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LIMIT ANALYSIS DUE TO FAILURE PROCESS IN CREEP CONDITIONS
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1. Introduction

In creep conditions the concept of limit loading has to be replaced by
the limit time of structure exploitation, since the faillure occurs at any
load level provided the working time is long enough. This fundamental ob-
servation was made already in fifties and supported by long-term experi-
ments (Robinson, 1952). After it was proved that the final rupture is a
result of gradual material degradation (cf. e.g. Rosenberg, 1967), a new
material variable was introduced by Kachanov (1958), with an appropriate
rate equation for this variable. This gave impetus for the development of
a new branch of fracture mechanics: Continuum Demage Mechanics (the term
coined by Jansson, Hult, 1977), which brought a number of effective me-
thods to evaluate the growth of defects in materials (cf. Euromech Col-
loquiuva, 1981, 1989, and IUTAM Symposium , 1985).

However, the analysis is normally limited to two stages. In the first
one the damage variable is less than its critical value (normally set to
1) at each point of a body. The time at which damage variable reaches its
critical value at least at one point of a body is denoted by tx' For the
time t > tI the degradation process develops in a structure to come to
the state when a surface on which damage is equal to 1 spans all the body
at tiye txx’ This time is usually considered as an ultimate time of stru-
cture exploitation. In fact it corresponds only to the state when fallure
occurs on‘"seml-lntegral' level ¥ {according to the classification propo-
sed by Zyczkowski, 1981) related to the cross-section of structure, where-
- as time tx.corresponds to the local level P?. One can consider that in the
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fractured cross-section a "super-hinge” is formed without any load be-
aring capacity. If the structure is statically indeterminate, the exis-
tence of such a hinge not necessarily means the total loss of loading ca-
pacity of a structure. The loading may be transferred to those'parts of a
structure which still can work, until it will become kinematically unsta-
‘ble as the result of cbnsecuti;e appearance of "super-hinges“. This time
will be denoted as t!!! and the state of a structure failure process will
be related to the integral level B8 in Zyczkowski’s classification.

The works concerned with the above problems, known to the authors, were
limited only to tﬁe analysis of a ratlo t“/tI (Kachanov, 1960, Piechnik
and Chrzanowski 1970). It is the main goal of the present paper to per-
form an analysis of a simple structure to evaluate all times

tl(i=1.II.III) and to analyse the relation between then.

2. General assumptions and governing equations

The damage description was assumed to have the simplest form, 1i.e.

scalar representation of damage variable w (0zwzl), and stress governed

damage rate law:
W= A <o, /(1-0)>%, w(0) =0, (2.1)

where A and m are material constants and o;qis the equivalent stress ac-

cording to Hayhurst et al. (1984):
c =a + (1-a)o, (2.2)
oq 1 e .

where o is maximum principal stress and o, is effective stress. The bra-

ckets <> in (2.1) denote that the damage accumulation occurs only for po-
sitive o .
oq

For such a formulation the stress redistribution in time plays an es-

sential role in damage cumulation and therefore the general theory of

nonstationary creep was adopted (Hult, 1966):

o e c
clj = clj + €, , 5 (2.3)
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L
€

1) = Dun’u ’ (2.4)

e = 7 [cel(l-u)]“ s

(-}
1) s ClJ(O)'O, (2.5)

1)

where superscript e and c refer to elastic and creep deformation, respec-
tively, sIJ is deviatoric stress, and y and D are material functions. As
it can be seen from (2.5) that so called coupled theory of creep is used.
Therefore the stress redistribution will be an effect of .two processes:
redistribution connected with a transition from initial elastic solution
at t=0 to the quasi stationary creep (for t - =), and that associated
with the damage growth. The latter will cause the stress to.diminish at
the points where damage develops, to drop fina:IIy to zero when w = 1 at
time t!.

For time t>t! all above equations will hold but the domain of integra-
tion will be reduced only to these points of the body at which w < 1.
This will imply the change in structure dimensions, which in turn will
result in strain and damage localization. This effect will be shown by
the results of example calculations.

The behavior of a structure for time t > t" depends first of all on
the kinematic boundary conditions (statically determinate or indetermina-
te structures) and on th; type of a structure (beams, plates, shells
etc.). For statically determinate structures t”=t”x and the further
analysis Is impossible. In the following a simple statically indetermina-
te beam will be analysed fo show the effect of the damage development for
t >vt!r

3. Example

The opeam of redundancy equal to 1 (Fig.1a.) with the rectangular
cross-section 2h x b and loaded by a concentrated force P was chosen as
the slmple_st example of a structure which behaviour will cover all three
stages of damage development. '

In the analysis the assumption of plane cross-section deformation was
made and shear stresses were neglected. In the consequence the equatlon



Fig.1. Bending moment (b), curvature (c) and neutral axis
position (d) for analysed beam (a).

(2.2) reduces to:

o =0 , (3.1)
oq x
i.e. o=0., and eq. (2.4) and (2.5) become:
e’ = Eo , (3.2)
x x .
£ = Klo /(1-0) 1", €°(0)=0 , (3.3)
x x X

where E, K, and n are material constants.
The above relations and the internal-external force system equivalent
conditions in any cross-section yield the formulae for neutral axis posi-

tion zo(x) and its curvature kx{(x). For time t < l:I these formulae are:

z, (x) = re: (z,x) dz 7{2h x(x)} , (3.4)
*h
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k(x) = {3/2h3} { M(x)/bE + f € (z.x) zdz } , (3.5
h -

where M(x) is bending moment distribution at time t.

