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The velocity field and the shear stress corresponding to motion of an
Oldroyd-B fluid between two infinite coaxial circular cylinders are es-
tablished by means of the Hankel transforms. The flow of the fluid is
produced due to the time dependent axial shear stress applied on the
boundary of the inner cylinder. The exact solutions, presented under a
series form, can easily be specialized to give similar solutions for the
Maxwell, second grade and Newtonian fluids performing the same mo-
tion. Finally, some characteristics of the motion as well as the influence
of the material constants on the behavior of the fluid are underlined by
graphical illustrations.
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1. Introduction

During the past two decades, viscoelastic fluids are considered to play a more
important and appropriate role in technological applications in comparison
with Newtonian fluids. Large industrial materials fall into this category, such
as solutions and melts of polymers, soap and cellulose solutions, biological
fluids, various colloids and paints, certain oils and asphalts. Thus, due to
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diversity of fluids in nature, several models have been suggested in the litera-
ture. Amongst these, rate type fluids have gained much popularity (Bird and
Armstrong, 1987; Dun and Fosdick, 1974; Dun and Rajagopal, 1995; Oldroyd,
1950; Rajagopal and Kaloni, 1989; Rajagopal and Srinivasa, 2000). One of the
most popular model for the rate type fluids is known as the the Oldroyd-B
fluid model. The flows of Oldroyd-B fluid have been studied in much details,
more than most other non-Newtonian fluid models and in complicated flow
geometries. The Oldroyd-B fluid can be found frequently in the field of blo-
wing and extrusion molding. Unfortunately, the response of polymeric liquids
is so complex that no model can adequately describe their response. As the
Oldroyd-B fluid can describe stress-relaxation, creep and the normal stress
differences but it cannot describe either shear thinning or shear thickening,
a phenomenon that is exhibited by many polymer materials. However, this
model can be viewed as one of the most successful model for describing the
response of some polymeric liquids.

The exact analytical solution for the flow of an Oldroyd-B fluid was given
by Waters and King (1970), Rajagopal and Bhatnagar (1995), Fetecau (2003,
2004), Fetecau and Fetecau (2003, 2005). Other interesting results were obta-
ined by Georgiou (1996) for small one-dimensional perturbations and for the
limiting case of zero Reynolds number, unsteady unidirectional transient flows
of the Oldroyd-B fluid in an annular pipe, and unsteady transient rotational
flows of the Oldroyd-B fluid in an annular pipe are given by Tong and Liu
(2005) and Tong and Wang (2005). Some simple flows and exact solutions of
the Oldroyd-B fluid are also examined by Hayat et al. (2001, 2004). Wood
(2001) has considered the general case of helical flow of the Oldroyd-B fluid,
due to combined action of rotating cylinders (with constant angular velocities)
and a constant axial pressure gradient. Following Rahaman and Ramkissoon
(1995), he assumes that the velocity profiles have Taylor series expansions and
uses this assumption to derive a second initial condition. Fetecau et al. (2007)
obtained the velocity fields and the associated tangential stresses correspon-
ding to some helical flows of Oldroyd-B fluids in a series form in terms of
the Bessel functions. However, it is important to point out that all the above
mentioned works dealt with problems in which the velocity is given on the
boundary. To the best of our knowledge, the first exact solutions for flows into
cylindrical domains, when the shear stress is given on the boundary, are those
obtained by Waters and King (1970) for Oldroyd-B fluids. Similar solutions,
corresponding to a time-dependent shear stress on the boundary, have been
recently obtained in Fetecau et al. (2009a,b, 2010), Jamil et al. (2011), Nazar
et al. (2011), Siddique and Sajid (2011).
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In this note, exact solutions corresponding to the axial flow of an Oldroyd-B
fluid in an annular region between two infinite circular cylinders are establi-
shed. In order to produce flow of the fluid, the boundary of the inner cylinder
is subject to a time-dependent axial shear stress. The solutions that have been
here obtained tend to the similar solutions for the Maxwell, second grade and
Newtonian fluids by taking appropriate limits. Finally, the influence of physi-
cal constants on the velocity profile and the shear stress is shown by graphical
illustrations.

