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Most papers dealing with calculations and simulations of the unsteady
liquid pipe flow are based on the assumption that the formula for quasi-
steady friction (Darcy-Weisbach formula) can be applied. In the case of
fast changes, like fast transients e.g. water hammer, it fails. In this work,
the wall shear stress is presented as a sum of quasi-steady and unsteady
component. The unsteady component of the wall shear stress is modeled
as a convolution of local fluid acceleration and a weighting function. The
original weighting function has usually a very complicated structure, and
what is more, makes impossible to carry out an efficient simulation of
dynamical runs. In this paper, in order to enable efficient calculation of
the unsteady component of the wall shear stress, new weighting functions
are presented as sums of exponential components.
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1. Introduction

Most paper dealing with numerical calculations and simulations of the unste-
ady liquid pipe flow are based on the assumption that the formula for quasi-
steady friction can be applied. However it is only correct in the case of slow
changes in the fluid velocity field in the pipe cross-section, i.e. either for small
accelerations or for low frequencies It fails in the case of simulation of a fast-
changing flow, e.g. in the case of water hammer simulation, because received
results significantly differ from the results of experimental studies.
Earlier models of unsteady friction losses were based on instantaneous va-

lues of velocity and acceleration (Daily et al., 1956; Cartens and Roller, 1959;
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Safwat and Polder, 1973; Shuy and Apelt, 1987; Brunone et al., 1991; Vit-
kovsky et al., 2000; Bughazem and Anderson, 2000; Bergant et al., 2001).
Currently, models based on the history of the flow are commonly used. The
forerunner in this group of models was Zielke (1968), who presented the in-
stantaneous wall shear stress τu in form of an integral convolution of the mean
local acceleration of the liquid and a weighting function w(t)

τu =
2µ

R

t∫

0

∂v

∂t
(u)w(t− u) du (1.1)

where: µ – dynamic viscosity, R – inner radius of pipe, v – instantaneous
mean flow velocity, t – time, u – time used in the convolution integral, w(t) –
weighting function.
This dependence is correct for any changes in the average velocity of flow

in the pipe cross-section and relates to laminar flow. This model requires time-
consuming numerical calculations due to continuous referring to the history of
the flow velocity. Therefore, it has been simplified by the introduction of the
so-called effective weighting function. Trikha (1975) was first to present the
effective expression of the Zielke weighting model, but this relationship has
a limited range of applications. Then, new computing models, based on the
approximation of the Zielke weighting function were created by Kagawa et al.
(1983), Suzuki et al. (1991) and Schohl (1993).
In the case of transient turbulent flow, in most of the scientific papers, the

models of unsteady friction losses are based on the two-dimensional Reynolds
equation and the Boussinesqu hypothesis. In addition, the experimental data
for the turbulent viscosity coefficient distribution in the pipe cross section (in
its various layers) are used. In the literature one can find so-called two region
models (Vardy et al., 1993; Vardy and Brown, 1995, 1996; Popov, 1982; Brown
et al., 1969), three-region models (Brown, 1969) and four-region models (Ohmi
et al., 1985; Zarzycki, 1994, 2000). Similarly, as it was in the case of laminar
flow, the relation describing the instantaneous wall shear stress in form of Eq.
(1.1) can also be used for unsteady turbulent flow, but then weighting functions
w(t) are determined on the basis of the above mentioned multi-region models.
In this case, expressions which describe the weighting functions effectively are
represented by the following models: Vardy and Brown (2003, 2004), Zarzycki
and Kudźma (2004). In the turbulent flow, weighting functions depend not
only on dimensionless time (as in the case of laminar flow), but also on the
Reynolds number and relative roughness height. Domains of dimensionless
time and Reynolds numbers of presented weighting functions do not always
correspond to practical applications. Accordingly, this work extended the scope
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of practical applications of new weighting functions. In the case of laminar
flow, the most strict model (Zielke, 1968) was used as a base for the process
of approximation (a new function is valid in the range 10−9 ¬ t̂ ¬ ∞). In the
case of turbulent flow, the commonly used weighting functions: by Zarzycki
(2000) and by Vardy and Brown (2003) were modified to the range of Reynolds
numbers 2320 ¬ Re ¬ 108 and dimensionless time 10−9 ¬ t̂ ¬ ∞.
Using the method of characteristics (MOC) for solution of the equations of

motion and continuity, there are a few examples of the application of the new
weighting function to the waterhammer phenomenon. The results of numerical
calculations are compared with the results of experimental studies using the
experimental data by Holmboe and Rouleau (1967) and by Adamkowski and
Lewandowski (2004). The comparison confirmed a good agreement.

