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Numerical methods of determination of the dynamic stress intensity fac-
tor based on modal decomposition are considered. These methods are
introduced to processing impact bending tests data in order to replace
conventional but controversial quasi-static methodology. The influence
of type of bend specimen model and method of determination of the
model parameters on accuracy of the solution is investigated. Numeri-
cal results are compared with one- and three-point bending tests data
reported in the literature.

1. Introduction

The objective of dynamic fracture tests of quasi brittle materials is to de-
termine both the critical (corresponding to the beginning of unstable crack
propagation) value of dynamic stress intensity factor (DSIF) and its growth
rate which characterizes the strain rate in the process zone. Determination
of a history of DSIF variation Kj(t) and monitoring of the moment of crack
initiation are necessary for this purpose. Methods of K(t) determination can
be classified into two groups. First group consists of so called direct experi-
mental methods such as: method of caustics, photoelasticity or application of
the strain gauges cemented near the crack tip. It is a local approach and the
only theoretical assumption, one needs to make applying such an analysis is
to accept the asymptotic distribution of stresses or strains provided by theory.

In contrast, the second group consists of methods in which DSIF is eva-
luated from the global load-time or load-deflection diagrams. It requires full
theoretical analysis including assumptions concerning proper modelling of the
specimen response to external loading. The simplest assumption is to consider
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deformation of a specimen during impact test as a quasi-static one. It makes
possible to evaluate K(t) from the load-time diagram directly using the well
known static formulae. However, in many theoretical and experimental works
it was found that this assumption had been sometimes too strong. As a rule,
the time interval between first contact of a tup with a brittle specimen and
crack initiation is too short for dynamic processes in specimen to vanish. Thus,
the quasi-static approach is inapplicable to one-point bend testing conditions
when crack starts before the specimen comes into contact with the supports.

Dynamic effects are taken into account most completely when two dimen-
sional (2D) modelling of the impact test is performed using finite or boundary
element methods. Results obtained from such an analysis agree well with expe-
rimental data. But these methods are too complex and expensive to be used
as a simple tool for the tests data processing. From practical point of view,
and to the author’s best knowlege, the simplified methods of dynamic analysis
employing modal decomposition technique are more convenient. Accuracy of
some of these methods is examined in this paper.

2. Theoretical background

Let us consider a test specimen as a linear vibrating system and interpret
K(t) as a form of the specimen response to external excitation. For one-point
bending conditions (only tup force F(t) acts upon the specimen) one can use
the following formula in order to compute DSIF

Ki(t) = / F(rpY(t - 7) dr (2.1)

where hg)(t) is the DSIF-response of the unsupported specimen to unit im-
pulse from the tup (cf Andreikiv and Rokach, 1989; Rokach, 1990a,b). This
formula can also be used in three-point bending conditions replacing hg)(t)
by hg?)(t) (DSIF-response of the supported specimen) and assuming that the
specimen is in continuous contact with the anvil (cf Kishimoto et al., 1980 and
1984). However, in such an approach the specimen ”bouncing” effect is not
taken into account, therefore, results obtained are not precise. DSIF can be
calculated more exactly when the anvil load R(t) is recorded during test and
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the following formula is used
t t
Ki(t) = / F(rRO(t 1) dr + / R(-WD(t - 7) dr (2.2)
0 0

where hg)(t) is the DSIF-response of the specimen to two simultaneous unit
impulses from the supports.

Egs (2.1) and (2.2) can be transformed into more convenient for calcu-
lations forms taking into account specific methods of approximation of the
recorded loading. For piece-wise linear and the Fourier series approximations
of F(t) and R(t) the corresponding formvlae are so simple that require a po-
cket computer for evaluation of Ki(t) only (cf Andreikiv and Rokach, 1989;
Rokach, 1990a,b).

It can be shown that the only difference between all existing simplified
procedures of DSIF determination is a method and/or accuracy of deriving
of h;?(t) t = 1,2,3 functions. As a rule, these functions are expanded into
series with respect to the vibrations eigenforms of the specimen model and
only a few first terms of the series are used in calculations. When specimen is

modelled within a framework of plane linear elasticity the most general form
of DSIF-response functions is (Rokach, 1990a)