2. Basic flow equations

The Cauchy stress T in an incompressible Oldroyd-B fluid is given by (Fetecau
et al., 2009a,b, 2010; Jamil et al., 2011; Nazar et al., 2011; Siddique and Sajid,
2011)

T = −pI+ S

S+ λ(Ṡ− LS− SL⊤) = µ[A+ λr(Ȧ− LA− AL
⊤)]

(2.1)

where −pI denotes the indeterminate spherical stress due to the constraint
of incompressibility, S is the extra-stress tensor, L is the velocity gradient,
A = L + LT is the first Rivlin Ericsen tensor, µ is the dynamic viscosity
of the fluid, λ and λr are relaxation and retardation times, the superscript
(·)⊤ indicates the transpose operation, and the superposed dot indicates the
material time derivative. The model characterized by constitutive equations
(2.1) contains as special cases the upper-convected Maxwell model for λr → 0
and the Newtonian fluid model for λr → 0 and λ→ 0. In some special flows,
as those to be considered here, the governing equations for an Oldroyd-B
fluid resemble those for a fluid of the second grade. For the problem under
consideration, we shall assume a velocity field and an extra-stress of the form

V = V (r, t) = v(r, t)ez S = S(r, t) (2.2)

where ez is the unit vector in the z-direction of the system of cylindrical
coordinates r, θ and z. For such flows, the constraint of incompressibility is
automatically satisfied. If the fluid is at rest up to the moment t = 0, then

V (r, 0) = 0 S(r, 0) = 0 (2.3)

and Eqs. (2.1) and (2.2) imply Srr = Srθ = Sθz = Sθθ = 0.
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In the absence of body forces and a pressure gradient in the axial direction,
the balance of linear momentum and constitutive equation (2.1) lead to the
relevant equations

(
1 + λ

∂

∂t

)
τ(r, t) = µ

(
1 + λr

∂

∂t

) ∂
∂r
v(r, t)

ρ
∂

∂t
v(r, t) =

( ∂
∂r
+
1

r

)
τ(r, t)

(2.4)

where ρ is the constant density of the fluid and τ = Srz is the shear stress
that is different from zero.

Eliminating τ between Eqs. (2.4), we obtain the governing equation

λ
∂2

∂t2
v(r, t) +

∂

∂t
v(r, t) =

(
ν + α

∂

∂t

)( ∂2

∂r2
+
1

r

∂

∂r

)
v(r, t) (2.5)

where α = νλr and ν = µ/ρ is the kinematic viscosity of the fluid. Partial
differential equation (2.5), with adequate initial and boundary conditions, can
be solved in principle by several methods, their effectiveness strictly depending
on the domain of definition. In our case, the integral transforms technique
presents a systematic, efficient and powerful tool. The Hankel transform can
be used to eliminate the spatial variable.

3. Flow through an infinite annular region

Suppose that an incompressible Oldroyd-B fluid at rest is situated in the
annular region between two infinite coaxial circular cylinders of radii R1 and
R2(> R1). At time t = 0

+ the inner cylinder is pulled along its axis with a
time-dependent shear stress

τ(R1, t) = f [t− λ(1− e
−
t

λ )] t > 0 (3.1)

where f is a constant, while the outer one is held fixed. Due to shear, the fluid
between cylinders is gradually moved, its velocity being of form (2.2). The
governing equations are given by Eqs. (2.4)1 and (2.5) and the appropriate
initial and boundary conditions are

v(r, 0) =
∂v(r, 0)

∂t
= 0 τ(r, 0) = 0 r ∈ [R1, R2] (3.2)
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and for t > 0

(
1 + λ

∂

∂t

)
τ(r, t)

∣∣∣∣
r=R1

= µ
(
1 + λr

∂

∂t

)∂v(r, t)
∂r

∣∣∣∣
r=R1

= ft

v(R2, t) = 0

(3.3)

In order to solve this problem, we shall use the Hankel transforms.

3.1. Calculation of the velocity field

In order to determine the velocity field, let us denote by (Tong and Wang,
2005; Debnath and Bhatta, 2007)

vnH(t) =

R2∫

R1

rv(r, t)B(r, rn) dr n = 1, 2, 3, . . . (3.4)

the finite Hankel transform of the function v(r, t), where

B(r, rn) = J0(rrn)Y1(R1rn)− J1(R1rn)Y0(rrn)

rn being the positive roots of the equation B(R2, r) = 0 and Jp(·), Yp(·)
are the Bessel functions of the first and second kind of the order p. Using
Eqs. (3.3), and the known relation

B(R1, rn) = J0(R1rn)Y1(R1rn)− J1(R1rn)Y0(R1rn) = −
2

πR1rn

we can prove that

R2∫

R1

r
( ∂2

∂r2
+
1

r

∂

∂r

)
v(r, t)B(r, rn) dr =

2

πrn

∂v(R1, t)