2. Governing equations

The unsteady flow, accompanying the water hammer effect, may be described
by a set of the following partial differential equations (Ohmi et al., 1985;
Zarzycki, 1994, 2000):
— equation of continuity

∂p

∂t
+ c2ρ

∂v

∂x
= 0 (2.1)

— equation of motion

∂v

∂t
+
1

ρ

∂p

∂x
+ g sin γ +

2τ

ρR
= 0 (2.2)

where: v = v(x, t) – average velocity of the liquid in the pipe cross-section,
p = p(x, t) – average pressure in the pipe cross-section, τ – wall shear stress,
ρ – density of the fluid, g – gravitational acceleration, γ – inclination angle
of the hydraulic line, c – velocity of the pressure wave propagation, t – time,
x – axial location along the pipe.
Among methods, which enable one to resolve the system of the above equ-

ations, particular attention should be paid to the method of characteristics
(MOC), which perfectly interprets the essence of natural phenomena of tran-
sient flow, and at the same time is characterized by fast convergence, taking
easily to take into account various boundary conditions and high accuracy
of calculation results. With its help, one can easily solve a system of partial
differential equations of the quasi-linear hyperbolic type, Eqs. (2.1) and (2.2).
The solution is to find the equivalent to four ordinary differential equations,
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which are then solved using the method of finite differences. Approximation to
first-order differential schemes gives satisfactory results. Most computer pro-
grams used in computational simulations of transients in pipe systems have
implemented simple computational algorithms, which adopt a quasi-steady
hydraulic resistance. Novelty of this work is to include decription of the unste-
ady hydraulic resistance of the transient flow in a pipeline, for which it is easy
to conduct an efficient simulation for both laminar and turbulent flow.

3. Equations of unsteady hydraulic resistance

Zielke analyzed the relationship presented in the work of Brown describing
the impedance of a hydraulic line versus frequency. Application of the inverse
Laplace transform brought him to the following expression (Zielke, 1968)

τ(t) =
ρv|v|
8
λ

︸ ︷︷ ︸

τq

+
2µ

R

t∫

0

w(t− u)∂v
∂t
(u) du

︸ ︷︷ ︸

τn

(3.1)

where: w(t−u) – weighting function; t – actual time in numerical simulation;
u – integral variable having dimension of time.

The first component τq of equation (3.1) represents the quasi-steady amo-
unt of wall shear stress. The other one, τu, describes the impact of the unsteady
effect of flow on the wall shear stress.

3.1. The laminar flow

Zielke (1968) presented the weighting functions for laminar flow in the
following form

w(t̂) =







6∑

i=1

mit̂
(i−2)/2 for t̂ ¬ 0.02

5∑

i=1

e−ni t̂ for t̂ > 0.02

(3.2)

where: t̂ = νt/R2 – diensionless time, coefficients mi and ni successively
take the following values: mi = 0.282095, −1.25, 1.057855, 0.9375, 0.396696,
−0.351563; ni = 26.3744, 70.8493, 135.0198, 218.9216, 322.5544.
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Numerical calculation of the time-dependent component of the wall shear
stress τu (second component in Eq. (3.1)) can be made using the first-order
differential approximation (Zarzycki and Kudźma, 2004; Zielke, 1968)

τn =
2µ

R

k−1∑

j=1

(vi,j+1 − vi,j)w
(

(k − j)∆t̂− ∆t̂
2

)

=
2µ

R

k−1∑

j=1

(vi,k−j+1 − vi,k−j)w
(

j∆t̂− ∆t̂
2

)
(3.3)

where: j – number of computational time step changing from 1 to k for k  2,
∆t̂ = ν∆t/R2.

Determination of the wall shear stress using above formula (3.3) is very
time consuming. Trikha (1975)was first to develop an effective method of so-
lving the integral convolution (later Kagawa et al. (1983), Suzuki et al. (1991)
and Schohl (1993) had improved that method). In this paper, the effective
solution of Kagawa et al. (1983) is used

τu =
2µ

R

k∑

i=1

(

yi(t)e
−ni∆t̂ +mie

−ni∆t̂/2[v(t+∆t)− v(t)]
︸ ︷︷ ︸

yi(t+∆t)

)

(3.4)

This method, however, requires that the weighting function has to be writ-
ten as a finite sum of exponential expressions

w(t̂) =
k∑

i=1

mie
−nit̂ (3.5)

Number of exponential terms that make up the final form of the effective
weighting function, affects the range of its applicability as well as its degree
of fit to the original function (according to Zielke). Over the past 35 years,
many authors have presented their effective weighting functions for the case
of laminar flow (Kagawa et al., 1983; Schohl, 1993; Trikha, 1975; Vardy and
Brown, 2004; Vitkovský et al., 2004). For the ranges of their applicability and
their estimated coefficients – see Tables A1 and A2 in Appendix A.

