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A finite transverse shock wave propagates through an unbounded me-
dium and is reflected at a plane boundary or reflected-refracted at a
plane interface between two joined elastic half-spaces. The problem is
not solvable in general, and we look for some kind of degeneracy in it,
which make the solution possible. Two cases: clamped boundary and
frictionless-rigid boundary are considered particular numerically for dif-
ferent assumptions. Both reflection patterns assumed here: either shock
or simple wave, give the unique result in its range of admittace. There
are two different critical angles: for shock as well as for simple wave, but
in contrast with the second one, the first one has the pure geometrical
meaning only.

1. Introduction

We apply the semi-inverse method (Wright (1971)) to examination of the
reflection problem of oblique finite elastic plane shock wave at a plane boun-
dary of nonlinear elastic solids and the reflection-refraction problem for a plane
shock wave propagating in an unbounded medium consisting of two joined ela-
stic half-spaces of different material properties, in the direction oblique to the
interface. In such a homogeneous or composite medium, systems of additional
waves can be superposed to represent the incident shock in conjunction with
reflection at the boundary (reflection and refraction at the interface separating
the two media). These additional waves are called reflected (and refracted)
waves.

'The paper is awarded the first prize in the Polish Society of Theoretical and Applied
Mechanics Competition for the Theoretical Papers in the field of mechanics organized by the
L4dZ Branch of this society.
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If the medium ahead of the propagating shock has a given (undisturbed)
state, then for a given incident shock, the region immediately behind the shock
has the known state. The problem now is to fit the reflected (and refracted)
waves so as to connect the state just fixed with some state at the boundary that
is compatible with the boundary (interface) condition. It is assumed that the
constant state behind the wave and the state at the boundary (interface) are
connected by means of a sequence of centered simple waves, and undisturbed
state regions. The assumption that the reflected (and refracted) waves are
simple waves will reduce this problem to determining the distribution of the
wavelets by means of ordinary differential equations. In some cases it may
be necessary to modify the assumed reflection (and transmission) pattern, to
include shocks as well; for shocks, the reflection problem is then reduced to
solving a system of algebraic equations for the direction of propagation and
strength of the reflected shocks.

We assume further that the elastic material is a special kind of idealised
incompressible rubber, and that the oblique incident wave is a plane transverse
shock. Since in such cases the motion is restricted to one dimension, there are
only two (nontrivial) conditions to be met at the boundary (interface); hence;
the assumed reflection (and refraction) pattern will include a single reflected
wave (and a single refracted wave) only.

Section 2 contains a summary of the adequate theory, and derivation of
the propagation condition for simple waves in incompressible materials. Since
the reflected (and refracted) waves can be simple waves or shocks, we present
in Section 2 differential equations for simple waves and jump conditions for
shock waves. The reflection (and refraction) paterns are considered in Sections
4, 5 and the solutions is discussed in Sections 6 and 7.

2. Basic equations

We use here traditional symbols for deformation gradient its inverse and
the particle velocity: Fi;y = iy, Xai, &i = u;. is assumed that the material
is homogeneous, elastic and incompressible. The incompressibility condition
requires that

J =det[z;io] = 1 (2.1)
It is assumed that the material is homogeneous and hyperelastic. The Piola-
Kirchhoff stress tensor for such material is

oo
Tria = PR 3

+ pXai (2.2)

x
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where
o — internal energy per unit mass in the reference congigura-
tion Bpr
pr — density
p — an arbitrary scalar function (hydrostatic pressure),
p = p(Xa).

If the stress and velocity fields are differentiable, then the equations expres-
sing balance of momentum are the equations of motion

TRio,« = PRU; (2.3)

If the functions z;(X,,t) are continuous everywhere but have discontinu-
ous first derivatives on some propagating surface £'(X,1), the equations (2.3)
must be replaced by the jump conditions on this surface (cf Truesdell and Noll
(1965))

[Tria]lNa = —prV [u:]

(2.4)
|[xicx]| = H;N, |[U1]| =-HV
where
H; = md; m=VH;H; >0

and

N, — components of a material unit normal to the wave

V' — speed of propagation along N,

H; - components of the amplitude vector of the jump.

