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It this paper, a neural network was utilized in order to create an emu-
lator, which could mimic the behaviour and nonlinear dynamics of a
gyroscope with two axes of freedom, subjected to both low- and high-
frequency excitation. For this purpose, several known learning methods,
such as the gradient and Levenberg-Margquardt method, were used.
Three different models of neural networks were considered and compa-
red for their effectiveness: NNFIR, NNARX and the recurrent network
NNARMAX.
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1. Introduction

Since their emergence, artificial neural networks have been found useful in
numerous fields and applications, mostly due to the fact that they can mo-
del almost any non-linear function or process, even if it is defined by the
measurements and observations only. The applications include: pattern and
sequence recognition, data processing and filtering, function approximation,
and identification and control of processes (Hagan et al., 2002; Korbicz et al.,
1994; Narendra and Parthasarathy, 1990; Norgaard et al., 2000; Omidvar and
Elliott, 1997; Passino, 2005; Sarangapani, 2006; Żurada et al., 1996). Nowa-
days, neural networks are considered for the control of non-linear and adaptive
systems. Several teaching algorithms and models have been proposed in the
literature for the use in emulators and controllers of dynamical systems, and
the results have been discussed, e.g. for the non-linear dynamics of the inverted
pendulum (Korbicz et al., 1994).
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The dynamics and behaviour of gyroscopes have been widely discussed in
literature (Cannon, 1973; Koruba, 2001, 2008; Nizioł, 2005), and several clas-
sical methods of controlling them were already considered and used (Koruba,
2001). The aim of the present paper is the discussion of the effectiveness of
several differing models of neural networks used for emulating the non-linear
dynamics of a gyroscope. To the best of the author’s knowledge, this study
has not been discussed in previous literature, and it is considered as the first
step in the study of a neural controller of a gyroscopic system.
Thanks to the fact that the natural frequency of a gyroscope depends

on the angular velocity of the rotor, the analysis of the gyroscopic system
has the advantage of allowing the assessment of different neural network mo-
dels in both low- and high-frequency regimes. With the view of application
in distributed-parameter systems, which generally have much higher natural
frequencies, the case of high angular velocities is also studied.
The learning techniques used for training the networks include, among

others, the steepest gradient and Levenberg-Margquardt algorithms. Both the
dynamics of the considered systems, as well as the neural networks, are im-
plemented and calculated using Matlab/Simulink environment.

2. Dynamics of a gyroscope

In the present paper, a gyroscope in a Cardan suspension with two axes of
freedom is considered, as shown in Fig. 1. The angular velocity n of the rotor
is assumed to be constant throughout the whole time of its operation. Both
acceleration and deceleration of the rotor are not included in the following
calculations.
The non-linear equations of motion for the gyroscope along with their de-

rivation using d’Alembert’s method are presented in the work Cannon (1973),
and are given in the following form

Iyϑ̈+ hψ̇ cos ϑ+ (Iz − Ix)ψ̇2 sinϑ cos ϑ =My (2.1)
(IoZ + Iz cos2 ϑ+ Ix sin2 ϑ)ψ̈ − hϑ̇ cos ϑ+ 2(Ix − Iz)ψ̇ϑ̇ sinϑ cos ϑ =MZ

where ϑ and ψ stand for the rotation angles of the inner and the outer frame,
respectively, Ix, Iy and Iz are the overall moments of inertia of the inner frame
and the rotor around the x, y and z axes, IoZ is the moment of inertia of the
outer frame around the Z axis, while My and Mz are the torques applied with
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Fig. 1. Model of the gyroscope with two axes of freedom in a Cardan suspension

respect to the y and Z axis, respectively. The parameter h in the equations
is the angular momentum of the rotor and is defined using the relation

h = Irxn (2.2)

in which Irx is the moment of inertia of the rotor around its rotation axis. For
this study, the values of the moments of inertia of the gyroscope where chosen
as follows

Ix = 1.6 · 10−4 kgm2 Iy = 1.2 · 10−4 kgm2 Iz = 1.2 · 10−4 kgm2

Irx = 10−4 kgm2 IoZ = 10−5 kgm2

Additionally, in the following calculations, it is assumed that no external
torque is applied to the rotation axis of the outer frame (Mz = 0). The value
of the torque My applied to the rotation axis of the inner frame ranges from
−10−4Nm to 10−4 Nm.