The course of the laminar weighting function is shown in Fig. 1.

3.2. Turbulent flow

Both Vardy and Brown (1995, 1996, 2003, 2004), and Zarzycki (1994, 2000)
suggest that the relation for the unsteady part of the wall shear stress presented
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Fig. 1. Comparison of laminar function runs; (a) log-linear scale, (b) log-log scale

by Zielke, Eq. (3.1), is also true for the turbulent flow. However, the weighting
function in this case has different shape due to its dependence on the Reynolds
number. The original turbulent weighting functions are:

— Zarzycki’s weighting function (Zarzycki, 2000)

w(t̂,Re) = C
1√
t̂
Ren (3.6)

where: C = 0.299635, n = −0.005535.
— Vardy’s and Brown’s weighting function (Vardy and Brown, 2003, 2004)

w(t̂,Re) =
A∗e−B

∗ t̂

√
t̂

(3.7)

where: A∗ =
√

1/(4π) and B∗ = Reκ/12.86, κ = log(15.29/Re0.0567) for
smooth pipes and A∗ = 0.0103

√
Re(ε/D)0.39 and B∗ = 0.352Re(ε/D)0.41 for

flows in rough pipes. The ratio ε/D is called the relative roughness (in one
of the recent works by Vardy and Brown, there is a proposition to set the
parameters A∗ and B∗ from more complicated equations, shown in Vardy
and Brown (2007)).

But they were not suitable for efficient simulations using expression (3.3)
for wall shear stress calculations. From computational point of view it is very
important to be able to conduct effective (in terms of high accuracy, fast
working numerical scheme and less memory usage) simulations of transients
both in laminar and turbulent flow. Therefore, in literature, one can find,
so-called, effective expressions which are approximations of original models
of turbulent weighting functions. For ranges of their applicability and their
estimated coefficients – see Tables A3 and A4 in Appendix A.
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4. Developing effective weighting functions

4.1. Weighting function for laminar flow

In view of the need to extend the applicability of the effective function of
weighting which was noted by, among others, Vardy and Brown (2004, 2007),
a new model which is the sum of exponential expressions will be presented
further.
The new model is consistent with the original function by Zielke in the

following range of applicability 10−9 ¬ t̂ < ∞. The final form of the new
function consists of 26 exponential expressions. Since the value of Zielke we-
ighting function for the dimensionless time t̂ > 0.02 must be determined from
the following formula (3.2)

w(t̂) =
5∑

i=1

e−nit̂ (4.1)

where: n1 = 26.3744, n2 = 70.8493, n3 = 135.0198, n4 = 218.9216,
n5 = 322.5544.
In this work these first five exponential expressions were kept unchanged

(in order to receive perfect fit of the new weighting function in this interval of
dimensionless time). For the mapping of the interval 10−9 ¬ t̂ < 0.02 it was
decided to add extra similar components. It was assumed that a very good
accuracy would be received by describing each dimensionless time interval
10n−1 ¬ t̂ < 10n with three exponential expressions (except for the range
10−3 ¬ t̂ < 0.02, which also describes the three formulas – so the worst
match of the new weighting function was expected). In each of those intervals,
matching was carried out to uniformly distributed 1000 points (in log scale),
which were the results obtained by using the original function of weighting
according to Zielke.
The effective weighting function coefficients were determined by using the

LSQNONLIN function, which is a module of MATLAB. In this function the
Levenberg-Marquardt algorithm is implemented, considered as one of the most
effective among the minimization algorithms. It combines the linear approxi-
mation away from the minimum and square approximation near the minimum,
so that it is specialized to problems of the method of least squares.
Following the procedure outlined above, all coefficients of the new effective

weighting function for laminar flow were determined

wapr(t̂) =
26∑

i=1

mie
−ni t̂ (4.2)
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where: m1 = 1, m2 = 1, m3 = 1, m4 = 1, m5 = 1, m6 = 2.141, m7 = 4.544,
m8 = 7.566, m9 = 11.299, m10 = 16.531, m11 = 24.794, m12 = 36.229,
m13 = 52.576, m14 = 78.150, m15 = 113.873, m16 = 165.353, m17 = 247.915,
m18 = 369.561, m19 = 546.456, m20 = 818.871, m21 = 1209.771, m22 =
= 1770.756, m23 = 2651.257, m24 = 3968.686, m25 = 5789.566, m26 =
= 8949.468, n1 = 26.3744, n2 = 70.8493, n3 = 135.0198, n4 = 218.9216,
n5 = 322.5544, n6 = 499.148, n7 = 1072.543, n8 = 2663.013, n9 = 6566.001,
n10 = 15410.459, n11 = 35414.779, n12 = 80188.189, n13 = 177078.960, n14 =
= 388697.936, n15 = 850530.325, n16 = 1835847.582, n17 = 3977177.832,
n18 = 8721494.927, n19 = 19120835.527, n20 = 42098544.558, n21 =
= 92940512.285, n22 = 203458923.000, n23 = 445270063.893, n24 =
= 985067938.878, n25 = 2166385706.058, n26 = 4766167206.672.