The bold square brackets indicate the jump in the quantity enclosed across
% (cf Truesdell and Noll (1965)). Such a surface is called shock wave and is
assumed to be stable (cf Lax (1957)). Eliminating the velocity jump from Eqgs
(2.4); we obtain for the shock speed

[Tria] NaHi = prV?[zjs] NsH; (2.5)

Simple waves are defined by Varley (1965) to be regions of space-time
in which all field quantities are continuous functions of a single parameter,
say 7 = G(X4,t). This means that in the region of a simple wave all field
quantities can be expressed as functions of one of them. Hence, if one of
the field quantities is constant in this region, the remaining quantities are
also constant throughout this region. Regions of constant v are propagating
surfaces, called wavelets, with unit normal and normal velity in Bpg given by

Ga _ G
ch - |VG U(7) - |VG| (26)

4 — Mechanika Teoretyczna
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Combining the equations of motion (2.3) with the compatibility condition
%jo = ¥;jo We obtain the propagation condition for simple waves in incompres-
sible materials and equation which describe the change of p() in the simple
wave region (cf Varley (1965))

(Q% — pRU8i5)u’; = 0 (2.7)
1(7) = U2 Qt]u n; (28)

where n; is a unit normal and wu the speed of propagation in the present
configuration B, the prime indicates differentiation with respect to v, and

0%
Qt] = PR——axiaaxjﬁ NO,Nﬁ
(2.9)

) OTx;
ij = PR TN NG = Qij — Qujman
J

are called the acoustic and the reduced acoustic tensors, respectively.

3. Incident shock

The condition of incompressibility restricts the propagating waves to trans-
verse wave only. In general, a propagating wave incident on a boundary (inter-
face) of an elastic medium does not meet the boundary (interface) conditions.
If it is the only wave, the medium is not in a state of dynamic equilibrium; this
is the reason for some additional waves, called reflected (and refracted) waves,
being formed in association with the incident wave. In the main, the reflection
(and refraction) problem may have no solution in the terms of simple waves,
as there are at most two possible families of reflected waves (and two families
of refracted waves) in such a case; this means that there are two (four) free
parameters, with three bondary (six interfacial continuity) conditions to be
meet. However, solutions may exist for some types of incompressible mate-
rials, with particular deformation and boundary conditions. In this paper we
examine such particular cases.

Suppose the incident wave is a plane shock wave, and it is propagating
through an elastic half-space X3 > 0. The angle of incidence @y € (0,0,)
on the boundary X; = 0, and the shock strength m0 are known. Thus,
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Vi=Vp / sin@)—

wave surface for region 0

Vi
S
Q

©

Yx;

Fig. 1. Incident shock and assumed reflection patterns

this traveling discontinuity surface belongs to one-parameter family of parallel
planes with normals

Ny = [sin O, — cos O, 0] do =[0,0,1] (3.1)

Furthermore, we assume that the direction of polarisation, given by unit vector
dy, is parallel to the Xj-axis. The reflection line (point @ in Fig.1) moves
along the boundary with constant speed V, = Vysin®@y where Vj is the
incident shock speed. It is assumed that the reflected wave is a simple wave
(region 2). The material region 0 (and 0) ahead of the incident shock is
unstrained and at rest
FL = bia wf =Tia =0 (3.2)
Regions 1 and 3 have constant state. Since all waves are centered at the
point @ (cf Wright (1971)), we have for the reflected wave

N(’Y) = [Sin 6(7)3 - COSG(7)3 1]
(3.3)

U(y) = VisinO(y)
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where @(7) is the angle of reflection and 7 is the reflected wave parameter.It
is expected that the reflected waves will propagate away from the boundary,
hence 7/2 < O(y) < .
Let us denote
T = cot O(7) (3.49)

We have then from equations (2.7) and (3.3)

1

N = mN = [1,—'7', 0] (35)

(@3~ pRVZSs Yy = 0
! 7 (3.6)

ViFlL +ulN, =0 ij=12

where Q:‘j = 0i0;sNoaNg and V, is independent of O(7).
At every point in the simple wave region the following condition must be
satisfied
T(T) = det(@fj — prRV26:;) =0 ui = kr; (3.7

where =(7) is a fourth degree polynomial in 7, r is a right eigenvector of
the acoustic tensor Q* = (*sin?2 @(y) associated with a particular root ©
and & is a scalar function of the deformation gradient; it is convenient to
assume that r is a unit vector. The corresponding eigenvalue of Q, the
characteristic speed of the simple wave, is U? = ppV2/(1 4 72). Thus, if 7
and r correspond to the reflected simple wave under consideration, then we

have "
w = kr FF=——yrQ@N (3.8)

Vi

Each simple wave is completely described by a one-parameter set of functions
the variation of which is governed by the above system of ordinary differential
equations. Since the velocity and the deformation gradient are continuous th-
roughout the regions behind the incident shock, the initial values for Eqs (3.8)
are the constant values of the region in front of the wave. The undisturbed
state of the region just behind the wave is fixed by the values at the trailing
edge of the wave.

