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This paper studies the load-deflection relations of T-section rails under lateral loads based
on elastic-plastic theory. A linear-hardening model and an elastic-plastic power-exponent
hardening model of the material are adopted in this study. The analytical expressions for the
load-deflection relations in the loading process are given. Compared with the experimental
results, it is found that the load-deflection curves calculated with the elastic-plastic power-
exponent hardening model are closer to the experimental results than those with the linear-
hardening model.
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1. Introduction

Straightening is an important process in the production route of a T-section rail (Biempica et al.,
2009; Volebov et al., 1994). In practice, the most common method for T-section rail straightening
is the three points reverse bending based on handwork and the worker’s experience. So the quality
and efficiency is hard to guarantee. To meet higher production requirements, an automatic rail
straightening machine is to be developed, and the load-deflection model of the bending process
is suitable to be used on the straightening control (Li et al., 2004).

Deflections of sandwich beams subject to concentrated or localized loads have been studied,
and it is sufficient to accurately predict the vertical displacements in the face sheets of a sandwich
beam (Shen et al., 2004; Sokolinsky et al., 2003). Also, a number of studies have been proposed
in order to investigate the load-deflection relationships of concrete beams reinforced with FRP
bars (Ou et al., 2004; Masmoudi et al., 1998). Tsai and Kan (2008) studied the load-deflection
model of the uniformly loaded rectangular cross-section cantilever beam. According to Tsai et
al. (2009), various loading scenarios can result in different deflection profiles, albeit with the
same tip deflection.

The material hardening parameters can be determined by comparing load–displacement cu-
rves from FE simulations with those from tests in the cyclic three-point bending test (Omerspahic
et al., 2006; Eggertsen and Mattiasson, 1998). Studies were also conducted on the load-deflection
relations of some components that have regular cross sections such as shafts, pipes and the rec-
tangular section part (Li and Xiong, 2007; Katoh and Urata, 1993). However, because of its
complicated cross section with large size, few investigations have be done on the load-deflection
relations for the T-section rail straightening process.

In this paper, the load-deflection relations of T-section rails under lateral loads are studied ba-
sed on elastic-plastic theory. The linear hardening model and the elastic-plastic power-exponent
hardening model are used for the analysis. Two experiments are also carried out to verify the
accuracy of the model. It will be applied on the automatic T-section rail straightening machine.
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2. Establishment of the load-deflection relations

2.1. Elastic deformation stage

The following assumptions are accepted in this study:

• The plane section assumption and uniaxial stress assumption are reasonable.

• The Bauschinger effect and the reverse plastic deformation during unloading are neglected.

• Compared with the distance between the two support points, the deflection of the rail is
small.

The T shaped cross section of the rail is shown in Fig. 1. In this work, analysis is carried out
on the lateral bending deformation of the rail.

Fig. 1. Plastic region and bending moment distribution

At the elastic deformation stage, the relationship between the deflection and loading force
can be written according to material mechanics
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is the inertia moment against neutral axis of the cross-section, and 2l is the distance between
the two support points, and E is Young’s modulus.
And the maximum elastic bending moment Mt can be written as

Mt =
σs
6B1
[(H1 −H3)B

3
1 + (H3 +H4)B

3
2 + (H2 −H4)B

3
3 ] (2.2)

where σs is the yield stress of the material.

2.2. Elastic-plastic deformation stage

2.2.1. Linear-hardening model

At this stage, plastic deformation occurs from the outer fiber in the material and the dashed
area in Fig. 1 is the plastic region (Li et al., 2004).
In the linear-hardening case, the stress-strain relation for the rail material is as follows

σ =

{

Eε for ε ¬ εs

σs + EP (ε− εs) for ε  εs
(2.3)
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where εs is the strain at the yield point, Ep the linear hardening modulus, σ the true stress
and ε the true strain.
Figure 2 shows the stress distribution through the rail section after bending, so that (Johnson

and Yu, 1981)
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where λ = EP /E.

Fig. 2. The stress distribution through the rail section after bending: (a) stress distribution after
bending, (b) stress-strain curve of linear hardening material

The width of the rail foot is much larger than that of the rail web and head, so generally no
fibers of the rail web and head are strained beyond the yield limit during deformation. Then,
for the force equilibrium across the section
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where Mx is the bending moment imposed on the rail section and zs is the distance between
fibers which are just at yield and the neutral axis.
Equations (2.5) and (2.2) reduce to the following equation
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where ξ = zs/(B1/2) is the relative elastic zone ratio and ξ  B3/B1.
And Mx can also be written as

Mx =
F

2
x (2.7)

Let CΣ be the relative change of total curvature of the rail, then based on the plane supposition
of elastic-plastic bending and elastic mechanics (Wu et al., 2000)

ξ =
1

CΣ
=
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CΣ

(2.8)

where Ct =Mt/(EI).
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Then, from equations (2.6)-(2.8), the relation between CΣ and x can be obtained
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And the loading stroke at the middle point, i.e. deflection, can be obtained (Chui, 1994)
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So, combining equations (2.9) and (2.10), if the loading force F is given, δΣ can be calculated
under the linear-hardening model.