4.2. Weightig functions for turbulent flow

The new effective weighting function for turbulent flow will be based on the
Zarzycki original model ((Zarzycki, 1994, 2000; Zarzycki and Kudźma, 2004).
The form of a new function is selected so that it is easy to scale it. Scaling
will depend in detail on multiplying the estimated coefficients (assuming a
constant value of the Reynolds number Re during the transient flow) by a
function of the Reynolds number (which will be fixed prior to simulation)
(Vitkovský et al., 2004). It will ensure a good fit for the standard functions
(the original weighting function) of the effective function throughout the range
of applicability.

The weighting function by Zarzycki is a function of dimensionless time and
the Reynolds number Re (3.6). Following the way presented by Vitkovský et
al. (2004), it can be written

wapr(t̂,Re) =
CRen√
t̂
≈
k∑

i=1

mie
−nit̂ (4.3)

Then, dividing the above dependence by CRen, the weighting function has
form

w∗apr =
1√
t̂
≈
k∑

i=1

mi
CRen

e−ni t̂ w∗apr ≈
Re−n

C

k∑

i=1

mie
−nit̂

w∗apr ≈
Re0.005535

0.299635

k∑

i=1

mie
−ni t̂ w∗apr ≈

k∑

i=1

m∗i e
−nit̂

(4.4)

where: m∗i – universal coefficients for the effective weighting function of tur-
bulent flow.
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This procedure shows how the universal coefficients of the effective weigh-
ting function for the turbulent flow are determined. The current form of the
effective weighting function is determined with their help as a result of the
reverse scaling. In this paper, the universal coefficients m∗i were determined
by adjusting the effective weighting function to the original by Zarzycki for
the constant Reynolds number Re = 10000

m∗i =
mi(Re = 10000)

C
Re0.005535 =

mi(Re = 10000)

0.299635
100000.005535 (4.5)

The making use of universal coefficients must ensure that the number of Re =
10000 are derived values, which were initially estimated, i.e. mi(Re = 10000).
Therefore, the desired effective weighting function for turbulent flow must have
the following form

wapr(t̂,Re) ≈
C

Re−n

k∑

i=1

m∗i e
−ni t̂ =

0.299635

Re0.005535

k∑

i=1

m∗i e
−ni t̂ (4.6)

Assume that the scope of the new effective weighting function for turbulent
flow must be as follows: 10n−1 ¬ t̂ < 10n to be fully suited for the use in present
technical issues. Then it was found that for each interval 10n−1 ¬ t̂ < 10n
(for n = −9 to n = 3) for a good estimate of the coefficients characterizing
this function, just two power terms (mie

−nit̂) are efficient. Hence, for the
entire range of applicability in the field of dimensionless time 10−9 ¬ t̂ < 103
24 exponential expressions were finally received. The sum of these expressions
is the new effective weighting function for turbulent flow. In order to determine
such a large number of factors (in total 48 coefficients) it was assumed that
the successive coefficients of determination in steps must be followed. For each
step of estimation, there were two new exponential terms added (4 consecutive
coefficients) to the searched function (power series). The searching procedure
was started for the dimensionless time period 102 ¬ t̂ < 103.
In order to accurately estimate the coefficients in each interval of analy-

sis 10n−1 ¬ t̂ < 10n, the estimation was based on equally distributed 1000
points (similar like when setting the new effective function for laminar flow),
which were the results obtained from using the original weighting function by
Zarzycki.
Following the above procedure, all the estimated coefficients of the new

effective weighting function for turbulent flow were determined

wapr(t̂,Re) =
C

Re−n

24∑

i=1

m∗i e
−ni t̂ =

0.299635

Re0.005535

24∑

i=1

m∗i e
−ni t̂ (4.7)