A detailed discussion and geometric interpretation of the roots of =(7)
can be found in Wright (1971). Here we shall only state that for the simple
wave to propagate 7(7) must be a real decreasing function of ¥ € [0,7],
when < changes from its initial value 0 to the extreme value ¥ (which may
be negative); this means that its wavelets (rays) diverge with increasing =y (cf
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Eq (3.4)). If 7(v) increases, then the assumed reflection pattern should be
modified to include shocks as well.

It is assumed that both material solids are isotropic incompressible and
are characterized by the constitutive equations

W(Il,Ig) = pRO'(Il,Ig) = Cl(Il - 3) + Cg(Iz - 3) + C3(112 - 9) for X2(>3 g)

W(il,jg) = ﬁRO’(il,ig) = é](il - 3) + éz(iz - 3) + é3(i12 - 9) for X2 <0

proposed by Isihara et al. (1952), where Iy = By;, I = (Bii — Bi;Bij)/2,
are the invariants of the left Cauchy-Green strain tensor B;;. The set of
values Cy,C2,C3 — represents the material elastic constants. The symbol (*)
serves here to label the field quantities and the field equations in the half-
space X2 < 0. Approximation (3.9) of the strain energy function W is valid
for rubber-like materials under moderate strain. Experimental investigations
(cf Zahorski (1962)) indicate that the constant Cs, important in the following
discussion is positive.

Since the medium in front of the shock is unstrained and at rest, the jump
condition across the incident shock Eq (2.4) become now

[za1] = z;ﬁ = mgsin Oq
[z32] = 25, = —mg cos Oy (3.10)
[533] = —m0V0

Substituting Eqs (3.1) and (3.10) into Eq (2.5) we obtain the equation relating
the shock speed Vj and the shock strength mg

V¢ = (1 +nqmd) (3.11)
where
2 2(01 + Cy +603) 4C5
el = =
PR pRC?

The state behind the propagating shock wave (region 1) is now completely
determined by the shock speed V; and its strength mg. Eqs (3.10) determine
the deformation gradient and its inverse

1 0 0 1 0 0
[B]=[0 1 0 [XB]=] o 1 o0 (3.12)
by Dy 1 —i =iy 1

and the particle velocity

U= [0,0,U3] Uz = -—m()VO (3.13)
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We denote here = = iy, 28, = 0o, v = u, 231(7) = 1, 232(7) = 1.
The Piola-Kirchhoff stress components Tgi, and stress components o}
required in this paper are then evaluated in regions 1 and 0 (cf Fig.1)

Tri1 = 2pRrlo1 +02(2+ v)] +p Tri13 = —2pRro2vy — pi1
Tra2 = 2pR[o1 + 02(2 + v¥)]| + p Tra1 = 2pr(01 + 02)1y
Tras = 2pr(01 +202) +p Tr23 = —2proavy — pry (3.14)
Tri2 = Tpa1 = —2pRroaviv Traz2 = 2pr(0y + 02)v2
ol = 2(0y + 02) + 40110} 022 = 2(0y + 02) + 401102
(3.15)
032 = 63 = 4o 111 o022 = —2091 oll = —20,1y
where
do 1 doc C,
o1 ar, pR(Cl+ Cil) o) oL~ on
0% 2C,

o11 = — L=L=3+vi+0v2

T 017 T bR

Eqs (3.12) imply the motions under consideration are restricted to the z3
direction. By Eqs (3.14), (3.15) and on the assumption that wus is not equal
zero, the propagation condition (Q}; — pRU?6i;)u’; = 0 is reduced to the set
of equations

Q3 — pRU6i3)u5 =0 = (3.16)
Q3 —PRU =0 A Qf3=Q3=0 (3.17)

The last two equations in expanded form are

Q13 = Q13— Quaning — Q23nzny =0
(3.18)

Q33 = Q23 — Q1aning — Qa3ngny =0

and they form a homogeneous system of algebraic equations

1-nny  —namy Q13 0
= 3.19
—mnz  1—ngng l [ Q23 0 (3.19)
For the assumed deformation and motion the components of the wave normal

are identical

n = N1 Ny = N2 n3 = N3 =0 (320)
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The determinant of the system of equations (3.19) is equal zero, and there exist
non-triviale solutions of the system for Q23 = —7Q13. On which conditions
this relation is safisfied?