The dynamics of the gyroscope given by the above equations was imple-
mented in Matlab, and the calculations were performed using the solid-step
Runga-Kutta integration method with the time step ∆t = 10−4 s. Figure 2
shows the response of the gyroscope to the constant torque My under diffe-
rent conditions such as the value of My and the angular velocity n of the
rotor. This response is given in form of the angular displacement of the outer
frame ψ (left graph) and the inner frame ϑ (right graph).
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Fig. 2. Response of the gyroscope with angular velocity n to a constant torque My
in the form of rotation angles of the outer frame ψ (left graph) and the inner
frame ϑ (right graph); (a) n = 100 rad/s, My = 10−6Nm, (b) n = 100 rad/s,
My = 10−4Nm, (c) n = 1000 rad/s, My = 10−6Nm, (d) n = 1000 rad/s,

My = 10−4Nm
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3. Basic considerations and preparations for teaching the neural
network

In order for a dynamical system, such as a gyroscope, to be properly modelled
and emulated using a neural network, several essential considerations were
required. First of all, the decision had to be made whether to use a two- or a
three-layer neural network. While the latter option seemed at first to be more
accurate, the comparison proved the former one to be more advantageous in
terms of computation time, with no significant loss of precision or performance.
Several already available options were considered regarding the program-

ming and training of the neural network, such as using the functions included
in the Neural Network Toolbox of the Matlab software. These however, proved
problematic when attempting to train the neural network using the data set
obtained from the gyroscope model using the Runga-Kutta method, mostly
due to their limited capabilities and long computation time. Therefore, a de-
cision was made to program a separate function used specifically for training
the system considered in this paper, and also another one for testing its per-
formance. These functions were based on the computational solutions given in
work Norgaard et al. (2000) as well as the practical study presented in paper
Hagan et al. (2002).
Figure 3 shows the structure of the neural network chosen, which has a two-

layer architecture (consists of one hidden and one output layer). The operation
of this neural network can be written using the following equations

xh = f1

(

W1 ·

[

xin

1

])

xout = f1

(

W2 ·

[

xh

1

])

(3.1)

in which W1 and W2 are the network weight matrices, xin, xh, and xout are
its input-, hidden- and output layer values, while f1 and f2 stand for the ac-
tivation function of the hidden and output layer, respectively. The bias values
for both the hidden and output layer are already included in the respective
weight matrices.

Fig. 3. Structure of the chosen neural network

The amount of neurons in this network was chosen as follows: 10 neurons
for the hidden layer and 2 neurons for the output layer. These two output
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neurons correspond to the rotation speed of the outer and inner frame. The
number of inputs, which determines size of the matrix W1, depends primarily
on the model of the neural network chosen. The activation function, was chosen
to be tangensoidal for the neurons in the hidden layer, while linear for the ones
in the output one, as shown in Fig. 3.
The data required for training the network was obtained by the Runga-

Kutta method from the model of the gyroscope implemented in Matlab. In
order to provide the neural network with a diverse set of training data, the
excitation torque My was chosen as a band-limited white noise, with the power
spectral density (PSD) of 10−4(Nm)2/Hz and the sample time ts = 10−4 s,
in a time span of 5 s. All the data that were gathered from the model were
additionally normalized before training in order for the solution to diverge
faster, thus allowing for both the decrease in computation time and increase
in the accuracy of the results.
Four different training algorithms were programmed and considered in

Matlab: steepest gradient, Gauss-Newton, quasi-Newton and Levenberg-
Margquardt algorithm (Norgaard et al., 2000). Although each of these al-
gorithms provided proper training of the network, the last one proved to be
the most effective, and therefore was chosen for use in further computations.