496 K. Urbanowicz, Z. Zarzycki

where: m∗1 = 0.06054, m
∗

2 = 0.09698, m
∗

3 = 0.17971, m
∗

4 = 0.31240,
m∗5 = 0.56562, m

∗

6 = 0.98348, m
∗

7 = 1.77243, m
∗

8 = 3.08626, m
∗

9 = 5.57348,
m∗10 = 9.7254, m

∗

11 = 17.591, m
∗

12 = 30.723, m
∗

13 = 55.603, m
∗

14 =
= 97.138, m∗15 = 175.825, m

∗

16 = 307.176, m
∗

17 = 551.342, m
∗

18 = 954.362,
m∗19 = 1727.71, m

∗

20 = 3171.2, m
∗

21 = 5899.4, m
∗

22 = 11013, m
∗

23 = 19923,
m∗24 = 37929, n1 = 0.000671, n2 = 0.00838, n3 = 0.04504, n4 = 0.1790,
n5 = 0.6457, n6 = 2.159, n7 = 7.088, n8 = 22.563, n9 = 72.215, n10 = 227.12,
n11 = 723.19, n12 = 2270.23, n13 = 7226.1, n14 = 22686.2, n15 = 72226.7,
n16 = 226796, n17 = 720015, n18 = 2234661, n19 = 7050737, n20 = 22553627,
n21 = 74840660, n22 = 253286747, n23 = 856109205, n24 = 2893640000.

The range of applicability of the new effective weighting functions, presen-
ted in the last two subsections, (laminar flow 10−9 ¬ t̂ < ∞, turbulent flow
10−9 ¬ t̂ < 103 and 2300 ¬ Re ¬ 108) virtually guarantees a very accurate
assessment of hydraulic resistance which is useful in simulation of the unste-
ady cavitating flow in pipelines. However, one can move beyond this range,
when it is necessary to substantially thicken the grid of characteristics (trac-
king changes of flow parameters in a number of cross-sections in the analyzed
pressure line). Then, in the numerical analysis, the changes in a very short
time t̂ < 10−9 can be taken into account (see example in Appendix B).

Therefore, there are no decisive experimental results supporting one of the
two (considered in this paper) original weighting functions for turbulent flow
(by Vardy and Brown and by Zarzycki). There is already an effective weighting
function presented by Vitkovský et al. (2004) (for details see Appendix A)
based on the model by Vardy and Brown (3.7), which is characterized by a
good fit, but a small range of applicability. There is therefore no need to present
a completely new function. It is simply enough to extend the applicability of
the existing one by finding new extra exponential terms.

To minimize the impact of the last term of the Vitkovský et al. (2004) func-
tion on quality of mapping of the expanded function to the original function, it
was also replaced by a new one (new estimated values of the coefficients: m∗10
and n∗10). Moreover, in the estimation process it was assumed that the lower
range of applicability of the new function must be t̂ = 10−9. For this purpo-
se, it was necessary to find seven new exponential expressions. The procedure
used to achieve this goal was almost identical to that used in the estimating
of the weighting function for the turbulent flow based on the original weigh-
ting function by Zarzycki. Thus, below is only presented the final form of this
function

wapr(t̂,Re) =
16∑

i=1

A∗m∗i e
−(n∗

i
+B∗)t̂ (4.8)
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where: A∗ and B∗ are parameters known from Vardy’s and Brown’s equ-
ation (3.7) and m∗1 = 5.03362, m

∗

2 = 6.4876, m
∗

3 = 10.7735, m
∗

4 = 19.904,
m∗5 = 37.4754, m

∗

6 = 70.7117, m
∗

7 = 133.460, m
∗

8 = 251.933, m
∗

9 = 476.597,
m∗10 = 902.22, m

∗

11 = 1602.04, m
∗

12 = 2894.84, m
∗

13 = 5085.55, m
∗

14 = 9190.11,
m∗15 = 16118.6, m

∗

16 = 29117.3, n
∗

1 = 4.78793, n
∗

2 = 51.0897, n
∗

3 = 210.868,
n∗4 = 765.03, n

∗

5 = 2731.01, n
∗

6 = 9731.44, n
∗

7 = 34668.5, n
∗

8 = 123511,
n∗9 = 440374, n

∗

10 = 1578229, n
∗

11 = 5481659, n
∗

12 = 18255921, n
∗

13 = 59753474,
n∗14 = 192067361, n

∗

15 = 616415963, n
∗

16 = 1945566788.

The scope of applicability of all new weighting functions presented above
(4.2), (4.7) and (4.8) can be any further extended by adding the new expo-
nential expressions.

4.3. Comparison of the new weighting functions with their original coun-

terparts and the best known effective features from the literature

The following figures are presented in order to show a comparison of the
new, proposed in the previous section, weighting functions with their ineffi-
cient counterparts and the most precise effective functions known from the
literature. In addition, in order to demonstrate the degree of matching obta-
ined by the weighting functions with their prototypes, results of quantitative
analysis are graphically presented.