The resulting equation (3.18) in compact form reads

Qiz — Q;aN;N; =0 (3.21)

which says that 6;3 ist proportional to N;. If this result is hold for arbitrary
N, which it must, then taking first N = [1,0,0] and then N = [0,1,0] it
turns out that for the assumed class of deformations, namely that all motion
is restricted to z3 direction we have

N=[1,00] = Q=015 N Qu=0)5=-202=0
(3.22)
N=[0,1,0] = Qx=Qs A Qi3=05=-200=0
This means that the condition Q.3 = —7@Q;3 is satisfied for both (3.22) if
02 = 0 and this in turn implies that the strain energy does not depend on the
second invariant of the Cauchy-Green strain tensor. This condition is fullfiled
also in two particular cases: for o2 # 0 and »; = 0 (normal incidence) as
well as for o, # 0 and »; = 0 (grazing incidence). Taking N in more general
form N = [a,(,0]in Eq (3.21) we obtain the same results as above.

4. Reflection-refraction pattern (o2 = 0)

We assume that the reflected wave is a single simple plane wave (both the
reflected and the refracted waves are single simple plane waves).

The propagation condition is reduced to a single equation, and the last
two equations below are also satisfied identically

Q3 —prU?=0  and Qi =Q=0 (4.1)
Because Q3; = QaaN, Ny = 05PN, Ny the above equation takes the form
oSN Ng-VZ=0 (4.2)
we can rewrite the propagation condition as a quadratic equation in 7

0337% — 20337+ (033 — Vi) =0 (4.3)
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Its smaller (greater) root indicates the planes of reflected (refracred) wavelets

respectively
12 12 11 _ y2
ag e 2 o
T= gg + \/( 33) = 22 . (4.4)
033 033 033
ofs

and stress components o;;" required in Eq (4.4) are evaluated corresponding
by in material region Xz > 0 (¢%°) or X, < 0 (5%P).
The requirement that the roots are real gives the condition for the critical
angle @.: it is the largest angle @ for which the following inequalities hold
035 = 033(035 = Vi) > 0
(4.5)

v12  %22/v11 2
d33 — 033(033 — Vi) > 0

The wave surface configuration for the both materials (Fig.2) shows that
the point @ moves toward it as the incidence angle increases, and intersects
first the below wave sheet. In the reversed materials combination the point
@ will intersect the top wave surface first. Evaluating (4.5); in region 1 we

obtain
2
sin@, < [ 14314 (4.6)
1+ 5pmg

Substituting the components of the deformation gradient into the propagation
condition Q%3 — prU? = 0 for arbitrary angle of incidence ©g, we obtain the
expression for the velocity surface in region 1

U2 = (14 qm3[1 + 2 cos’(© — Oo)) (4.7)

The wave surface geometry for the leading edge of the reflected simple
wave depends on the deformation gradient in region 1 which in turn depends
on @y, mg. In region 1 the wave surface for deformation (3.10) is ellipse.

For the fixed incident angle Oy (fixed amplitude my), the point @ moves
toward the wave surface as the amplitude mg of the incident wave (the incident
angle Op) increases. All waves in the configuration are centered at the point
@). The limit value for the cotangent of the reflection angle corresponding with
the leading wavelet: cot @y, is given by (4.8),

Vo _ U(D)

sin@q sin®

2nmgy/2n(1 + 3nm3)

T 14 3nmi(2 + 3gmd)

(4.8)

cot Opm =
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Fig. 2. Geometry of the wave surface in regions 1 and 0
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It is easy to calculate the both semi-axes of the velocity surface (cf Eq

(4.7))
di = ¢y/1 +3ym} dy = ¢y/1 + nm} (4.9)

5. Boundary and interface conditions (o2 = 0)

The simple wave is completely described by a one-parameter set of func-
tions given by the ordinary differential equations (3.8) and satysfying the initial
and boundary conditions. Equations (3.8) are now (cf Egs (3.5), (3.14) and
(3.15))

uy = Vi f(ia) r3; = — f(Zia) 232 = Tf(%ia) (5.1)

The components of the deformation gradient and velocity behind the shock
are given by Eq (3.10); hence, they are, the initial condition for Egs (5.1).

5.1. Clamped boundary

Let us assume that the incident shock is reflected from a ridigly constrained
boundary; this means that

Uz = 0 on X2 =0 (52)

To meet this condition it is convenient to choose in Eq (5.1) f(zi) = =V},
for then the system (5.1) becomes
1 T

ug = -1 27:’31 = Vh xéz = —Vh' (5.3)

Integrating the first two conditions, with the initial condition (3.10), we obtain

uz = —y — moVp T3 = Vl + moVo (54)
h
and the condition (5.2) is satisfied when 5 = —mgVj. For 7 = ¥ also vanishes
z31(7) = 0. Substitution for z3, and 7 (given by Eq (4.4)) into Eq (5.3)3
leads to a nonlinear differential equation for z3; which can be solved only
numerically.
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5.2. Frictionless-rigid boundary

Let us consider a case of "mixed” boundary conditions on the plane
X2 = 0, when the normal displacement and the shearing stresses Tgi2,
Trs; are zero. Since the motions under consideration are restricted to Xas-
axis direction, the displacement condition is satisfied identically. The stress
conditions (cf Eqs (3.14)) are met when

z32 =0 on X;=0 (5.5)

To satisfy this condition it is convenient to choose in Eqs (5.1), f(ziq) = —77!
for then the system (5.1) becomes

integrating the last two equations, with the initial conditions (3.10), we obtain

T3z = —y — mgcos Oy
(5.7)
T3 = —Vh(zgl — My sin @0) - m0V0
and the condition (5.5) is met when 5 = —mg cos @p.

