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In this study, a powerful analytical method, known as Homotopy Analy-
sis Method (HAM), is used to obtain an analytical solution to nonlinear
ordinary deferential equations arising for Bernoulli-Euler beams with a
non-linear foundation of the Winkler type. A comparison between the
HAM solution and a solution obtained by a numerical method is made
to show the accuracy of the method. It is shown that the present so-
lution is valid for the whole domain of the solution and also for high
nonlinear terms, where other methods such as the perturbation method
fail to converge. The results clearly indicate that the convergence region
can be controlled and adjusted by HAM. Finally, after validating the
results, the effect of constant parameters on the deflection and slope for
different boundary conditions is presented.
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1. Introduction

Most of engineering problems are inherently nonlinear, especially those pro-
blems arising in fluid mechanics, heat transfer, large deformations, nonlinear
dynamics and so on. Generally, nonlinear problems are difficult to solve, espe-
cially in an analytical manner. Some of these problems are solved using nu-
merical techniques, and sometimes approximate analytical methods are used.
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In numerical methods, stability and convergence should be considered to avo-
id divergence or inappropriate results. On the other hand, some analytical
methods are incorprated, which apply perturbation artificial small parameter
and δ-expansion method. Those methods can be applied for some specific pro-
blems or under special conditions. For example, the perturbation method is
one of the well-known methods to solve nonlinear problems which are based
on the existence of small/large parameters. This method in a lot of cases has
deficiency and fails to solve nonlinear problems, a specially in those with no
small/large parameters (Hale, 1969; Liao, 1992, 1997, 2003; Nayef, 1985; Sajid
and Hayat, 2007).
Liao (1992) proposed one of semi-exact methods which does not need

small/large parameters named as homotopy analysis method (HAM). This
method has been extensively applied and still used to solve many types of
nonlinear problems (chowdhury et al., 2007; Kimiaeifar, 2010; Kimiaeifar et
al., 2009a,b; Nadeem et al., 2010; ”Oziş and Yıldırım, 2007a,b; Sohouli et al.,
2010; Wang et al., 2008). In this paper, an analytical approach to obtain the
solution describing deflection of beams with nonlinear Winkler type founda-
tions is presented using HAM. It is supposed that the beam is subjected to
arbitrarily distributed transverse load. There is a hyperbolic type relation for
stress between the surface of the beam and the foundation which yields nonli-
near terms in the equation for Bernoulli-Euler beams. Soldatos and Selvadurai
(1983, 1985) proposed a solution to obtain flexure of this kind of beams by
means of the perturbation method. They combined the Lyengar and Anan-
tharamul method for characteristic eigenfunctions of a freely vibrating beam
(Bishop and Johnson, 1960; Lyengar and Anantharamul, 1963; Soldatos and
Selvadurai, 1985) with method of Galerkin (Bishop and Johnson, 1960; Kan-
torovich and Krylov, 1964; Lyengar and Anantharamul, 1963; Soldatos and
Selvadurai, 1985). In this paper, a convenient and brief way to solve this pro-
blem by means of HAM is proposed.It is shown that the convergence region
can be controlled by this method also for high nonlinear terms. At the end,
HAM results with numerical ones are compared, and the convergence study is
made.

2. Governing equation of the problem

Consider a beam which is subjected to an external transverse stress distribu-
tion p(x) and width of b and with no foundation stress. The Bernoulli-Euler
equation can be written as follows

EI
d4w

dx4
= bp(x) (2.1)
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where E is Young’s modulus and I is moment of inertia. In the stated pro-
blem, it is assumed that the beam is subjected to an external transverse stress
distribution p(x) and also that there is a smooth and bilateral contact be-
tween the beam and foundation. The foundation is of the Winkler type with
an assumption that the displacement occurs only under the load area, and
outside this region displacements are zero (Selvadurai, 1979). There is also a
nonlinear hyperbolic stress expressed by a relation between the deflection of
the beam and foundation, which can be given as follows

q(x) =
kw(x)

1 + µw(x)
(2.2)