4. Modelling the behaviour of the gyroscope using neural
networks

Three nonlinear model structures based on neural networks, which are de-
scribed in detail in book Norgaard et al. (2000), were considered for use in
emulation of the dynamics of a gyroscope. Each of these is based on the well-
known linear model structure and modified in such a way that would allow its
use in the nonlinear system. This approach allows the decisions regarding the
neural network structure to be limited to two choices only: firstly, how many
inputs and of what type should be supplied, and secondly, what architecture
of the neural network should be used. While the architecture has already been
decided upon (two-layer network with 10 neurons in hidden and 2 in output
layer), the number and type of inputs is considered for each model structure
separately.
The network was trained using the back-propagation method, based on

the error between the desired and predicted output value, averaged over the
whole training data set. Two different approaches were used for training the
neural network. The first allowed the error to be calculated for all the samples
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from the data set in one step, and was used for the model structures of a
feed-forward type (NNFIR, NNARX). The second one was used exclusively
for the model structure using the recurrent neural network (NNARMAX),
and required the error to be calculated for each sample, one at a time in a
step-by-step manner. In order to provide better comparison, the networks were
trained using the same training data set, and the number of iterations over
the whole data was also chosen to be the same for each of them.

4.1. NNFIR (Neural Network Finite Impulse Response)

The first of the presented neural network emulators is also the simplest in
terms of its structure. As can be seen from Fig. 4, the inputs used for training
the neural network consist solely of the excitations applied to the gyroscope
model. In this case, these represent the values of torque My to which the inner
frame of the gyroscope was subjected. The output from the neural network
can be therefore described using the following relation

ŷ(t) = f(u(t), u(t− 1), . . . , u(t− k)) (4.1)

in which k is the amount of past inputs applied to the considered dynamic
object.

u = [u(t), . . . , u(t− k)]

Fig. 4. Neural network model structure NNFIR

The knowledge of k past excitations only is not enough to teach the ne-
twork to emulate the behaviour of the dynamic object properly. The main
reason behind this is the lack of necessary information concerning the past
states of the object. Due to that, the performance for this NN model cannot
be improved even by increasing the number k of past excitations, and the
results are far from the desired ones.

4.2. NNARX (Neural Network Auto Regressive, eXternal input)

The second model, presented in Fig. 5, is a logical extension to the NNFIR
model. In this case, the artificial neural network is taught by using both past
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excitations and the time history of the rotation angles ψ and ϑ of the gyro-
scope, applied as inputs to the network.

u = [u(t), . . . , u(t− k)], y = [y(t− 1), . . . , y(t−m)]

Fig. 5. Neural network model structure NNARX

The function that describes the relation between the output and the inputs
of the neural network takes the following form

ŷ(t) = f(u(t), u(t− 1), . . . , u(t− k), y(t − 1), . . . , y(t−m)) (4.2)

where k is as in NNFIR, is the number of past excitations, while m is the
number of the past states (outputs) of the modelled dynamic object. These
states correspond to the values of rotation angles of the outer and inner frame
of the gyroscope in the m subsequent moments of time.
By utilizing the NNARX model of a neural network, a good approximation

of the dynamics of the analysed object can be obtained. This justifies the
statement that in order to teach a neural network to simulate the behaviour
of a dynamic system, the information concerning its past values of rotation
angles needs to be provided.

4.3. NNARMAX (Neural Network Auto Regressive, Mean Average,
eXternal input)

Figure 6 shows the structure of the last of the considered emulators. It
differs from the other two, as it is not a feed-forward network, but a recurrent
one, in which some of the values obtained at the output of the network are
redirected to its input, and play a crucial role in its operation.
The structure of this model is the same as in NNARX, but with an addition

of the past r residual values (difference between the physical output y and
the neural network output ŷ), used as inputs. The output function to this
emulator can be written as follows

ŷ(t) = f(u(t), . . . , u(t− k), y(t− 1), . . . , y(t−m), e(t− 1), . . . , e(t− r)) (4.3)

The approximation using NNARMAX model is similar in accuracy to that
obtained by using NNARX. However, due to the recurrent nature of the ne-
twork, several drawbacks are present. First of all, the training and recalculation
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u = [u(t), u(t − 1), . . . , u(t− k)], y = [y(t− 1), y(t − 2), . . . , y(t−m)]
e = [e(t− 1), e(t − 2), . . . , e(t− r)]

Fig. 6. Neural network model structure NNARMAX

of the network needs to be performed for each step in the data set. Secondly,
the matrix constructed for training the network might become singular, which
could prevent the solution from being found. Lastly, the network requires to
be directed towards the solution, which in this case is performed by training
the network using NNARX model for the few iterations, and then expanding
it to the NNARMAX model.