∂r
− r2nvnH(rn, t) (3.5)

Furthermore, the inverse Hankel transform is (Tong and Wang, 2005; Bandelli
and Rajagopal, 1995)

v(r, t) =
π2

2

∞∑

n=1

r2nJ
2
0 (R2rn)B(r, rn)

J21 (R1rn)− J
2
0 (R2rn)

vnH(t) (3.6)

and
R2∫

R1

r log
( r
R2

)
B(r, rn) dr =

2

πR1r3n
(3.7)
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Multiplying Eq. (2.5) by rB(r, rn), integrating the result with respect to
r from R1 to R2, and using boundary condition (3.3)1 and identity (3.5), we
find that

λv̈nH(t) + (1 + αr
2
n)v̇nH(t) + νr

2
nvnH(t) =

2ft

πρrn
t > 0 (3.8)

From (3.2) it also results that

vnH(0) = v̇nH(0) = 0 (3.9)

The solution to linear ordinary differential equation (3.8), with initial condi-
tions (3.9), is given by

vnH(t) =
2f

πµr3n

[
t−
eq2nt − eq1nt

q2n − q1n
−
1 + αr2n
νr2n

(
1−
q2ne

q1nt − q1ne
q2nt

q2n − q1n

)]
(3.10)

where

q1n, q2n =
−(1 + αr2n)±

√
(1 + αr2n)

2 − 4νλr2n
2λ

Finally, applying the inverse Hankel transform formula and using Eq. (3.7),
we find for the velocity field v(r, t) the simple expression

v(r, t) =
f

µ
(t− λr)R1 log

( r
R2

)
−
πf

µν

∞∑

n=1

J20 (R2rn)B(r, rn)

r3n[J
2
1 (R1rn)− J

2
0 (R2rn)]

+
πf

µ

∞∑

n=1

J20 (R2rn)B(r, rn)

rn[J
2
1 (R1rn)− J

2
0 (R2rn)]

(3.11)

·

(1 + αr2n
νr2n

q2ne
q1nt − q1ne

q2nt

q2n − q1n
−
eq2nt − eq1nt

q2n − q1n

)

or equivalently

v(r, t) =
f

µ
(t− λr)R1 log

( r
R2

)

−
πf

µν

∞∑

n=1

J20 (R2rn)B(r, rn)

r3n[J
2
1 (R1rn)− J

2
0 (R2rn)]

(
1− λ

q21ne
q2nt − q22ne

q1nt

q2n − q1n

) (3.12)

3.2. Calculation of the shear stress

Solving Eq. (2.4)1 with respect to τ(y, t) and taking into account Eq.
(3.2)3, we find that

τ(r, t) =
µ

λ
e−
t

λ

t∫

0

e
s

λ

(
1 + λr

∂

∂s

)
∂rv(r, s) ds (3.13)
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Substituting (3.12) into (3.13), we obtain, after lengthy but straightforward
computations, a suitable form for the shear stress

τ(r, t) = f
(R1
r

)
[t− λ(1− e−

t

λ )] +
πf

ν
(1− e−

t

λ )
∞∑

n=1

J20 (R2rn)B̃(r, rn)

r2n[J
2
1 (R1rn)− J

2
0 (R2rn)]

+
πf

ν

∞∑

n=1

J20 (R2rn)B̃(r, rn)

r2n[J
2
1 (R1rn)− J

2
0 (R2rn)]

λ

q2n − q1n

[q22n(eq1nt − e−
t

λ )

1 + λq1n
(3.14)

−
q21n(e

q2nt − e−
t

λ )

1 + λq2n
+ λrq1nq2n

(q2n(eq1nt − e
−t

λ )

1 + λq1n
−
q1n(e

q2nt − e−
t

λ )

1 + λq2n

)]

where
B̃(r, rn) = J1(rrn)Y1(R1rn)− J1(R1rn)Y1(rrn) (3.15)

Of course, Eq. (3.14) can further be processed to give the simple form

τ(r, t) = f
(R1
r

)
[t− λ(1− e−

t

λ )]

+
πf

ν

∞∑

n=1

J20 (R2rn)B̃(r, rn)

r2n[J
2
1 (R1rn)− J

2
0 (R2rn)]

(
1−
q2ne

q1nt − q1ne
q2nt

q2n − q1n

) (3.16)

4. Limiting cases

4.1. Maxwell fluid

Taking the limit of Eqs. (3.12) and (3.16) as λr → 0, we attain to the
solutions

vM (r, t) =
ft

µ
R1 log

( r
R2

)

−
πf

µν
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n=1

J20 (R2rn)B(r, rn)

r3n[J
2
1 (R1rn)− J

2
0 (R2rn)]

(
1− λ

q25ne
q6nt − q26ne

q5nt

q6n − q5n

)

τM (r, t) = f
(R1
r

)
[t− λ(1 − e−

t

λ )]

+
πf

ν
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n=1

J20 (R2rn)B̃(r, rn)

r2n[J
2
1 (R1rn)− J

2
0 (R2rn)]

(
1−
q6ne

q5nt − q5ne
q6nt

q6n − q5n

)

(4.1)

corresponding to a Maxwell fluid performing the same motion. Into the above
relations

q5n, q6n =
−1±

√
1− 4νλr2n
2λ
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4.2. Second grade fluid

By now letting λ→ 0 into Eqs. (3.12) and (3.16), the similar solutions

vSG(r, t) =
f

µ
(t− λr)R1 log

( r
R2

)

−
πf

µν

∞∑

n=1

J20 (R2rn)B(r, rn)

r3n[J
2
1 (R1rn)− J

2
0 (R2rn)]

[
1− (1 + αr2n) exp

(
−
νr2nt

1 + αr2n

)]

τSG(r, t) = ft
(R1
r

)

+
πf

ν
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n=1

J20 (R2rn)B̃(r, rn)

r2n[J
2
1 (R1rn)− J

2
0 (R2rn)]

[
1− exp

(
−
νr2nt

1 + αr2n

)]

(4.2)

corresponding to a second grade fluid are recovered.

4.3. Newtonian fluid

Finally, making λ and λr → 0 into Eqs. (3.12) and (3.16) or λ → 0 into
(4.1) respectively, λr → 0 into (4.2), the solutions for a Newtonian fluid

vN (r, t) =
ft

µ
R1 log

( r
R2

)
−
πf

µν

∞∑

n=1

J20 (R2rn)B(r, rn)

r3n[J
2
1 (R1rn)− J

2
0 (R2rn)]

(1− e−νr
2
nt)

(4.3)

τN (r, t) = ft
(R1
r

)
+
πf

ν

∞∑

n=1

J20 (R2rn)B̃(r, rn)

r2n[J
2
1 (R1rn)− J

2
0 (R2rn)]

(1− e−νr
2
nt)

are obtained. Of course, for the last two cases (Newtonian and second grade
fluids), the boundary condition obtained from (3.1) for λ→ 0 is

τ(R1, t) = ft (4.4)

5. Connection with some similar results from the literature

The unsteady motion through an infinite annular region due to the inner
cylinder that applies a constant longitudinal shear f to a second grade fluid
has been studied by Bandelli and Rajagopal (1995). The velocity field that
was obtained is

v0SG(r, t) =
f

µ
R1 log

( r
R2

)
−
πf

µ

∞∑

n=1

J20 (R2rn)B(r, rn)

rn[J21 (R1rn)− J
2
0 (R2rn)]

exp
(
−
νr2nt

1 + βr2n

)

(5.1)
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where β = α1/µ, α1 is a material constant and rn are the same roots as
before. Simple analysis shows that the two solutions v0SG(r, t) and vSG(r, t),
corresponding to the shear stress f , respectively ft on the boundary, are
related by the integral relation

vSG(r, t) =

t∫

0

v0SG(r, s) ds (5.2)

if α = β = νλr. Of course, simple computations also show that

τSG(r, t) =

t∫

0

τ0SG(r, s) ds (5.3)

Consequently, the solutions vSG(r, t) and τSG(r, t), as well as vN (r, t) and
τN (r, t), corresponding to the motion of a second grade or Newtonian fluid due
to the inner cylinder that applies a shear stress ft to the fluid, can immediately
be obtained by simple integration if the similar solutions v0SG(r, t), τ

0
SG(r, t),

v0N (r, t) and τ
0
N (r, t) corresponding to a constant shear on the boundary, are

known.