hg?(i) = kg") Z 'r].gi)w;i) sin(w_gi)t) (2.3)
J

where w](') is the jth eigenfrequency of the specimen model (i = 1,2 corre-
sponds to an unsupported specimen, ¢ = 3 corresponds to a supported one),
kgi) are SIF values for the following static loading conditions: one-point ben-
ding (% = 1, see Fig.1a) — specimen is loaded by a unit uniformly distributed
forces, two-point bending (i = 2, see Fig.1b) — of the same form but twice
greater loading, and conventional three-point bending by a unit concentrated
force (i = 3, see Fig.1lc). For each of the above-mentioned cases of static
loading displacements of the specimen can also be expanded into series with
respect to corresponding eigenmodes. These expansions are valid for any po-
int of specimen including the points situated near the crack tip. Therefore,
kgi) can be expanded into similar series of SIFs corresponding to normalized
eigenmodes too. Weight coefficients that are proportional to the contribution
of each normalized mode into k{ are denoted by ngi) (}; ng-t) = 1) in Eqgs

(2.3) (see Rokach (1992) for details).
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Fig. 1. Schemes of cracked specimen loading: one- (a), two- (b) and
three-point-bending (c)

Values of k(l) ( ), nj(l), n( ) (for 7 =1,2,3) have been determined, for
a wide range of rela.tlve specimen and crack lengths and values of the Poisson
ratio, by finite element analysis for 2D (plane stress) model of specimen. The
numerical results were later fitted by polynomials (cf Andreikiv and Rokach,
1989; Rokach, 1990a,b). For the Euler-Bernoulli beam model of specimen,
where the crack is modelled by elastic hinge, located in the midspan, the
frequency equations for determination of w( ), wj(s) have been derived (cf
Andreikiv and Rokach, 1989; Kishimoto et a,l 1980, 1984 and 1990) and

relations for nj( ), 773( ) obtained (Andreikiv and Rokach, 1989).

3. Experimental data processing

In order to perform calculations using Eqs (2.1) + (2.3) the following pa~
rameters must be determined

— Number N | 4= 1,2 of terms of the series which are taken into account

— Values of eigenfrequences wj(.i) and weight coefficients nj(-i) (j=1,N0)

— SIF values kgi).

Applying the finite element analysis to 2D model of the specimen makes
it possible to evaluate these parameters with high accuracy. However, the
following simplifications of the formulae (2.3) as well as methods to determine
their parameters can also be introduced

e Taking into account only a few lowest modes of vibration. When single

mode approach (N() = 1)is used, true values of n( ) are often neglected
1 =

assuming 7);
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o Using simpler than the 2D models of specimen (e.g., one dimensional
beam) (cf Andreikiv and Rokach, 1989; Kishimoto et al., 1980, 1984 and

1990). This assumption considerably simplifies determination of wJ(-i)

and 7]](-’) but effects in essential errors in their values

e Calculation of kgl) and kS” using known formulae for three-point static
bending of the specimen with the standard normalized span S/W =4,
where S is the span length, W is the width of the specimen. In this
case the equivalent load has to be chosen in order to obtain the value of
bending moment in the midspan equal to the corresponding values for
one- and two-point bending schemes. Thus we arrive at

L
1) . 13 L

S (3.1)
@) — o5 _ g~ 53 (o _ L

k) = 2k — kD) ~ k) (2 5) (3.2)

where L is the specimen length. It was found by Andreikiv and Rokach
(1989) that for the most important for practical applications values of the
relative specimen length L/W > 4 and relative crack length o/W =
0.45 = 0.55 the accuracy of these formulae is better than 9%. But it
becomes worse with decreasing value of L/W ratio.

Let us analyze the consequences of those simplifications by comparing cor-
responding numerical and experimental results. The latter have been obtai-
ned during testing large-scale Araldite B specimens by the method of caustics
(Bdhme, 1985).

In Fig.2a the piece-wise linear approximation of the load-time diagram
of the tup force recorded during one-point bend test of the specimen with
L = 0412 m, W = 0.1 m, and crack length o = 0.03 m, is presented.
Numerical results for the Euler-Bernoulli beam model of specimen, using this
diagram as an external excitation, are compared with experimental ones in
Fig.2b. Lines 2 and 3 represent the most complete solution for the beam
model (i.e. k{Y is obtained from 2D static finite element analysis, values of
wj(l) and nj(-l) are determined without any simplifications) (cf Andreikiv and
Rokach, 1989). They differ only in number of vibration modes that were taken
into account. It effects in differences in DSIF values corresponding to early
stage of the specimen deformation.