Substitution for z3; and 7 (cf Eq Eq (4.4)) into Eq (5.6); gives a nonlinear
differential equation for zg3;. This problem, however, can be solved only
numerically.

5.3. Free boundary condition

Consider a case in which the stress vector ¢; = Trio Ko (K = [0,~1,0]),
vanishes on the plane X; = 0. This means that for X3 = 0, Tri2 = Th32 =
Tr22 = 0. The first two equations (cf Eqs (3.14)) led to the condition (5.5).
The third equation

Trar = 2pr(01 + 02[2 + (231)?]) +p =0 (5.8)

which must be satisfied on X; = 0 in both regions 0 and 3 determines the
hydrostatic pressure in region 0 and in region 3, respectively :

po = —c*pr p3 = —csz(l +,n[z31(7)]2) (5.9)
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where the 23;(%) are the values of the deformation gradient at the trailing
wavelet of region 2.

The function p(7) is continuous throughout regions 1 + 3, but it suffers
a jump across the shock surface that separates regions 0 and 1. To find
p1 in region 1 we use the jump conditions (2.4). The first two equations
[Tria}No = 0, or equivalently [Trii] = 72[Tr22], together with Eqs (3.10)
and (3.14), give the jump of p

[p] =P1—Po= —40377?,(2) (510)
and the function p; in region 1 of constant state is
p1 = po = —4C3m} (5.11)

for an arbitrary value of the incident angle @,.

In region 2 (simple wave) the deformation gradient and velocity are com-
pletely determined by Eqs (5.6) and (5.7) as continuous functions of the wave
parameter in the interval (3,0). Eqs (5.6) and (5.7) are consistent with the
two conditions Try2 = Tras = 0. As for the propagation condition we can use
the equations of motion and compatibility condition with the Piola-Kirchhoff
dtress tensor (3.14) to establish the equation describing the change of the
function p(7)in the region of the simple wave (2.8) .The differential equation
(2.8), after substitution for 232, z3; and ugz, determines the hydrostatic pres-
sure p(7) up to a constant in the interval (%,0). Direct integration with the
aid of Eqgs (5.6), gives

p(7) = —*prr) [(zsl(v))2 + (xsz(v))z] + Po (5.12)

Due to continuity throughout regions 1 + 3, the function p(7y) satisfies
two conditions, p(0) = p; and p(5) = p3 where p; and p; are given by Eqs
(5.9).

5.4. Reflection and refraction at the interface (02 =0 and o3 # 0)

Let two nonlinear elastic materials (described by Eqs (3.9)) differing on
elastic properties are rigidly coupled at the interface X5 = 0. There are three
conditions for stresses and one for velocity to consider at X, =0

u; = 1 t; = {,’ t; = TRia Ko K = [0, —1,0] (5.13)

t; =1 = Tri2 = Thiz Tre2 = Tra: Triz =Tr3z (5.14)
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5.4.1. Reflected simple wave, z2 > 0 (see Fig.1)
The equations in region 1 are assumed in the form

1 ) T 1

I — 1 ! [ —— _ - o) = —— 5.15
Uz = Z31 Vi Z32 7 f(zia) U, ( )
integrating we obtain
uz = —7 + u3(0) T3 = % + 231(0)

(5.16)
o
T3y = / dvy + 232(0)
0

5.4.2.  Refracted simple wave, z3 <0 (see Fig.1)

Analogous in the case of the refracted wave u3(0) = #31(0) = £32(0) = 0,
because the region 0 is unstrained and at rest

%

. . . 5 T &5 v 1

iy = —¥ £ = v /V ¥ f(zia) = A (5.17)
0

At the interface X, = 0 and for X; > 0, between regions 0 and 0
the three conditions are satisfied identically

ug =1tz =0 Triz = Tri2 =0 Traz = Traz = 0 (5.18)
the fourth equation
Tray = Traz = ¢*pr + po = Epr + Po (5.19)

relates the pressures py and Py in regions 0 and 0 across the interface.