The stress parameter q at any point of the foundation surface x relates the
deflection w to the corresponding point stress. The parameter k indicates
the modulus of the linear sub-grade reaction with dimensions of stress per
unit length, and µ is a non-linear parameter with dimensions of (length)−1

indicating the nonlinear response of the elastic foundation. It is clear when µ
is zero, Eq. (2.2) reduces to linear form (Soldatos and Selvadurai, 1985).
By rearranging the Bernoulli-Euler equation with Eqs. (2.1) and (2.2), the

governing equation of the beam leads to

EI
d4w(x)

dx4
+
kbw(x)

1 + µw(x)
= bp(x) (2.3)

By changing the variables and defining a new term, equation (2.3) can be
rewritten in the form below (Soldatos and Selvadurai, 1985)

d4w(ξ)

dξ4
+
4w(ξ)

1 + µw(ξ)
=
4

k
p(ξ) ξ = λx (2.4)

where

λ−1 =
( kb
4EI

)− 1
4

with dimensions of length, therefore ξ = λx is a non-dimensional spatial
coordinate.

3. Fundamental of HAM method

To start the basic idea of HAM, the following differential equation is considered

N [u(ξ)] = 0 (3.1)
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where N is a nonlinear operator, ξ indicates an independent variable, u(ξ)
is the answer to the nonlinear equation that is an unknown function. The so-
called 0-th order deformation equation which includes the main idea of the
presenting HAM method is constructed as follows (Liao, 1992, 2003)

(1− q)L[Φ(ξ; q)− u0(ξ)] = q~H(ξ)N [Φ(ξ; q)] (3.2)

where q ∈ [0, 1] is the embedding parameter, ~ is a non-zero auxiliary para-
meter which controls the convergence region, H(ξ) is also a non-zero arbitrary
function, L is an auxiliary linear operator, u0(ξ) is an initial guess of u(ξ),
Φ)q; ξ) is the answer to the homotopy equation according to the variation of
q parameter. From equation (3.2), it is obvious that

q = 0 → Φ(ξ; 0) = u0(ξ) q = 1 → Φ(ξ; 1) = u(ξ) (3.3)

It can be therefore concluded that, when q increases from 0 to 1, the solution
Φ(ξ; q) varies from the initial guess u0(ξ) to the exact solution u(ξ). Conside-
ring Φ(ξ; q) as a function of q and expanding Taylor series with respect to q,
results in

Φ(ξ; q) = u0(ξ) +
∞∑

m=1

um(ξ)q
m (3.4)

where for an arbitrary value of m  1

um(ξ) =
1

m!

∂mΦ(ξ; q)

∂qm

∣∣∣∣
q=0

(3.5)

by choosing an appropriate auxiliary linear operator, the initial guess, the
auxiliary parameter ~, and the auxiliary function, the stated series in Eq.
(3.4) converges to the exact solution to the problem at q = 1, so it can be
written

u(ξ) = u0(ξ) +
∞∑

m=1

um(ξ) (3.6)

Equation (3.6) must be one of the original nonlinear answers. By setting
H(ξ) = 1 Eq. (3.2) is reduced to

(1− q)L[Φ(ξ; q)− u0(ξ)] = q~N [Φ(ξ; q)] (3.7)

By differentiating Eq. (3.2) m times with respect to the embedding parame-
ter q and setting q = 0 and finally dividing them by m!, the so-called m-th
order deformation equation for m  1 is obtained

L[um(ξ)− χmum−1(ξ)] = ~H(ξ)Rm(um−1) (3.8)
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where

Rm(xm−1) =
1

(m− 1)!