Fig. 2. Comparison of weighting functions for laminar flow: (a) log-log graph,
(b) relative percentage error

As a parameter determining quantitatively the degree of matching the new
efficient weighting function with its original counterpart, the relative percen-
tage error determined from the following relationship was incorporated

Rerror =
wapr − w
w

100% (4.9)
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Fig. 3. Comparison of weighting functions (original Zarzycki’s and its known
effective counterparts) for turbulent flow (Re = 104): (a) log-log graph, (b) relative

percentage error

Fig. 4. Comparison of weighting functions (original Vardy and Brown and its known
effective counterparts) for turbulent flow (Re = 104): (a) log-log graph, (b) relative

percentage error

Comparisons of the weighting functions for turbulent flow for a wider range
of the Reynolds numbers are not shown in this work. Indeed, the use of scaling
procedures presented by Vitkovský et al. (2004) means that for other Reynolds
numbers (from the range of applicability) the errors remain the same.

5. Numerical results

In order to compare the accuracy of unsteady (with the use of original and
universal weighting functions) and quasi-steady models of friction in relation
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to experimental data, simulations of a simple waterhammer case (tank – long
liquid line and cut-off valve) were conducted.

The computed results (the method of characteristics based on a rectangular
grid was used; hydrayulic line was divided on N = 16 elements) were compared
with the experimental data reported by Holmboe and Rouleau (1967), and
Adamkowski and Lewandowski (2004).

5.1. Holmboe and Rouleau experiment

Holmboe and Rouleau (1967) ran their tests on a copper tube with radius
0.0127m and length 36.09m connected upstream to a tank which was main-
tained at a constant pressure by the compressed air. The liquid used in the
experiment was an oil having viscosity 39.6710−6 m2/s. The measured speed
of the pressure wave was 1324.36m/s, and the initial flow velocity 0.128m/s
(Re = 82). The downstream valve was rapidly closed in the pipe line during
flow. Pressure fluctuation was measured at the endpoint of the line (near the
valve). From the above parameters, it followed that it was a case of laminar
flow. It was determined in numerical calculations, in which the models of Ziel-
ke (3.2) and the new effective laminar model (4.2) were used. In addition, the
calculation with the usage of quasi-steady model was conducted. The results
of simulations and experimental data are shown in Fig. 5.

Fig. 5. Fluctuations of pressure at the endpoint of the line (Re = 82) – Holmboe
and Rouleau experiment

It is clearly seen that the calculation using unsteady friction models is
much closer to the experimental data. Therefore, in further calculations, the
unsteady friction models were used instead of the quasi-steady formula. Ad-
ditionally, it is significant that the differences between the simulation results
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according to the classical Zielke model (3.2) and the new proposed function
(4.2) (efficient way of unsteady wall shear stress computation) are hardly di-
stinguishable.

5.2. Adamkowski and Lewandowski experiment

Adamkowski and Lewandowski (2004) conducted experiments at a test rig
specially designed in order to investigate the unsteady pipe flows. Its main
component was a 98.11m long copper pipe with internal diameter of 0.016m
and wall thickness of 0.001m. The pipe was rigidly mounted to the ground
using bearings in order to minimize its vibrations. A quick-closing spring dri-
ven ball valve was installed at one end of the pipe. The initial conditions were
defined by the high pressure reservoir pressure head and the initial flow velo-
city in the pipeline. During the tests, temperature of water was 22.6◦C, and
the kinematic viscosity coefficient for these conditions was 9.493 · 10−7m2/s.
Three runs were selected for the purpose of verifying new unsteady friction
models. The initial flow velocities were 0.066m/s (Re = 1100), 0.631m/s
(Re = 10600) and 0.927m/s (Re = 15600). The results of simulations and
experimental data are shown in Figs. 6, 7 and 8.

Fig. 6. Fluctuations of pressure at the endpoint of the line (Re = 1100) –
Adamkowski and Lewandowski experiment

From the above graphs, it is clear that the use of the new efficient weighting
functions (4.2), (4.7) and (4.8) ensures compatibility of results with those
obtained from the original models by Zielke (3.2), Vardy and Brown (3.7) and
Zarzycki (3.6).
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Fig. 7. Fluctuations of pressure at the endpoint of the line (Re = 10600) –
Adamkowski and Lewandowski experiment

Fig. 8. Fluctuations of pressure at the endpoint of the line (Re = 15600) –
Adamkowski and Lewandowski experiment