4.4. Comparison of the model results for low- and high-frequency
excitations

The training and comparison of the models was performed for the constant
angular velocity of the rotor equal to 1000 rad/s. The amount of input values
for each one of the models was specified as follows:

• NNFIR: k = 2

• NNARX: k = 2, m = 2

• NNARMAX: k = 2, m = 2, r = 2

As expected, NNFIR was the only one of the three models that was not able
to emulate the behaviour of the gyroscope, and therefore it was not included
in the results. NNARX and NNARMAX, on the other hand, performed quite
well and allowed the dynamics of the gyroscope to be modelled and emulated
with good accuracy and precision.
Figure 7 shows the response of the gyroscope (solid line) and the emula-

tor (dashed line) to a constant torque My of value 10−6, 10−5 and 10−4 Nm,
from top to bottom, respectively. The results for the emulators correspond
to those obtained for the physical model as shown in Fig. 2. The difference
in the response can be easily attributed to the limitations of neural network
training. When the boundaries within which the network was trained are re-
ached, a divergence between the response of the emulator and gyroscope can
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be seen (in Fig. 7 it happens when the rotation angle ψ = 10−4 rad). However,
up to that point, both of the responses are nearly identical. If one required
better performance, it could be done by widening the range of outputs used
for training the emulator.

Fig. 7. Response of the gyroscope (solid line) and the emulator (dashed line) to the
constant torque My; (a) My = 10−6Nm, (b) My = 10−5Nm, (c) My = 10−4Nm.

All plots for the rotor angular frequency n = 1000 rad/s

In Fig. 8, the response to the torque My given by the sinusoidal and chirp
function, is presented. As in this case, the results were identical for each model
(original, NNARX emulator, NNARMAX emulator), only one result is shown
for each type of excitation. It should be noted that even for a high frequency
excitation, both of these models perform well and give a proper and accurate
response.
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Fig. 8. Response of the emulator to the specific external torque My; (a) sinusoidal
function, amplitude 10−5Nm, angular frequency 100 rad/s, (b) sinusoidal function,

amplitude 10−5Nm, angular frequency 1000 rad/s, (c) chirp function,
amplitude 10−4Nm, frequency 0-1000Hz in 2 s, (d) chirp function,

amplitude 10−4Nm, frequency 0-1000Hz in 2 s. All plots for the rotor angular
frequency n = 1000 rad/s
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5. Summary

Three different structure types of neural networks were considered and used
for emulating the dynamics of the gyroscope with two axes of freedom, subjec-
ted to an external excitation. The first model (NNFIR) lacked the necessary
knowledge required for training the dynamic object. The other two models
(NNARX, NNARMAX) proved to be capable of approximating and emula-
ting the behaviour of the gyroscope. However, the latter model has shown
several drawbacks that made it less useful than the former one.
Earlier studies of the application of neural networks in the emulators of

nonlinear dynamical systems have been limited to low frequencies. The pre-
sent analysis has shown that by utilizing available model structures of neural
networks it is also possible to emulate high-frequency vibration. This is of
much importance in the design of neural controllers for distributed-parameter
systems (e.g. smart structures). While the results in this study were obtained
for the angular velocity of 1000 rad/s, the emulators perform equally good for
the lower frequencies.
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Zastosowanie sztucznych sieci neuronowych do modelowania
dynamiki giroskopu

Streszczenie

W niniejszej pracy przedstawiono, w jaki sposób przy użyciu sztucznej sieci neu-
ronowej możliwe jest stworzenie emulatora, który naśladuje zachowanie i nieliniową
dynamikę giroskopu o dwóch osiach swobodnych, poddanego wymuszeniom zarówno
o niskiej, jak i wysokiej częstotliwości. W celu nauczenia sieci neuronowej, wyko-
rzystano szereg dostępnych algorytmów uczących (m.in. gradientowy, Levenberga-
Margquadta). Przetestowano oraz porównano trzy różniące się od siebie modele sieci
neuronowych: NNFIR, NNARX oraz sieć rekurencyjną NNARMAX.
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