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In this paper the method of influence function is applied to solving the
problem of critical Euler load of a cantilever tapered beam. In such a
case the critical load results form a dead load of a beam. A general form
of a characteristic equation is obtained by means of the Cauchy function
in a power series form which enables evaluation of critical Euler loads
for sharp cone and frustum of cone cantilever beams. The accuracy of
calculations of a critical Euler load of cantilever beams subjected to com-
pressive loading is tested by comparison with the well-known theoretical
solutions. It is shown that a very good approximation of the exact solu-
tion can be obtained using only two first terms of a characteristic series.
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1. Introduction

Many structures such as chimneys, towers, headframes, masts and domes
can be modelled by means of tapered cantilever beams with a variable cross-
section subjected to dead load. In such a case the dead load is of axial direction
and is non-uniformly distributed along the length of beam. Determination of
the critical load due to dead loading for a beam with a variable cross-section
leads to a boundary value problem defined by differential equations with va-
riable parameters. The exact solution of a such a problem in a closed form
is possible only in a few cases when a variable cross-section of a beam is ta-
ken into consideration. Many examples of solutions of problem of stability in



844 J.JAROSZEWICZ, L.ZORYJ

Euler’s sense for beams with binomial distribution of flexural rigidity can be
found in the literature (cf Dynnyk (1952)). The books by Timoshenko (1971)
and by Rzhanicyn (1955) contain solutions for sharp tapered beams obtained
by means of the Bessel function. Jaroszewicz and Zoryj (1983) discussed the
influence of variable dead load on the natural frequency of transverse vibra-
- tions of a bar with a constant cross-section.

However the literature does not provide any analytical solutions even for
such a simple case as a frustum of cone beam. Of course this and similar
problems can be solved by means of numerical methods, e.g. the finite element
method, using the commercial programs; like, NISA, NASTRAN, ABACUS,
etc. However lack of the exact solution does not allow us to estimate the
accuracy of approximate analytical and numerical solutions.

In this paper the Cauchy influence function being a solution of the general
problem of stability has been proposed in a form of power series. Basic ad-
vantage of this method is a general form of the characteristic equation. The
method has been effectively applied to investigation of transverse vibrations
and deflection of a beam with a variable cross-section (cf Jaroszewicz and Zo-
ryj (1994a,b)) as well as stability of a cantilever beam (cf Jaroszewicz and

Zoryj (1994a)).
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Fig. 1.
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Universal model of tapered cantilever beam in a frustum cone form is
shown in Fig.1, where the following notation is used:

2(z) - variable radius -

r,R - radii of the upper and lower bases of a cone, respectively
H - altitude of a cone

k - beam taper parameter, k= (R —r)/H.

Radius, volume and plane moment of inertia, respectively, can be defined
by the following formulas

2(z)=Fk(z—a)+r (1.1)
vu):gu-anwu—af+3mu_ay+wﬂ (1.2)
ﬂ@:iﬂux—@+ﬂ4 (1.3)

Taking into consideration Eqs (1.2) and (1.3) one can find the dead load
for of a tapered beam

G:mqmj (1.4)
and continuous loads caused by the dead weight of the beam
N(z) = poV(z) (1.5)

where
GH?

= k
Po EJ, T > ka

Jo = J(z)

z=b
and p denotes density. The flexural rigidity is given by
J(@) = EJ(z) (1.6)

where E - Young modulus of elasticity. The function f~!(z) should be
continuous, positive definite and should have a finite value and integral [a,b].

The absolute value of Euler critical load can be expressed as follows

_ EJp
Ger = P e (1.7)

where p denotes the critical load parameter.
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2. Formulatian of the problem

The problem of finding the Euler critical load for a model shown in Fig.1
leads to determination tle first mode of the following boundary value problem

(@) + N(2)p = 0 (2.1)
f(a)¢'(a) = 0 o(b) = 0

where ¢ = y/(z) and the prime denotes derivative with respect to z.

3. Characteristic equation

The fundamental solution of Eq (2.1) is proposed in following form (cf
Jaroszewicz and Zoryj (1994b))

o(z,a) = ok (z,a) + ¢\ K (z,a) (3.1)

where K(z,a), K(z, ) are the Cauchy function of Eq (2.1) and its derivative
with respect to parameter a, respectively, ¢o and c¢; are arbitrary constants.
Taking into consideration

1 —
a=a K'(a,a) = pr K'(a,a) =0 (3.2)

and substituting Eq (3.1) into boundary conditions (2.2) yields
co=0 and a1 #£0 (3.3)
The find form of characteristic equation is given by

K(b,a)=0 (3.4)

4. Terms of the characteristic equation

Equation (3.5) can be written in a power series form in terms of load

parameters p
o0

W(z,0) = (=1 iz, a)p (4.1)

1=0
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Taking into consideration the formulas obtained by Jaroszewicz and Zoryj

(1994b)