∂m−1N [Φ(ξ; q)]

∂qm−1

∣∣∣∣
q=0

xm−1 = {u0(ξ), u1(ξ), . . . , um−1(ξ)}

χM =

{
0 quad m ¬ 1

1 m > 1

(3.9)

4. Application of HAM to solution of the problem

As it was mentioned above, equation (2.3) is nonlinear and cannot be solved
by regular methods, so HAM technique is applied to present an analytical
solution. By rewriting equation (2.4), it is obtained

(1 + µw)
d4w

dξ4
+ 4w = (1 + µw)

4

k
p(ξ) (4.1)

Based on Eq. (3.1), it is obtained

N [w(ξ)] = (1 + µw)
d4w

dξ4
+ 4w − (1 + µw)

4

k
p(ξ) (4.2)

The nonlinear part N [w(ξ)] must be choosen as the same as the equation of
the problem to avoid failure in the solution procedure, so it is described as

N [Φ(ξ; q)] = [1 + µΦ(ξ; q)]
d4µΦ(ξ; q)

dξ4
+ 4µΦ(ξ; q)− [1 + µΦ(ξ; q)]

4

k
p(ξ) (4.3)

Either because of small values of µ or, in the region of validity of small de-
flection theory, |w| ≪ 1, the linear operator is chosen as below

L[u] =
d4u

dξ4
+ 4u (4.4)

According to (3.5) and by differentiating N [Φ(ξ; q)] m-times with respect
to q, the result is

Rm(xm−1) =
d4um−1
dξ4

+ µ
m−1∑

i=0

ui
d4um−i−1
dξ4

+ 4um−1

− 4µ
p(ξ)

k
um−1 − (1− χm)

4

k
p(ξ)

(4.5)
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In general and all cases, it can always be written that

um = χmum−1 + L
−1[~Rm(um−1)] (4.6)

where

L−1[Rm] =
4∑

i=1

umi

∫
Rm(ξ)Wi(ξ)

W (ξ)
dξ + c1e

ξ cos ξ + c2e
ξ sin ξ

+ c3e
−ξ cos ξ + c4e

−ξ sin ξ

(4.7)

where W (ξ) is the Wronskian of {um1 , um2 , um3 , um4} and Wi(ξ) is the de-
terminant obtained from the Wronskian by substituting the column (0, 0, 0, 1)
into the i-th column, the coefficients {c1, c2, c3, c4} are gained by applying ini-
tial conditions and umi , um2 , um3 , um4 for all values of m which are e

−ξ cos ξ,
e−ξ sin ξ, eξ sin ξ, eξ cos ξ, respectively.
By expanding Eq. (4.7) and simplifying, one obtains

L−1[Rm] = −
1

4

ξ∫

0

[sinh(ξ − τ) cos(ξ − τ)− sin(ξ − τ) cosh(ξ − τ)]Rm(ξ) dτ

+ c1e
ξ cos ξ + c2e

ξ sin ξ + c3e
−ξ cos ξ + c4e

−ξ sin ξ

(4.8)

As u0 plays an important role in the convergence of the solution, u0 can be
obtained from the following equation

d4u0
dξ4
+ 4u0 =

4

k
p(ξ) (4.9)

Although it is not always essential to obtain u0 from Eq. (4.9), when all
boundary conditions are zero or initial displacements are considered, u0 can
be a constant function. Therefore, the base function will be an exponential
and trigonometric one.
In the case when the beam is subjected to a line pressure load, P , with

dimension of force per unit lengthat a point α, the external distribution stress
can expressed by the Dirac delta function (Soldatos and Selvadurai, 1985)

p(ξ) = Pδ(ξ − α) P = λP (4.10)

As mentioned

λ−1 =
( kb
4EI

)− 1
4

then u0 is obtained
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u0 =
2P

k
H̃(ξ − α)

{
eξ−α[sin(ξ − α)− cos(ξ − α)]

+ eα−ξ [sin(ξ − α) + cos(ξ − α)]
}
+ c1e

ξ cos ξ + c2e
ξ sin ξ

+ c3e
−ξ cos ξ + c4e

−ξ sin ξ

(4.11)

By converting the Heaviside function H̃(ξ−α) to a piecewise function, it can
be easily differentiated and integrated from u0, which makes the calculation
and computation much easier. Therefore, the Heaviside function is defined as
follows

H̃(ξ − α) =

{
1 ξ  α

0 ξ < α
(4.12)

So by some recessive calculation and computing um from the previous terms
and equations, it can be written

W (ξ) = u0(ξ) +
∞∑

m=1

um(ξ) (4.13)

The accuracy of the solution by considering some examples for different bo-
undary conditions is investigated in the coming parts of the paper.

5. Examples

5.1. Finite beam subjected to an initial displacement

Consider a beam resting on a Winkler foundation of the hyperbolic type
and subjected to the following set of inhomogeneous boundary conditions for
Eq. (2.4)

w(0) = δ w′(0) = w′′(β) = w′′′(β) = 0 (5.1)

where β is nondimensional form of the beam length. It is assumed that the
beam has two edges, the edge in which ξ = 0 is subjected to an initial displa-
cement δ and rotation is prevented, and at ξ = β the edge is free.

In this case, the force is zero and the deformation depends on the initial
displacement, as p(ξ) = 0 Eq. (2.4) changes to the following equation

d4w

dξ4
+
4w

1 + µw
= 0 ξ = λx (5.2)
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Inhomogeneous boundary conditions for u0 should be chosen, and for m  1
the boundary conditions are homogeneous

u0(0) = δ u′0(0) = u
′′

0(β) = u
′′′

0 (β) = 0

um(0) = 0 u′m(0) = u
′′

m(β) = u
′′′

m(β) = 0 m  1
(5.3)

To solve this kind of non-linear equation and obtaining an analytical solution,
a system of coefficient equations should be solved. For comparing this method
with the numerical one, the problem for definite values of µ and δ is solved.
The results are presented in Tables 1 and 2. w(ξ) shows the beam deflection
with respect to the initial displacement δ, it should be pointed out that the
increasing of the order of HAM solution series increases the accuracy of the
results. The numerical methods are based on non-linear finite difference me-
thod (Ames, 1977; Hildebrand, 1968), and there is a good agreement between
the analytical and numerical solutions.

Table 1. Comparison between the HAM and numerical solution for the beam
deflection w(ξ), β = 5, δ = 0.1 and µ = 1

ξ
W (ξ)

2-nd order 4-th order 6-th order numeric

0.0 0.100000000 0.100000000 0.100000000 0.100000000

1.0 0.051618111 0.051619511 0.051619516 0.051619513

2.0 0.007165896 0.007166002 0.007166089 0.007166025

3.0 −0.0042674816 −0.004267464 −0.004267464 −0.004267485

4.0 −0.0026255686 −0.002625633 −0.002625633 −0.002625653
5.0 0.000701062 0.000701029 0.000701029 0.000701059

Table 2. Comparison between the HAM and numerical solution for the beam
deflection w(ξ), β = 6, δ = 0.6 and µ = 0.5

ξ
W (ξ)

2-nd order 4-th order 6-th order numeric

0.0 0.60000000 0.60000000 0.60000000 0.60000000

1.0 0.31819265 0.31839107 0.31839764 0.31839794

2.0 0.04958304 0.04965315 0.04965534 0.04965556

3.0 0.02334683 −0.02334443 −0.02334441 −0.02334441

4.0 −0.01632195 −0.01633095 −0.01633125 −0.01633139
5.0 −0.00279692 −0.00280073 −0.00280085 −0.00280085
6.0 0.005679063 0.00568124 0.00568132 0.00568145
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The first and second terms of the solution series by assuming u0(ξ) = δ
are as follows

w(ξ) = u0(ξ) +
∞∑

i=1

ui(ξ) = δ −
2

5
~δ cos4 ξ +

19

20
~δ +

2

5
~δ cos2 ξ

−
1

20
~δ sin ξ sin 3ξ +

1

20
~δ cos ξ cos 3ξ + c1e

ξ cos ξ

+ c2e
ξ sin ξ + c3e

−ξ cos ξ + c4e
−ξ sin ξ + . . .

(5.4)

The coefficients c1, c2, c3, c4 are obtained by using the boundary conditions
stated in Eq. (5.3)2. As it was mentioned before, ~ is the homotopy auxiliary
parameter, and µ is a nonlinear parameter, and δ is initial boundary condition.

Fig. 1. ~-curves with the 6-th order approximation showing the convergence of HAM
results; w is the deflection of the beam at a desired point versus ~, which indicates
the region where the results converge; (a) β = 5, δ = 0.1, µ = 1, (b) β = 6, δ = 0.6,

µ = 0.5, (c) β = 10, δ = 1, µ = 0.3

First of all, a convergence study should be done to assure the solution. In
order to define a region such that the solution series is independent on ~, a
multiple of curves are plotted in Fig. 1. The region where the distribution of
the beam deflection parameter w versus ~ is a horizontal line is known as the
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convergence region. For the finite beam subjected to an initial displacement,
~-curves are shown in Fig. 1. To compare the solution with the numerical one,
some constant parameters for µ, β, δ are considered and the results indicate
good agreement between the HAM and numerical solution as shown in Table 3
and Tables 1 and 2.

Table 3. Comparison between the HAM and numerical solution for the beam
deflection w(ξ), β = 10, δ = 1 and µ = 0.3

ξ
W (ξ)

2-nd order 4-th order 6-th order numeric

0.0 1.00000000 1.00000000 1.00000000 1.00000000

2.0 0.08269054 0.08280740 0.08281105 0.08281123

4.0 −0.02636454 −0.02637893 −0.02637942 −0.02637945
6.0 0.00148376 0.00148316 0.00148315 0.00148315

8.0 0.00032402 0.00032436 0.00032437 0.00032438

10.0 −0.000162186 −0.00016231 −0.00016231 −0.00016231

5.2. Finite beam subjected to a line load

In another case, the beam is subjected to a line load resting on a Winkler
foundation of the hyperbolic type. The beam is subjected to external loading,
which is aline load P with dimension of force per unit length. Because of
discontinuity of stress distribution, the line load in form of the Dirac delta
function is used (Sohouli et al., 2010)

p(ξ) = Pδ(ξ − α) P = λP (5.5)

where α is the point in which a single line load is applied. The boundary
conditions of the beam edges are arbitrary, and it can be assumed that the
beam is free-free or clamped-free or simply supported. A clamped-clamped
beam with a single line load appied to the point α is chosen. The boundary
conditions are expressed as follows

w(0) = w′(0) = w(β) = w′(β) = 0 (5.6)

By assuming u0(ξ) = 0 in the first and second term of the series, the beam
deflection w(ξ) will be as follows
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w(ξ) = u0(ξ) +
∞∑

i=1

ui(ξ) =
P

2k
~[H̃(ξ − α) + 1]

·
{
eξ−α[sin(ξ − α)− cos(ξ − α)] + eα−ξ[sin(ξ − α) + cos(ξ − α)]

}

+ c1e
ξ cos ξ + c2e

ξ sin ξ + c3e
−ξ cos ξ + c4e

−ξ sin ξ + . . .

(5.7)

To compare the present solution with numerical one, some scalar parameters
such as µ, β, P/k are arbitrarily defined and some values have been attribu-
ted to them. The results are presented in Tables 4 and 5. w(ξ) is the beam
deflection under a single line load P which is expressed in a non-dimensional
form P/k. It is obvious that by increasing the order of HAM iterations, the
accuracy increases. A numerical method based on a non-linear finite difference
technique is employed to compare the results. It should be mentioned that the
number of mesh nodes in this part is increased because of the jump of the
Dirac delta function (Courant and Hilbert, 1962; Li and Wong, 2008).

Table 4. Comparison between the HAM and numerical solution with accuracy
of 10E-6 for the beam deflection w(ξ), β = 5, P/k = 1, µ = 1 and α = 2.5

ξ
W (ξ)

2-nd order 4-th order 6-th order numeric

0.0 0.000000 0.000000 0.000000 0.000000

1.0 0.162611 0.163896 0.163766 0.163767

2.0 0.557089 0.559202 0.558912 0.558917

2.5 0.665190 0.667336 0.667035 0.667030

3.0 0.557089 0.559202 0.558912 0.558917

4.0 0.162611 0.163896 0.163766 0.163767

5.0 0.000000 0.000000 0.000000 0.000000

The Dirac delta function influences numerical computation, therefore ano-
ther expression for the Dirac delta function is considered as follows

p(ξ) = Pδ(ξ − α) =
P

2
lim
ε→0

(1
ε
e−
|ξ−α|
ε (5.8)

In some cases, the delta function is described as an expansion of the sine
Fourier series

p(ξ) = Pδ(ξ − α) =
2P

β

∞∑

n=0

sin
nπα

β
sin
nπξ

β
(5.9)

where β is length of the beam. This problem is solved by the finite difference
method. Results of expanding of the Fourier series with 300 orders are shown
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Table 5. Comparison between the HAM and numerical solution with accuracy
of 10E-6 for the beam deflection w(ξ), β = 10, P/k = 2, µ = 0.5 and α = 5

ξ
W (ξ)

2-nd order 4-th order 6-th order numeric

0.0 0.0000000 0.0000000 0.00000000 0.0000000

2.0 −0.0449447 −0.0438416 −0.0437668 −0.0437651
4.0 0.7519053 0.7630867 0.7632160 0.7632141

5.0 0.1332533 1.3776853 1.3777917 1.3777917

6.0 0.7632141 0.7630867 0.7632160 0.7632141

8.0 −0.0449447 −0.0438416 −0.0437668 −0.0437651
10.0 0.0000000 0.0000000 0.0000000 0.0000000

in Tables 4 and 5. The convergence study of the solution is presented in Fig. 2.
The ~-curves indicate the interval of solution convergence, which is [−2,−1].
From Tables 4 and 5 it can be concluded that the error is less than 10E-6, and
the analytical solution converges with a high order of accuracy.

Fig. 2. ~-curves with the 6-th order approximation showing the convergence of HAM
results; w is the deflection of the beam at a desired point versus ~, which indicates
the region where the results converge; (a) β = 5, P/k = 1, µ = 1, α = 2.5,

(b) β = 10, P/k = 2, µ = 1, α = 5

5.3. Problems with high nonlinearity

By considering Eq. (2.3), it can be pointed out that the coefficient µ has an
effective influence on nonlinearity of the problem. The nonlinearity becomes
more intensive when the value of w(ξ) increases more than one. For exam-
ple, when |µw| ≪ 1 the nonlinearity of the problem is weak and the answer
converges after a few iterations, hence in the most of cases, the perturbation
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method can not converge. Therefore, a solution should be presented in such
a way so that it could control the convergence. In the HAM method, by con-
trolling the ~ parameter, we can ensure the convergence of the problem. It
was indicated above that the parameter µ has a very effective influence on
the problem nonlinearity, and increasing the µ causes the nonlinearity even
more intense. In this case, the order of the HAM method should be increased,
and also the ~ parameter should be properly controlled as shown in Fig. 3. It
means that in problems with intense nonlinearity the order of iterations in the
solution series should be increased to have more accurate results. Therefore,
a proper ~ for the desired order of HAM solution should be considered.

Fig. 3. ~-curve indicating the convergence of HAM results with respect to the order
of HAM method and various values of ~. w shows the deflection of the beam at

ξ = 2.5

To investigate this case, a beam on a Winkler foundation of the hyperbolic
type with a single line load is considered. It is assumed that µ = 6 and
also for having rational displacement and preventing too large deformation,
P/k = 0.5 is chosen. The load is applied in the middle of the beam, and
the length parameter β is equal to 5. The comparison between the numerical
solution and HAM is presented in Table 6. Again, it can be easily seen that the
solution converges and the results are in good agreement with the numerical
ones.

It should be noted that Eq (2.2) indicates the nonlinear response of the
foundation due to the beam deflection stress response, which behaves like a re-
sistant factor preventing the beam from forced deflection. Increasing the value
of µ will decrease the magnitude of the foundation stress; hence, the resistance
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Table 6. Comparison between the HAM and numerical solution with accuracy
of 10E-6 for the beam deflection w(ξ), β = 5, P/k = 0.5, µ = 6 and α = 2.5

ξ
W (ξ)

2-nd order 4-th order 6-th order numeric

0.0 0.0000000 0.0000000 0.0000000 0.0000000

1.0 0.1654173 0.1667064 0.1670509 0.1670520

2.0 0.4897607 0.4931670 0.4939046 0.4938936

2.5 0.5652989 0.5690297 0.5698224 0.5698091

3.0 0.4897607 0.4931670 0.4939046 0.4938936

4.0 0.1654173 0.1667064 0.1670509 0.1670520

5.0 0.0000000 0.0000000 0.0000000 0.0000000

factor will decrease and the beam will be more deformable. It occurs that in-
creasing µ will increase deformation variation two times greater with respect
to the situation with zero nonlinearity (µ = 0). Figure 4 shows the deflec-
tion of the clamped-clamped beam under the single line load by considering
different values of the nonlinear term of µ.

Fig. 4. Deflection of the clamped-clamped beam obtained by the HAM method with
respect to various values of µ; β = 5, P/k = 0.5, α = 2.5

6. Conclusion

In this paper, an analytical solution was presented for the Bernoulli-Euler
beam with a non-linear Winkler type foundation. It was found with a high
domain of convergence and by a few iterations in the solution procedure using
the HAM method. The problem was solved for different boundary conditions
and constant parameters and also for high nonlinearity conditions. It was
shown that in some cases, the accuracy is 10E-7 by only the 6-th order of
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approximation. The convergence of the results was investigated by plotting
different ~-curves for different boundary conditions. In most cases, ~ = −1
was the appropriate value for good stability in the desired ~ point.

However, in the existing solutions, two approximations were used to ob-
tain the results. HAM solution was obtained with a high accuracy and a few
iterations made.

There is also a benefit in the HAM solution comparing to other references
(Sohouli et al., 2010), as can be mentioned that those methods are based
on the perturbation method combined with orthogonal functions expansion,
in which the orthogonal functions are obtained from solving characteristic
eigenfunctions of a freely vibrating beam. So there are two approximations in
their solution, the first approximation is in the perturbation expansion and
the second one is in the orthogonal functions. They affect the accuracy of the
solution. Moreover, that method leads to two problems, one is the extraction
of the eigenfunctions of a freely vibrating beam, and the second is solving the
problem with an asymptotic expansion with the perturbation method. The
HAM method gives a brief solution with benefit of control convergence by the
parameter ~ that guarantees the convergence for variety of coefficients. This
paper presents an analytical solution for any kind of initial conditions and
distributed loads which can be easily applied to other Bernoulli-Euler beams
with non-linear elastic foundations and other nonlinear parameters.
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Przybliżone rozwiązanie analityczne dla belek Bernoulliego-Eulera

opartych na nieliniowym podłożu winklerowskim przy różnych

warunkach zamocowania

Streszczenie

W pracy przedstawiono zastosowanie bardzo wszechstronnej metody homotopii
(HAM) do uzyskania analitycznego rozwiązania nieliniowych równań różniczkowych
opisujących drgania belek Bernoulliego-Eulera spoczywających na nieliniowym pod-
łożu winklerowskim. W celu zaprezentowania dokładności metody, uzyskane wyniki
porównano z rezultatami symulacji numerycznych. Wykazano, że tak otrzymane roz-
wiązanie jest ważne w całej dziedzinie, także przy uwzględnieniu członów nieliniowych
wyższego rzędu. Inne metody, m.in. analiza perturbacyjna, przestają być w takich
przypadkach zbieżne. Przeprowadzone badania wyraźnie dowodzą, że obszar zbieżno-
ści może być monitorowany i dostosowywany w ramach metody HAM. Na zakończenie
rozważań, po weryfikacji obliczeń, przedyskutowano wpływ stałych parametrów ukła-
du na ugięcie i kąt ugięcia belek przy równych warunkach zamocowania.
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