6. Numerical results and conclusions

The purpose of this note is to provide exact solutions for the velocity field
and the shear stress corresponding to the axial flow of an Oldroyd-B fluid
between two infinite circular cylinders, the inner cylinder being subject to a
time-dependent shear stress and the outer one at rest. These solutions, obta-
ined by means of the finite Hankel transforms, are presented under a series
form in terms of the Bessel functions J0(·), J1(·), Y0(·) and Y1(·). Direct com-
putations show that they satisfy both the governing equations and all initial
and boundary conditions. Furthermore, for λr → 0 or λ → 0, general solu-
tions (3.12) and (3.16) reduce to the corresponding solutions for Maxwell fluids
and second grade fluids, respectively. The last solutions, as well as the general
solutions, can easily be specialized to give the similar solutions for Newtonian
fluids performing the same motion.

All solutions are presented as a sum between large-time and transient so-
lutions. Simple analysis shows that
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vLT (r, t) =
f

µ
(t− λr)R1 log

( r
R2

)

−
πf

µν

∞∑

n=1

J20 (R2rn)B(r, rn)

r3n[J
2
1 (R1rn)− J

2
0 (R2rn)]

= vSGLT (r, t) (6.1)

vMLT (r, t) =
ft

µ
R1 log

( r
R2

)
−
πf

µν

∞∑

n=1

J20 (R2rn)B(r, rn)

r3n[J
2
1 (R1rn)− J

2
0 (R2rn)]

= vNLT (r, t)

Consequently, as expected, for large times the velocity of an Oldroyd-B flu-
id can be well enough approximated by that of a second grade fluid. The
last relation shows that for Maxwell fluids the non-Newtonian effects on the
fluid motion disappear in time. As regards the shear stresses, it is clearly
that τLT (r, t) = τMLT (r, t) and τSGLT (r, t) = τNLT (r, t). This is not a surpri-
se, because the shear stress on the inner cylinder is the same for Oldroyd-
B and Maxwell fluids, respectively for the second grade and Newtonian
fluids.

Finally, in order to reveal some relevant physical aspects of the obtained
results, diagrams of the velocity field and the shear stress have been drawn
against r for different values of t and material costants. Figures 1a and 1b
clearly show that the velocity v(r, t), as well as the shear stress τ(r, t) in
absolute value, is an increasing function of t. The influence of the relaxation
and retardation times λ and λr on the fluid motion is shown into Fig. 2 and 3.
The velocity of the fluid, as well as the shear stress in absolute value, is a
decreasing function of λ and λr. The effect of the kinematic viscosity, as it
results from Figs. 4a and 4b, is opposite to that of λ and λr. The velocity of
the fluid, as expected, increases for increasing ν.

Fig. 1. Profiles of the velocity v(r, t) and the shear stress τ(r, t) given by Eqs. (3.12)
and (3.16), for R1 = 0.5, R2 = 0.9, f = −5, ν = 0.0357541, µ = 32, λ = 5, λr = 3

and different values of t
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Fig. 2. Profiles of the velocity v(r, t) and the shear stress τ(r, t) given by Eqs. (3.12)
and (3.16), for R1 = 0.5, R2 = 0.9, f = −5, ν = 0.0357541, µ = 32, λr = 3, t = 15 s,

and different values of λ

Fig. 3. Profiles of the velocity v(r, t) and the shear stress τ(r, t) given by Eqs. (3.12)
and (3.16), for R1 = 0.5, R2 = 0.9, f = −5, ν = 0.0357541, µ = 32, λ = 7, t = 15 s,

and different values of λr

Fig. 4. Profiles of the velocity v(r, t) and the shear stress τ(r, t) given by Eqs. (3.12)
and (3.16), for for R1 = 0.5, R2 = 0.9, f = −5, ρ = 895, λ = 5, λr = 3, t = 15 s, and

different values of ν
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Wybrane rozwiązania dokładne dla cieczy Oldroyda-B przy zadanej

funkcji naprężeń stycznych zależnej od czasu

Streszczenie

Pole prędkości i pole rozkładu naprężeń stycznych wywołanych ruchem cieczy
Oldroyda-B umieszczonej między dwoma koncentrycznymi cylindrami wyznaczono za
pomocą transformaty Hankela. Przepływ cieczy wywołano zależnym od czasu naprę-
żeniem stycznym od zewnętrznej ściany cylindra wewnętrznego. Uzyskane rozwiązanie
dokładne, ujęte w formie rozwinięcia w szereg, może łatwo być zastosowane dla przy-
padków szczególnych cieczy Maxwella, cieczy drugiego stopnia i nienewtonowskich
przy tych samych warunkach przepływu. Na zakończenie rozważań, przedstawiono
graficznie charakterystyki ruchu cieczy i wpływ parametrów materiałowych na jej
zachowanie.
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