Kﬁmaﬁi[ﬁa (4.2)
};;0(11,‘,&) = —-ﬁ (43)
E@M:/waW®E4@®$ (4.4)

after suitable transformations the characteristic equation takes the following
form

—ﬁ%p—pn@@+ﬁﬂm@—ﬁwwﬂﬂmjzo (4.5)

where
Hn@szuMW$@ (4.6)
ﬂmwzjﬁaaMWﬂﬂxwmy (4.7)
PWLM:jKaLMWQﬂ&QMy (4.8)

5. Selected particular cases

Resolving integrals in Egs (4.6), (4.7) for homogenous frustum of cone
cantilever beam yields

1+
F(ba)= —— %
(b,0) 41+ x+x?) (5.1)
_1_1 92 9,5 ,7_,1 2 3 5
me:5(+ XE4+ 0+ XT) = x(L+ X2+ X7 +X°)

8(1+x + x2)%(1 - x)®

where x = r/R - beam taper parameter.
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The analytical formula for W (2, «) and successive terms of the characte-
ristic series are very complicated but can be evaluated by means of numerical
integration.

For a sharp tapered cantilever beam (x = 0), characteristic equation (4.5)
reduces to the following form

o0
14+ > (=D)"ap™ =0 (5.2)
n=1
where 1
ap = 1 an, = a,,_lm n = 1,2, 3... (53)

In this case the values of coeflicients of the first two terms agree with those
obtained from Egs (5.1)
F(b,a) ! S(b,a)=a 1
a) = = — = = —
) aj 4 H 2 40
In the case of cylindrical beam (x — 1) the coeflicients of series (5.2) take
the form

1
ag = 1 a, = a”_lm n= 1,2,3 (54)
In this case .
F(b,a) = =
( ’(l) 6

and after resolving the indeterminancy of 0/0 type

1
b,a) = —
S(h.9) = 759
The values of S(b,a) and F(b,a) for a cylinder obtained using Eq (5.4)

are equal to those given by Jaroszewicz and Zoryj (1983).

6. Results of calculations

The exact values of critical load parameter for a sharp tapered beam
(x = 0), and a cylinder (x — 0) are p = 10.18 and p = 7.84, respectively.
The above values were obtained by means of the characteristic equation in a
power series form, Eq (5.2). Diagrams shown in Fig.2 and Fig.3 illustrate the
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dependence of calculations accuracy of the critical load on a number of terms
of the characteristic series (Eq (5.2)) taken into consideration.

In the case of a cylinder (Fig.3) it is possible to obtain dual estimators of
the critical load with ssatisfactory accuracy using only the first two terms of
a series by means of Bernstein estimators (cf Bernstein and Keropian (1960))

; <p< —_2— (6 1)
Fi_25 'S TFiJr2—a5 '
where: F = F(z,a), S = §(z,a) can be calculated from Eqs (4.6) and (4.7)

or (5.1).
After substitution one obtains

P+ = 8.94 p- = 7.75

In the case of a sharp cone beam (x = 0) and frustum of cone cantilever beam
(0 < x < 1) only the upper estimator can be found. In order to obtain the
other it is necessary to evaluate four terms of a scries.

For a beam in a form of a frustum cone (0 < x < 1) only lower estimator
can be found from Eq (6.1), because F? — 45 < 0. The values of lower
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estimator for selected values of x are given in Table 1. These values were
calculated using Lqgs (5.1).
Table 1

x| O 0.1102]03)04]05)]061|0.7|08]0.9]0.99
p-|8.944(7.729|7.159|6.896|6.808|6.831(6.930|7.082|7.275|7.498| 7.720

7. Conclusions

1. The exact values of critical load for a cantilever beam in a form of sharp
cone (p = 10.179) and cylinder (p = 7.839) were obtained. These values
are in agreement with the well-known solutions (cf Rzhanicyn (1955)).

2. The general characteristic equation which allows one to take into con-
sideration arbitrary geometry of a cantilever (4.5) was obtained. The
case of a cantilever in a form of a frustum cone was considered in detail
(Table 1) and the first two terms of characteristic series were obtained
in a closed form, Eqs (5.1).

3. The number of terms of the characteristic serics, Eq (5.2), necessary to
obtain an exact solution for a cantilever in a form of a sharp cone and
a cylinder was evaluated (Fig.2 and Fig.3).

4, In the case of a beam of variable cross section the proposed formulas,
Egs (4.1) + (4.4), can be directly used for numerical calculations. A sim-
ple computer program has been produced which allows one to calculate
the critical load for a cantilever with complex geometry under dead load.

References

1. BERNSTEIN S.A., Keroryan K.K., 1960, Opreddelenie chastol kolebani ste-
rzhnevykh sistem melodom spekiralnoi funkcii, Gosstroiizdat, Moskva

2. DYNNYK A.N., 1952, Izbrannye Trudy, 1, Izdat. AN USSR, Kiev

3. