (2011) and Jafari-Talookolaei et al. (2011) respec-
tively employed Variational Iteration Method (VIM) and Homotopy Analysis
Method (HAM) and obtained the first natural frequency for unsymmetrical-
ly laminated composite beams rested on nonlinear elastic foundations. More
recently, external and internal-external resonances in finite beams rested on
nonlinear visco-elastic foundations subjected to moving loads were analyzed
using the MSM by Ansari et al. (2010, 2011). Surveying the literature de-
monstrates that the employed solution methods so far have some restrictions
and limitations. The numerical methods are not able to provide closed form
solutions, and consequently they are suitable for numerical case studies. The
utilized approximate methods are also limited to obtain only the first na-
tural frequency or they are sometimes practically inapplicable in providing
higher natural frequencies. The other constraint arises from the limitations
of approximate solutions in strong nonlinear systems. The present paper is
aimed at covering the limitations of earlier solution procedures in dealing



Analytical solutions for free oscillations of beams... 641

with the higher natural frequencies. The main objectives of the present study
is to provide a straightforward solution procedure to generate a closed form
solution:

A) applicable for higher mode natural frequencies,

B) applicable for a strong nonlinear system.

There is no doubt that the closed form solutions are always of importance
because of their potential to provide a deeper and simpler engineering estimate
and judgment. The variational Iteration Method (VIM) (He, 2000) is employed
for this purpose. Application of the VIM has been proved to be quite efficient
in varieties of nonlinear systems governed by ordinary and partial differential
equations (Askari et al., 2010; He et al., 2010; Inan and Yildirim, 2010; Ozis
Yildirim, 2007; Wazwaz, 2008-2010; Yildirim, 2010; Yildirim and Ozis, 2009;
Younesian et al., 2011). Employing the VIM, analytical expressions are obta-
ined for the natural frequencies of free oscillation of an elastic beam rested
on a nonlinear foundation in this paper. The corresponding set of coupled
nonlinear differential equations is then derived from the governing partial dif-
ferential equation. The associated iteration formulation is then presented and
the closed form solution is consequently constructed. The frequency respon-
ses are obtained and illustratively discussed for a real mechanical system. A
number of numerical simulations are then carried out and the accuracy of the
solution procedure is evaluated.

2. Solution procedure

The case of a uniform finite beam resting on a non-linear Winkler foundation
is governed by Baghani et al. (2011) and Jafari-Talookolaei et al. (2011)

EIwxxxx + kw + αw
3 + ρAwtt = 0 (2.1)

in which the parameters E, I, A, and ρ are the modulus of elasticity, se-
cond moment of area, cross-sectional area, and the material density of the
beam, respectively. The other parameters k and α are the respective line-
ar and nonlinear parts of the foundation stiffness. The beam is assumed to
have homogeneous mass density and cross section along its length, and it is
modeled by the Euler-Bernoulli theory. The beam material is assumed to be
isotropic and mechanical properties of the foundation are uniform along the
beam length.
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The approximate solution is constructed for a simply supported beam ba-
sed on the Galerkin approximation presented by Nayfeh (2000) and Younesian
et al. (2008)

W (x, t) =
∞
∑

n=1

un(t) sin
nπx

L
(2.2)

The solution procedure is aimed at finding the main frequencies of the sym-
metric and un-symmetric mode shapes while the procedure can be straight-
forwardly expanded for even higher frequencies

2
∑

m=1

{[

ρAüm(t) +
(m4π4EI

L4
+ k
)

um(t)
]

sin
mπx

L

}

+ α

( 2
∑

m=1

um(t) sin
mπx

L

)3

= 0

(2.3)

Using the orthogonality principle of the mode shapes, one can arrive at
(u1 = X,u2 = Y )

Ẍ + ω21X = −α1X3 − α3XY 2 Ÿ + ω22Y = −α2Y 3 − α4X2Y (2.4)

in which

α1 = α2 =
3α

4ρA
α3 = α4 =

3α

2ρA
(2.5)

and

ω21 =
EIπ4

ρAL4
+
k

ρA
ω22 =

16EIπ4

ρAL4
+
k

ρA
(2.6)

Applying the variational iteration method (Ansari et al., 2011; He, 2000; He
et al., 2010; Inan and Yildirim, 2010; Ozis Yildirim, 2007; Wazwaz, 2008-
-2010; Yildirim, 2010; Yildirim and Ozis, 2009), one can construct the following
iteration formulations

Xn+1 = Xn +
1

ω1

t
∫

0

sinω1(s− t)
(d2X

ds2
+ ω21X + α1X

3 + α3XY
2
)

ds

Yn+1 = Yn +
1

ω2

t
∫

0

sinω2(s− t)
(d2Y

ds2
+ ω22Y + α2Y

3 + α4Y X
2
)

ds

(2.7)

Based on the iteration harmonic formulations recognized by the respective
amplitudes of A and B for X and Y , one can consequently arrive at
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X1 = A cosΩ1t+
1

ω1

t
∫

0

sinΩ1(s− t)

·
[

A(ω21 −Ω21) cosΩ1s+ α1A3 cos3Ω1s+ α3AB2 cosΩ1s cos2Ω1s
]

ds

(2.8)

Y1 = B cosΩ2t+
1

ω2

t
∫

0

sinΩ2(s − t)

·
[

B(ω22 −Ω22) cosΩ2s+ α2B3 cos3Ω2s+ α4BA2 cosΩ2s cos2Ω1s
]

ds

in which Ω1 and Ω2 denote the nonlinear natural frequencies. Implementing a
sort of appropriate mathematical operations and simplifications, one can reach
to

X1 =
[

A+
α3AB

2

2(ω21 −Ω21)

+
α3AB

2

4

( 1

ω21 − (2Ω2 +Ω1)2
+

1
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)

+
α1A

3

4

( 3
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+

1

ω21 − 9Ω21

)]

cosΩ1t−
α1A

3

4

(3 cosΩ1t

ω21 −Ω21

)

+
cos 3Ω1t

ω21 − 9Ω21

−α3AB
2

4
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+
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(2.9)
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2
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1
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+
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3

4
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1
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3
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Eliminating the secular terms in X and Y directions, yields
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2
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(2.10)
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B +
α4BA

2

2(ω22 −Ω22)
+
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2

4

( 1

ω22 − (2Ω1 +Ω2)2
+

1

ω22 − (2Ω1 −Ω2)2
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+
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3

4

( 3

ω22 −Ω22
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1
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= 0

Equations (2.10) implicitly generate the main frequencies of the symmetric
and un-symmetric modes of oscillations for the general case of A,B 6= 0. For
a special case of

X(0) = A Y (0) = 0 (2.11)

one can arrive at

Ω1 =
1√
72

√

40ω21 + 28α1A
2 +
√

(40ω21 + 28α1A
2)2 − 576ω21(α1A2 + ω21)

(2.12)
For the other special case of

X(0) = 0 Y (0) = B (2.13)

one can reach to

Ω2 =
1√
72

√

40ω22 + 28α2B
2 +
√

(40ω22 + 28α2B
2)2 − 576ω22(α2B2 + ω22)

(2.14)

3. Numerical examples

The presented solution procedure is employed to obtain the frequency respon-
ses for a typical railway track system (Kargarnovin et al., 2005; Younesian et
al., 2005) with strong nonlinearity. The set of nonlinear frequency Equations
(2.10)2, (2.11) is solved and the first and second natural frequencies of the
beam are consequently obtained as two different functions of the initial condi-
tions. Mechanical and geometrical properties of the beam-foundation system
are listed in Table 1. Variations of the first and second natural frequencies
are illustrated in Figs. 1 and 2. The relative error with respect to the linear
solutions is also demonstrated in these figures. As it is seen, the relative er-
ror can be evaluated up to 60% and 5%, respectively for the first and second
natural frequency. The corresponding latticed contour maps are illustrated in
Figs. 3 and 4. The color gradient is correlated with nonlinear sensitivity of the
system with respect to the initial amplitudes. The elliptic-type contours are



Analytical solutions for free oscillations of beams... 645

Table 1. Mechanical and geometrical properties of the beam-foundation sys-
tem (Ansari et al., 2010, 2011)

Item Notation Value

Young’s modulus (steel) E 210GPa

Mass density ρ 7850 kg/m3

Cross sectional area A 7.69 · 10−3m2
Second moment of area I 30.55 · 10−6m4
Beam length L 18m

First linear natural frequency ω1 98.86 rad/s

Second llinear natural frequency ω2 157.8 rad/s

Nonlinear stiffness coefficient α1 = α2 8.69 · 103
Nonlinear stiffness coefficient α3 = α4 1.74 · 104

Fig. 1. The first frequency ratio (nonliner/linear) with respect to the initial
amplitude

Fig. 2. The second frequency ratio (nonliner/linear) with respect to the initial
amplitude
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seen to have an aspect ratio very close to one and they seem to be vertical in
Fig. 3 and horizontal in Fig. 4. This means that both natural frequencies have
almost similar sensitivity with respect to the initial amplitudes. In order to
evaluate the accuracy of the solution method in the time domain, a number
of numerical simulations are carried out in the following sections.

Fig. 3. First natural frequency contour map

Fig. 4. Second natural frequency contour map

3.1. Case #1

A set of mutual infinitesimal initial conditions is assumed to be

X(0) = 0.01 Y (0) = 0.01 (3.1)

in this case. Solving the set of nonlinear equations of (2.9) and employing
the prescribed solution procedure for this case, the consequent closed form
solutions are obtained as
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x(t) = 0.009989 cos(10.019t) + 2.702 · 10−6 cos(30.058t)
+ 5.563 · 10−7 cos(88.971t) + 9.3458 · 10−6 cos(68.932t)

Y (t) = 0.0103 cos(39.4759t) + 1.4738 · 10−7 cos(118.43t)
+ 2.19 · 10−6 cos(59.514t) − 3.6877 · 10−6 cos(19.427t)

(3.2)

The corresponding nonlinear differential equations are numerically solved in
parallel, and the numerical results are compared in the time domain in Fig. 5.
The very close agreement can accordingly guarantee accuracy of the solution
procedure.

Fig. 5. Time history of the dynamic responses (A,B = 0.01)

3.2. Case #2

For a set of larger initial amplitudes, i.e.

X(0) = 0.1 Y (0) = 0.1 (3.3)

Corresponding similar calculations have been carried out and the obtained
closed form solutions are listed as

x(t) = 0.0979 cos(15.96t) + 9.9115 · 10−4 cos(47.88t)
+ 4.5 · 10−4 cos(98.76t) + 9.9536 · 10−4 cos(66.84t)

y(t) = 0.094 cos(41.5t) + 1.57 · 10−4 cos(124.5t)
+ 0.0011 cos(73.32t) + 0.003 cos(9.48t)

(3.4)

The obtained analytical solutions are compared with the numerical ones in
Fig. 6. It is seen that validity of the approximate closed form solutions is still
preserved in the time domain.
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Fig. 6. Time history of the dynamic responses (A,B = 0.1)

3.3. Case #3

In order to evaluate the accuracy of the solution procedure for a non-
conjugate initial condition, the following set of initial conditions is taken into
account

X(0) = 0.1 Y (0) = 0.05 (3.5)

The solution procedure ends up in the following closed form solutions

x(t) = 0.0985 cos(13.68t) + 0.00137 cos(41.04t)

+ 1.2125 · 10−4 cos(95.208t) + 2.4134 · 10−4 cos(67.848t)
y(t) = 0.04826 cos(40.762t) + 2.0284 · 10−4 cos(122.29t)
+ 7.0502 · 10−3 cos(68.124t) + 0.001578 cos(13.404t)

(3.6)

A very good correlation is again detected between the numerical results and
analytical solutions (Fig. 7).

Fig. 7. Time history of the dynamic responses (A = 0.1, B = 0.05)
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4. Conclusions

Analytical solutions were obtained for free oscillation of an elastic beam sup-
ported by a nonlinear foundation in this paper. An iteration formulation was
presented based on the VIM and the dynamic responses were then obtained
in a closed form. The solution procedure was directed to obtain the main
symmetric and unsymmetric mode frequencies because of their importance in
dynamic characteristics of structures. The solution technique was planned to
be as simple as possible and also extendable to obtain higher (third and more)
natural frequencies. Limitations of earlier solution procedures in dealing with
the higher natural frequencies were covered by a reliable and straightforward
technique. Characteristic equations were obtained as functions of initial am-
plitudes and the corresponding frequency responses were obtained in closed
forms. An error analysis was carried out, and it was proved that any lineariza-
tion could lead to a significant error especially for the main symmetric mode. It
was also found that both the symmetric and un-symmetric natural frequencies
had almost similar sensitivity with respect to the initial amplitudes. A number
of numerical simulations were then directed to evaluate the performance and
validity of the solution procedure in the time domain. It was proved that the
VIM was a quite accurate and simple technique to find higher natural frequ-
encies of similar structures with strong nonlinearities and nonlinear couplings
between different modes of oscillations.
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Analityczne rozwiązania problemu drgań swobodnych belek

umieszczonych na sprężystym podłożu wyznaczone za pomocą

iteracyjnej metody wariacyjnej

Streszczenie

W pracy przedstawiono zamknięte formy rozwiązań opisujących odpowiedź dyna-
miczną elastycznej belki spoczywającej na nieliniowo sprężystym podłożu. Równanie
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ruchu rozwiązano przy pomocy iteracyjnej metody wariacyjnej (VIM). Sformułowanie
iteracyjne skonstruowane w oparciu o tę metodę pozwoliło na wyznaczenie odpowiedzi
dynamicznej belki. Charakterystyki częstościowe przedstawiono w zamkniętej formie
i podkreślono ich wrażliwość na wartość amplitud początkowych. Następnie zapre-
zentowano wyniki kilku symulacji numerycznych w celu oszacowania wydajności i do-
kładności zastosowanej procedury rozwiązywania równań ruchu w dziedzinie czasu.
Wykazano, że metoda VIM jest wystarczająco prosta i wiarygodna w rozwiązywaniu
układu sprzężonych, nieliniowych równań różniczkowych.
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