The equations (3.4) and (3.5) are a special case of more general one when
upper limit of integrals h becomes a function of time. This situation has
been considered for tx<t<t", ‘and is not shown here because of equations’
complexity. Numerical integration of governing equations was performed
for the following boundary conditions:

" w(x=0) = 0, dw/dx(x=0) = 0, w(x=1) = 0, (3.8)
with time step limited by a criterion

At = {4(1+1)} / {3EKn max_ zhr""(x,z)l) , (3.7)

proposed .by Cormeau (1875). .

For material constants equal to: E = 120 [GPa],l;=0.33, XK= 0.013
{cPa~®h™'), n =3, A =0.208 [GPa™°h"'], m = 2 the redistribution of ben-
ding moments in time, curvature changes and position of neutral axis is
shown in Figs 1b through 1d, where all curves denoted by 1 correspond to
time t=0, by 2 ~ to time t.!, by 3tot = t"- At, and by 3’ to t > t".

For time t > t'u bending moments distribution remains constant, and
curvature at x=1/2 tends to Infinity at time t = t _ . Distributions

111
of stress, damage and creep strain

Flg.2a. Distribution of stress for t = 0.8 t .
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Fig.2b,c. Distribution of damage (b)
and creep-strain (c) for t = 0.8 tI.

are shown in Figs 2 and 3 (a,b,and c respectively) for two time instan—
ces: t=0.8t and t=t - At. The fractured area of a cross-section at x=0
is marked as a dashed one. The essential damage and creep strain locali-
zation can be observed in the areas where first crack appears (x=0,2z=h)

and final rupture occurs (x=1/2, z=-h).

Fig.3a. Distribution of stress for t = tI.— At .
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Fig.3b,c. Distribution of damage (b) and creep-strain (c)for tntu-At.
4. Conclusions

The results of calculation give the following values of tl: tl-94 [h],
t.n= 103 [hl, tu-I= 109 [h], and show that the safety margin related to
the t.ime'tI is low for this example (tu/tl= 1.09 and t111/§1= 1.16). Un-
doubtedly, time t’.III depends heavily on structure redundancy, and will
grow with it. However, the most _1mportant‘ factors influencing structure
- behavior are redistributions of bbending moments and stresé. ‘Th'ese'effects
_are connected with assumptions made. Table 1 summarize the comparison of
txa.nd t.'uv_alues for the fol lowing sln'bl 1fying assumpt.io'ns-:, :
1.Elastic moment distribution was assumed to be constant, and correspon-

ding elastic stress was used in Kachanov's formula for t =

(A(m+1)o™(x=0,z=h/2)]7}, B
2.Structure was considered to be staiically determinate but 'stresé redis-

tribution due to damage growth was taken into account,
3.Both effects of moment and stress redistribution were considered, as

well as cross-section height reduction for t > tI {actual solution).
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TABLE 1

Redlistribution of t t t /t Lines in
M | o h I 11 11° 1 | Figs 4as
1 - - - 37 - _ - | ee—————
2| - + + 83 89 1.06 e

3] + + + 94 103 1.09
4 - + o+ 141 236 1.87 —0—0—0—
s - | - | - 141 293 2.06 mememen

4.Steady-state creep theory for statically indeterminate structure was
applied, with stress redistribution due to damage growth.
5.Same as 4, but without stress redistribution.

In Table 1 different types of lines are used to ldentify different a-
bove cases, and the same type of lines apply to Figs 4 and 5.

Fig.4 deplicts the bending moment and stress redistribution for time O
sts tx' vhereas Fig. 5 showslthe stress redi- stribution and reduc-
tion of beam height h.
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Fig. 4. Bending moment and stress redlistribution for t < tI .
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The general conclusion is that the evaluation of structure safety on
the base of uncoupled steady-state creep theory is non-conservative (ex-
cept the lower bound obtained for pure elastic moment distribution), and
only full analysis with bending moments and stress redistribution taken

into account should be used for a proper assessment.
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Fig.5. Stress redistribution and beam height reduction.
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S_ry

ANALIZA NOSNOSCI GRANICZNEJ ZWIAZANEJ 2 PORCESEM ZNISZCZENIA
i W WARUNKACH PELZANIA

W pracy dokonano anallizy zniszczenia konstrukcji, wyroznliajac trzy etapy,
odpowiadajace poziomom analizy, =zaproponowanym przez M.Zyczkowskiego
(1981): na poziomie punktu (P), przekroju (S) I ciala (B). W warunkach
pelzania odpowiada to wyznaczaniu czasow do: poJawienia sie plerwszego
pekniecia tx' propagacjl pekniecia w przekroju poprzecznym t-'n 1 czasu
t"l zniszczenia konstrukecjl. na skutek zamiany w mechanizm, w wynlku zni-
szczenla odpowiedniej liczby przekrojow. Znajomos¢ wartosci tych czasow
pozwala na oszacowanie zapasu bezpleczenstwa konstrukcjl pracujacych w
warunkach pelzania. o . ’