Less precise approach to the same type of specimen model has been pro-

posed by Kishimoto et al. (1990). Using approximation (3.1) for kY and
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Fig. 2. (a) - force-time diagram recorded during one-point bend test (cf Béhme,
19853; time variations of DSIF obtained experimentally and numerically for: (b) the
beam model of specimen, (¢) the 2D model of specimen
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Fig. 3. (a) — force-time diagram recorded during three-point bend test (cf Bohme,

1985); time variations of DSIF obtained experimentally and numerically for: (b) the
beam model of specimen, (c) the 2D mode] of specimen
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the Tada’s formula of a poor accuracy for the elastic hinge compliance cau-
ses the increase in discrepancy between the corresponding numerical (line 4)
and experimental data. The worst results were obtained with a single mode
approach with assumption that 7){1) =1 (line 5).

Unfortunately all beam models ignore the fact that the value of specimen
width is finite, therefore, the time delay between the beginning of loading
signal and the beginning of DSIF growth is ignored too. This is the main
reason for discrepancy between numerical and experimental data in Fig.2b.

When the 2D model of specimen is used the results obtained are sufficiently
close to experimental data (Fig.2c). Influence of the number of modes that
were taken into account is again important for the early stage of DSIF growth
only (line 2 and 3). Single mode approach with nfl) = ] effects in a noticeable
drop in accuracy of initial DSIF values (line 4).

In Fig.3a time variations of tup and anvil forces for three-point bend test
are presented. The specimen geometry was as follows: L =0.55m, W = 0.1
m, ¢ = 0.03 m. Comparison of the experimental DSIF-time curve with nume-
rical results (Fig.3b) shows an improvement of accuracy of the beam model
with increasing relative length of a specimen. The most complete solution to
the problem (lines 2 and 3) gives reasonable but rather "smoothed” (especially
for a single mode approach) information about DSIF growth. Assumption that
nfl) = 7){2) = 1 leads to noticeable distortions in results (line 4). Additional
assumption that specimen is in continuous contact with the anvil during the
test causes underestimation of DSIF (line 5).

Results obtained for 2D model of specimen (Fig.3c) better represent the
oscillations of experimental Kj(t) curve. The best correlation is achieved
when the first three specimen vibration modes are taken into account (line 2).

Because normalized specimen length is sufficiently large there is only a few
per cent difference between lcgl) and kﬁ” and their approximations given
by the relations (3.1) and (3.2), respectively. Thus, such a replacement has
practically no influence on the results of calculations.

Single mode approximation which neglect true 7;5-1) and 7;5-2) values leads
to a noticeable discrepancy between the theoretical and experimental results

again (line 4).

4. Conclusions

It was shown that the modal decomposition method is cheep and sufficien-
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tly accurate for evaluation of DSIF from impact testing data. The method
can be applied to specimen models with different levels of sophistication wi-
thout any essential changes in procedure of calculations. The best results
were obtained using the most powerful 2D multi-modal model of specimen.
Our analysis suggests that the following consequences of simplification of this
model appear:

o Using the one-dimensional Euler-Bernoulli model of specimen leads to
less precise results than those for the 2D model. Although this diffe-
rence decreases with increasing of the specimen relative length (cf Ro-
kach, 1992), application of the beam model is not recommended even in
this case for the following reason. The results of a test may be accepted
if DSIF deviations from mean linear increase line are sufficiently small.
Results obtained for the beam model usually underestimate these devia-
tions representing rather smoothed approximation of DSIF-time curve
than the real one. Therefore, it is difficult to check the validity of a test
using such results.

o The single mode approach for both specimen models leads to smoothing
of results too. It is acceptable with caution together with the 2D mo-
del for one-point bend data processing only, because for this case DSIF
growths almost linearly.

¢ Determination of k{! and k{? using the approximate formulae (3.1)
and (3.2) leads to large errors only for specimens with low relative length.

e The highest level of simplification of the formulae (2.3) (single mode
approach together with neglecting true n%l) and n£2) values) effects in

noticeable errors.
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Poréwnanie uproszczonych metod wyznaczema dynamxcznego
wspélczynnika intensywnosci naprezen

Streszczenie

W pracy sa rozpatrywane metody numeryczne wyznaczenia dynamicznego wspol-
czynnika intensywnosci naprezen oparte na dekompozyc_)l modalnej. Metody te za-
stosowano do obliczania wynikéw préb na zginanie udarowe zamiast zwyklego lecz
kontrowersyjnego podejscia quasi- statycznego. Bada si¢ wplyw typu modelu prébki
oraz metody wyznaczania paramet,row tego modelu na dokladnosé otrzymywanych
rozwigzan. Rezultat,y obliczen sa porownywane ze wzietymi z literatury wynikami
eksperymentéw na zginanie jedno- i tréjpunktowe.
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