At the interface X, = 0 and for X; < 0, between regions 3 and 3
we obtain four nontrivial equations involving the final values of the wave pa-
rameters 5 and ¥

Uz = ’&3 = —‘7 + U3(0) = —‘:;’ (5 20)

1

#0=> uz = i3 & 233 = I3
Vi
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Tri2 = Tri2 = Cax32231 = CoZzp¥a = Cor3y = Cofa

(5.21)
(231 = %31 £ 0)
Traz = Troa = Co(z1)? = Cy(3% (5.22)
Traz = Tra; = C2PR(1 + nl(z31)* + (132)2]) T3y =

(5.23)

= 52/5}2(1 +1[(£31)* + (532)2]) 232
There are four nontrivial algebraic equations involving two unknowns ¥, 3.
We can reduce this system of equation in two ways: the first is
o = & = 0= Cy = Cy = 0 and leads to two nontrivial equation for

7,3
7 + us(0) = —F
(14 nl(e31(7))* + (z32())%]) 32(3) = (5.24)
(14 (2 (3)? + Fa(D)) 222(3)

or the other one o3 = C2 # 0 (82 = C, # 0) with z3; = £3;1 = 0 (cf Duszczyk
et al (1986), Kosiniski and Duszczyk (1989))

~7 +u3(0) = -7
(5.25)

1+ n(z32(9))]232(7) = E(1 + #(#32(F))*|#32(F)

Both cases correspond to oblique and normal incidence of the shock, re-
spectively.

6. Reflected shock waves

The reflection solution was assumed in a form of a sequence of simple waves
and undisturbed state regions. If 7(7) increases with 7, the travelling pencil
of wavelets converges to the leading wavelet, thus forming a shock wave (cf Egs
(3.4)). Now we assume that the reflected wave is a shock and will investigate
in which cases such a wave is stable. We restrict our attention to the reflection
problem at the clamped and frictionless-rigid boundary.
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wave surface for region 1

Fig. 3. Configuration of the reflected shocks

According to Lax (1957), for a shock wave to be stable it is necessary that
it must travel faster than the corresponding type of acoustic wave ahead of
the shock and slower than the corresponding type of acoustic wave behind the
shock. Thus

Uf < Vo< UP Ufi<v <UR (6.1)

In order to the incident shock wave be stable it must intersect the wave
surface which is extended through the material boundary. The leading wavelet
of a simple wave at angle ©; must be tangent to the wave surface computed
for region 1, a reflected shock wave must lie at an angle less than ©; since
for reason of stability it must have a higher speed of propagation V than that
speed UJ; of an acoustic wave of the same type in the region ahead of the
shock. The components of the deformation gradient and velocity in region 3
are

(z31)Fr = (z31)f; + mdsV;
(z32)Fr = (z32)]1 + mds N, (6.2)

(u3)fy = (ua)f; — mdsNy
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¢ Clamped boundary

For the clamped boundary condition (ug)?l = —-mgVyp = —-mds3V,
(mg > 0, m > 0)and d3 = —1. The polarisation vector d of the reflected
shock wave has also the opposite direction then dy. From the boundary and
centered wave conditions (5.2)s, (4.8); we obtain

sin @g
0—
sin @

m=m (za1)fy =0

(6.3)
(.’1332)131 = mo(sin 90 cot @ — cos 90)

e Frictionless-rigid boundary

According to Egs (6.2) and boundary condition (5.5) z32 = 0 =
—mg cosB@g — md3zcos® and (mg >0, m > 0,cos0 < 0)=>d3 =1, =
d = dy both polarisation vectors have the same direction. Analogously as for
the previous case we have

cos O
cos @

m = -mg (za2)fy =0

(6.4)
(-"331)?1 = mo(sin @ — cos Og tan O)
Substituting the components of the deformation gradient given by Eqgs (3.10),

(6.3), (6.4) into Eq (2.5) we obtain the velocities for the incident and reflected
shock, and the acoustic waves. For the velocities in region 1 we obtain

Uf =c Vo = ¢y/14 nm? UP = ey/14 3ym3 (6.5)

The Lax stability condition for the incident shock is always safisfied, and for
the reflected shock it is satisfied if the following conditions are satisfied:

¢ Clamped boundary

sin 00

VZUIFI=> —— > cos(@ — Og)
sin @ (6.6)
B sin@g _ 3 3
Ug>V=> 0 2008(9 Og)

Both inequalities are satisfied for the values cot @

3 3 2
cot@ < £ = ECOt Og - \/(5 cot Oo) +2 (6.7)
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The reflected shock wave speed can be computed from Eqs (2.5) and (6.3)

sin? Og sin @g

- — 6.
76~ Sme (@~ 00)] (68)
Comparing Eq (6.8) with the result from centered wave condition
V? = Vg@sin2@/sin?20@q (see Fig.3), which is analogous to Eq (4.8);, and
with Eq (3.11) we obtain

14 gm 2cos?(O - Og) + "‘;%n@@“ (%‘:‘—%‘1 —3cos(O — @0))

K1 = =
2 . 2
nm sin® _
0 sin O¢ 1

Vi=¢? [1 + nmg(l +2 cos?(@ — Q) +

(6.9)

The left hand side of the above equation is positive, sin@g/sin® > 0 and
numerator of the right hand side of the above expression is positive (cf Eq
(6.6)), for this reason the denominator is positive if

sin@>sin@0:>g<@<7r—90 and cot@ <§&  (6.10)

1
Mo = ——— k> 1 6.11)
n(k1—1) ' (

¢ Frictionless-rigid boundary

The analogous calculations give the following results in this case

V>UE A UB>V = 959 50000 - 0) (6.12)
cos @
3 3 2
tan@ < £ = 7 tan O \/(5 tan @) +2 (6.13)
14+ngmd 2 cos?(@ — Qo) + %‘ss%a(%ss@@a — 3cos(0 - 90))
Ko = — e = 7 (6.14)
o (328) -1
cos Qg cos O
k2 >0 =0 < 0= 050 < 3 cos(@ — Op) (6.15)
sin9>sin90:>;<0<7r—90 and tan@ < & (6.16)
1
mo = — Ky > 1 (6.17)
(ke — 1

It is interesting that in the presented approximation both Eqs (6.7) and (6.13)
are independent of the material constants and incident shock strength and
they have the pure geometrical meaning only.

5 — Mechanika Teoretyczna
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7. Numerical calculations

The reflection solutions discussed in Sections 5.1, 5.2 and 6 are examined
numerically for the material (3.9) with constants C; = 0.352 MPa, C; = 0,
C3 = 0.023 MPa (cf Zahorski (1962)). Since the material region behind the
incident shock should remain elastic, the discontinuity jumps can not be ar-
bitrary, and the appropriate estimates for the shock strength should be esta-
blished. In this paper we use the estimation for mg = 4. Comparison of the
Fig.4a with Eq (6.10) shows that the possible angles of reflection © appear in
the segment AB smaller then 7/2 < @ < x. The function &} = & (7 — @)
is depicted here for convenience only. Both conditions (6.10) are satisfied in
the region marked with dots only.

®jon
3

ol
3
N

-1.4F

\ 50°\ 40° 30°\2o° 10"\
0 " 1 N ' 1 ' '

Fig. 4. Clamped boundary conditions. Reflected shock wave

If the angle of incidence exceeds certain critical value @p = @} = 55°
(point C) both segments for © which correspond with Eqs (6.10) are discon-
nected. For this reason O is the critical angle for the incident shock wave
and it is independent of the incident shock wave strength and constitutive re-
lations. This stands in contrast with the reflection pattern in the form of a
simple wave (4.6), for which the critical angle depends on mg and 7 (see
Fig.6). Fig.4b presents for comparison all contour lines of expression (6.11)
obtained for @p € (10°,90°) (also for completness in the range larger then
addmited), but the reflected shock is stable for ©¢ < O} only. The contour
lines do not tend to infinity, but for mg = 10 they take their finite values a
little higher above than it is depicted in Fig.4b.

The results for frictionless-rigid boundary are shown in Fig.5. The three



WAVES GENERATED BY AN INCIDENT SHOCK... 571

0

Fig. 5. Frictionless-rigid boundary. Reflected shock wave

functions 77!, £ and for the simplicity only, the function £} = &(r — @p)
are plotted in Fig.5a. It is easy to see that for small angles of incidence
@) < O* ~ 35° the segments for the reflection angles are smaller than segment
C D’ which equals 7/2 < @ < «, if the incident angle goes beyond @* the
full segment 7/2 < @ < 7 for the angles of reflection can be taken into
consideration. Figure 5b presents the contour lines for expression (6.16), they
are originated by cutting the surface (6.16) with the planes @g =const (see
Fig.7). All contour lines for incidence angles &g = 10°, 20°,...,90° are shown
in Fig.5b there is any critical angle in this case. Both conditions (6.15) are
satisfied in the dotted region. If the angle of incidence increases from zero, the
length of the segment for admitted angles of reflection increases, if &g goes
over O* it decreases to zero.

Fig.7 presents the full 3D graph for Eq (6.16). Relation between the critical
angle and the incident shock wave strength is presented in Fig.6. for the
reflected simple wave @, and for the shock wave @ in the case of clamped
boundary.

It is very important to prove the uniqueness of the reflection pattern for
the material constants: (4, Cs (cf Zahorski (1962)) used here. Examining
Eqgs (5.3) and (5.6) we can rule out the possibility that reflected wave can be
simultaneously stable shock or simple wave. The solutions, however, can be
proved only numerically. According to the previous remarks for the simple
wave (see page 5) 7(7) must be a real monotonic decreasing function of +,
when 7 changes from 0 to its extreme value % (which in both cases here
(5.4); and (5.7); is negative (monotone decreasing 7). The special attention



572 S.KOSINSKI

0 I mg 2

(]

w

Fig. 7. Incident shock wave strength mg versus the incident angle &, and
admitted reflection angle ©
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should be called this fact, because such function 7(7) is in fact monotonic
increasing with increasing v (from % to 0). Geometrically it means that, if
7(7) increases (decreases) with + (changing the other way round from ¥ to
0) the travelling pencil of wavelets diverges from (converges to) the leading
wavelet thus forming a simple (shock) wave. Analysing and differentiating
(5.3)3 we obtain (for increasing <)

d2:1732 0 d2:1?32

d
simple wave °r >0= -V,

>0= <0
d dvy? dy?
2 2 v (7.1)
d
shock wave i)% <0= d;’.'l;gg >0
Similarly for the frictionless-rigid boundary from Eq (5.6), appears
d 2 2
simple wave er >0=> —‘r2dﬂ >0= ! <0
dy dy? dy?
(7.2)
2
shock wave d—T <0=> @23 >0

dy dy?

Fig.8 shows the regions for the stable reflected shock or reflected simple
wave for both the types of boundary conditions. The below curve in Fig.8b
follows directly from the Fig.5b and indicates the limit of strength mg at the
fixed incident angle @ for the stable reflected shock. We choose now three
points A, B, C in Fig.8a with common coordinate mg = 1 and different
coordinates for Qg equal to 60°, 45° and 30° respectively. According to
the previous interpretation of Fig.6, in the case of the clamped boundary the
points B, C are characteristic for the stable reflected shock and point A for
the reflected simple wave. The Runge-Kutta method is used to solve the initial
problem with data for z31(0), z32(0) at points A, B, C. For the numeric
data matrix obtained in such a way, we use two procedures which approximate
it to the first and second derivatives, respectively. The second derivative at
the points B, C has the sign compatible with Eq (7.1) (see Fig.10). Another
situation is at the point A, z%, changes the sign with changing <, this means
that the so called composite reflected wave is created (first z5,(0) < 0 also
simple wave is formed with the trailing wavelet in the form of the shock wave
z4,(7) > 0 (see Fig.10)). In the case of the frictionless-rigid boundary the sign
of the second derivative is also consistent with (7.2). Such analysis have been
made for many others points, always with unique result. The typical diagrams
for z32, z31, 2§; and clamped boundary are presented in Fig.9 and Fig.10.



574

il

*N >R “N

S.KosINSKI

(a)

e,
d%x
— 32 <,
(4t /7777777777777

=55 B

¢ 2
—A‘Z;g >0
my <

(b)

[

mo‘

Fig. 8. Admissible regions for stable reflected shock or simple wave (a) clamped and

(b) frictionless-rigid boundary
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Fig. 9. Components of the deformation gradient at the points A, B, C



WAVES GENERATED BY AN INCIDENT SHOCK... 575
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Fig. 10. Second derivative z4,(v) at the points A, B, C
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Fale wywolane przez padajaca fale uderzeniowa w pewnym szczegSlnym
materiale hipersprezystym

Streszczenie

Plaska poprzeczna fala uderzeniowa propaguje sie w nieskoriczonym osrodku
sprezystym 1 ulega odbiciu od plaskiego brzegu fub odbiciu i zalamaniu na plaszczyznie
rozdzialu dwoch polaczonych ze sobg pdlprzestrzeni sprezystych. W przypadku ogdl-
nym zagadnienie nie ma rozwiazania, poszukiwane sg warunki szczegdlne dla jego
istnienia. Rozpatrzono szczegdlowo oraz wykonano obliczenia numeryczne dla dwéch
typow warunkdw brzegowych: utwierdzenia oraz dla mieszanych warunkéw brzego-
wych. Odbita fala prosta lub uderzeniowa jest rozwiazaniem jednoznacznym w swoim
obszarze statecznosci. Wystepuja dwa rézne katy krytyczne zwiazane z réznymi po-
staciami rozwiazania, przy czym dla odbitej fali uderzeniowej wyrazenie dla kata
krytycznego ma charakter typowo geometryczny.
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