6. Summary

The main drawback of the original models (according to Zielke, Vardy and
Brown, and Zarzycki) describing the unsteady hydraulic resistance is their
inefficiency! In each successive time step they require more resources of the
computer memory (this is due to augmentations in quantity of elements that
make up the sum creating the solution to the integral convolutions (3.3), as
well as due to enlargement of the matrix which stores information about past
velocity changes v(t)). Often, after the time when the entire memory of the
computer is used, it comes to forced interruption of performance simulation.
Hence the original weighting functions that make the obtained results coincide
with the results of experimental studies (Vardy and Brown, 1995; Zarzycki,
1994), even today, with tremendous development of computer technology, fit
for simulations of very short transients only.
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The known efficient solution of the integral convolution (3.4) for both la-
minar and turbulent flow (Kagawa et al., 1983; Schohl, 1993; Zarzycki and
Kudźma, 2004) allowed, in the case of using the weighting function as a finite

sum of exponential terms
∑k
i=1mie

−ni t̂, a significant reduction in computa-
tion time and reduced demand for operational memory. Importantly, the time
of calculation with the increasing number of time steps, increased almost line-
arly, as shown in Fig. 9 (calculations were carried out on a standard desktop
computer – Fujitsu Siemens-Intel Core 2 Quad CPU Q6600, 2.4GHz, 2048MB
RAM). The impact of number of weighting function terms on time of calcu-
lation was also investigated. The two cases are presented in Fig. 9: 10 terms
(Eq. (3.4) and Vitkovský et al. laminar function (2004)) and 26 terms (Eqs.
(3.4) and (4.2)). The increase of time consumption for efficient cases is very
small in relation to the original model (Eqs. (3.2) and (3.3)).

Fig. 9. Time of numerical calculations depending on the number of time steps

Numerous simulation tests carried out by the authors revealed that the nu-
merical results using models with small ranges of applicability (e.g., by Trikha)
often deviate from the experimental results (as a result of going beyond the
scope of applicability of the used weighting function). Professional software,
which may in future be based on weighting functions presented in this work,
must prevent crossing outside the range of applicability of these functions –
by informing the user about the need to change numerical parameters (e.g.
the number of simultaneously observed pipe cross sections).

The presented new weighting functions characterized by the extended ran-
ges of applicability in the domain of dimensionless time are suitable for the
efficient modeling of transients. The studies show that the results of numerical
simulations, in which a new weighting functions were used, overlap with those
that use the original models.
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In the next stage of research, the usefulness of the new weighting functions
presented in this paper in simulation of transients with cavitation should be
explored.

Appendix A

Table A1. Ranges of applicability of the effective laminar weighting functions

Model
by

Trikha Schohl Kagawa Vitkovský Vardy and
(1975) (1993) et al. (1983) et al. (2004) Brown (2004)

range of 7.41 · 10−5 ¬ 1.26 · 10−5 ¬
6.31 · 10−6 ¬ t̂ ¬ ∞ 10−8 ¬

applicab. t̂ ¬ 10 ¬ t̂ ¬ 1 ¬ t̂ ¬ ∞

Table A2. Estimated coefficients of the effective laminar weighting functions

Trikha Schohl Kagawa Vitkovský Vardy and
i (1975) (1993) et al. (1983) et al. (2004) Brown (2004)
mi ni mi ni mi ni mi ni mi ni

1 1 26.4 1.051 26.65 1 26.3744 1 26.3744 1 A
2 8.1 200 2.358 100 1.16725 72.8033 1.09301 72.044 2.1830 102

3 40 8000 9.021 669.6 2.20064 187.424 1.82206 166.931 2.714 102.5

4 29.47 6497 3.92861 536.626 3.34085 435.932 7.5455 103

5 79.55 57990 6.78788 1570.60 5.89377 1229.74 39.0066 104

6 11.6761 4618.13 10.2835 3584.84 106.8075 105

7 20.0612 13601.1 17.9006 10621.7 359.0847 106

8 34.4541 40082.5 31.1516 31757 1107.9295 107

9 59.1642 118153 54.4168 95563.7 3540.683 108

10 101.59 348316 99.4360 293268
A = 26.3744

Table A3. Ranges of applicability of the effective turbulent weighting func-
tions

Model
by

Zarzycki and Kudźma Vitkovský Vardy and
Kudźma (2004) (2005) et al. (2004) Brown (2004)

range of
10−7 ¬ t̂ ¬ 10−3 10−5 ¬ t̂ ¬ 10 10−6 ¬ t̂ ¬ 10−1 10−9 ¬ t̂ ¬ 10−1

applicab.
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Table A4. Estimated coefficients of the effective turbulent weighting functions

Based on Zarzycki’s Based on Vardy and Brown
original expression (3.6) original expression (3.7)

Zarzycki and Kudźma Vitkovský Vardy and
i Kudźma (1975)1 (2005)2 et al. (2004) Brown (2004)

wapr(t̂,Re) =

k∑

i=1

C∗m∗i e
−ni t̂ wapr(t̂,Re) =

k∑

i=1

A∗m∗i e
−(n∗

i
+B∗)t̂

m∗i ni m∗i ni m∗i n∗i m∗i n∗i
1 17.10735 477.887 0.2137 0.09834 5.03362 4.78793 9.06 10
2 58.51351 17790.69 1.568 8.44 6.4876 51.0897 −4.05 101.5

3 152.3936 207569.7 2.799 88.02 10.7735 210.868 12 102

4 328.2 1464649 5.527 480.5 19.904 765.03 8.05 102.5

5 414.8145 6316096 10.76 2162 37.4754 2731.01 22.7 103

6 640.2165 15512625 18.99 8425 70.7117 9731.44 35.2 103.5

7 33.26 29250 133.46 34668.5 65.9 104

8 60.73 96940 251.933 123511 115 104.5

9 476.597 440374 206 105

10 932.86 1590300 365 105.5

11 651 106

12 1150 106.5

13 2060 107

14 3630 107.5

15 6640 108

16 10700 108.5

17 26200 109

1 C∗ = (−1.5125Re0.003264 + 2.55888); 2 C∗ = (−13.27813Re0.000391 + 14.27658)
A∗ and B∗ are parameters known from Vardy’s and Brown’s equation (3.7)

Appendix B

In the numerical analysis of transients, one can sometimes go beyond the scope
of applicability of the weighting functions (thus committing a serious error in
determining the hydraulic resistance). This has not been previously discussed
in the literature on the research of such states.

Below, there are two theoretical cases explaining the importance of exten-
ding the scope of applicability of the weighting functions (by adding new
exponential expressions) to the lower range of dimensionless time t̂ = 10−9.

Case I

L = 25m, ν = 10−6m2/s, N = 100, c = 1225m/s, R = 0.13m – we will
have
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∆t̂ =
Lν

NcR2
=

25 · 10−6
100 · 1225 · 0.132 = 1.2076 · 10

−8

In the case of a rectangular grid for the first computational step (j = 1) using
classical formula (3.3)

τu(i,k) =
2µ

R

k−1∑

j=1

(v(i,k−j+1) − v(i,k−j))w
(

j∆t̂− ∆t̂
2

)

as well as using effective formula (Vitkovský et al., 2004)

τu(i,k) =
2µ

R

z∑

j=1

[

yj(i,k−1)e
−nj∆t̂ +mje

−nj
∆t̂
2 (v(i,k) − v(i,k−1)]

]

︸ ︷︷ ︸

yj(i,k)

the value of the weighting function is needed for the argument equal to ∆t̂/2.
It means that for this case, the function have to be in the range of applicability
beginning at ∆t̂/2 = 6.038 · 10−9. The values of different weighting functions
for this argument are shown in Table B1.

Table B1. Values of the laminar weighting function for the dimensionless time
∆t̂/2 = 6.038 · 10−9

Function
Zielke New function Vardy and Vitkovský Kagawa
(3.2) (4.2) Brown (2004) et al. (2004) et al. (1983)

Value of
weighting 3629.103 3629.157 3494.923 226.123 241.764
function [–]
Relative

0 0.0015 −3.6973 −93.7692 −93.3382
error [%]

Case II

If: L = 1000m, ν = 10−5m2/s, N = 16, c = 1280m/s, R = 0.008m, then

∆t̂ =
Lν

NcR2
=

1000 · 10−5
16 · 1280 · 0.0082 = 7.6 · 10

−3

and ∆t̂/2 = 3.8 · 10−3.
In this case, there is no need to use many exponential expressions – just 5

is enough (for both turbulent and laminar flow) in order to properly simulate
the hydraulic resistance.
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Nowe efektywne funkcje wagowe umożliwiające symulację

niestacjonarnych oporów hydraulicznych podczas przepływów cieczy

w przewodach ciśnieniowych

Streszczenie

W dużej części prac, dotyczących obliczania oraz symulacji niestacjonarnego prze-
pływu cieczy w przewodach ciśnieniowych, opory wyznacza się jedynie z dobrze znanej
formuły Darcy-Weisbacha. Niestety w szybkozmiennych przepływach, takich jak np.
uderzenie hydrauliczne, założenie quasi-stacjonarności oporów jest poważnym błędem.
W poniższej pracy naprężenie styczne na ściance przewodu wyznacza się z sumy quasi-
stacjonarnego składnika oraz niestacjonarnego. Niestacjonarny składnik naprężenia
stycznego modelowany jest jako splot lokalnego przyśpieszenia cieczy oraz funkcji wa-
gi. Klasyczne funkcje wagi mają skomplikowaną postać, co uniemożliwia efektywne
wyznaczanie oporów. W tej pracy przedstawione zostały nowe efektywne postacie
funkcji wagowych o rozszerzonych zakresach stosowalności.
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