2.2.2. Elastic-plastic power-exponent hardening model

The elastic-plastic power-exponent hardening model is as follows (Johnson and Yu, 1981)

σ =

{

Eε for ε ¬ εs

Eε−K(ε− εs)
n for ε  εs

(2.11)

where K, and n  1 are the hardening coefficient and the hardening exponent, respectively.

Figure 3 shows the stress distribution through the rail section after bending under the elastic-
plastic power-exponent hardening model.

Similar to equation (2.4), it can be proven that (Johnson and Yu, 1981)
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where K ′ = K(σs/E)
n.

Fig. 3. The stress distribution through the rail section: (a) stress distribution after bending, (b) residual
stress distribution after springback, (c) stress-strain curve of elastic-plastic power-exponent hardening

material
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Then, for the force equilibrium across the section

Mx = 2

zs
∫

0

z
z

zs
σs(H1 −H3) dz + 2

B2
2
∫

0

z
z

zs
σs(H3 +H4) dz

+ 2

B3
2
∫

0

z
z

zs
σs(H2 −H4) dz + 2

B1
2
∫

zs

z
[

σs
z

zs
−K ′

( z

zs
− 1
)n]

(H1 −H3) dz

(2.13)

Equations (2.13) and (2.2) reduce to the following equations
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Then, from equations (2.7), (2.8) and (2.14), the relation between CΣ and x can be obtained
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So combining equations (2.10) and (2.15), the load-deflection curves can be plotted under the
elastic-plastic power-exponent hardening model.

3. Experiments

To verify the load-deflection model, experiments are carried out respectively on the universal
testing machine and the self-made hydraulic straightening machine. Take T/89 rail for test
and the material considered for the rail is low carbon steel Q235 with following parameters:
E = 206000MPa, σs = 235MPa; K = 200000MPa, n = 1.02, λ = 0.0173. And the rail section
has dimensions of H1 = 20.9mm, H2 = 41.1mm, H3 = 11.3mm, H4 = 7.7mm, B1 = 89mm,
B2 = 10mm, B3 = 15.88mm.

Fig. 4. Experimental set-up: (a) on the universal testing machine (2l = 500mm), (b) on the self-made
hydraulic straightening machine (2l = 1000mm)

Figure 4a shows the experimental set-up on the universal testing machine AG-1 introduced
from Shima dzu Corporation. The rail is moment-free supported at both ends. And the distance
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between the end supports is 500mm, that is 2l = 500mm. During the test, the loading part in
the middle is moved at the speed of 0.1mm/s, providing the loading force. And the results of
this test are shown in Fig. 5a.

Figure 4b shows the experimental set-up on the self-made hydraulic straightening machine.
The rail is also moment-free supported at both ends. But the distance between the end supports
is 1000mm, that is 2l = 1000mm. During the experiment, the loading part is moved at the
speed of 0.6mm/s. The results are illustrated in Fig. 5b.

Fig. 5. Comparison of the results by experiment and model: (a) on the universal testing machine
(2l = 500mm), (b) on the self-made hydraulic straightening machine (2l = 1000mm)

Figures 5a and 5b show the comparison of results by the experiment and by the model. It
can be found that the load-deflection curves calculated with the elastic-plastic power-exponent
hardening model are closer to the experimental results than those with the linear-hardening
model.

As shown in Fig. 5a, the relative error of the results obtained with the elastic-plastic power-
exponent hardening model will become larger with the increase of the loading stroke δ. So in
the case of large elastic-plastic bending deformation, the real material hardening model is more
complicated, and taking into account contact stresses and strains in the vicinity of the loading
device is necessary to enhance the accuracy of the analytical results.

4. Conclusions

In this paper, the load-deflection relations of T-section rails under lateral loads are studied based
on elastic-plastic theory. The linear hardening model and the elastic-plastic power-exponent
hardening model are used for the analysis. To verify the model, experiments are carried out
respectively on a universal testing machine and a self-made hydraulic straightening machine.
From the results presented in this paper, the followings are concluded:

• The load-deflection curves calculated with the elastic-plastic power-exponent hardening
model are closer to the experimental results than those with the linear-hardening model.

• In the case of large elastic-plastic bending deformation, the real material hardening model
is more complicated, and taking into account contact stresses and strains in the vicinity
of the loading device is necessary to enhance the accuracy of the analytical results.
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Charakterystyki obciążeniowo-odkształceniowe szyn o przekroju teowym poddanych

obciążeniom poprzecznym

Streszczenie

W pracy zaprezentowano charakterystyki obciążeniowo-odkształceniowe obciążanych poprzecznie
szyn o przekroju teowym otrzymane na podstawie teorii lepkosprężystości. W badaniach przyjęto model
materiału o liniowym oraz potęgowym umocnieniu. Podano analityczne wyrażenia dla krzywych obcią-
żenia w funkcji odkształcenia. W wyniku weryfikacji eksperymentalnej stwierdzono, że charakterystyki
obciążeniowo-odkształceniowe otrzymane przy zastosowaniu modelu z potęgowym umocnieniem materia-
łu są bliższe rezultatom doświadczalnym niż w przypadku modelu z umocnieniem liniowym.
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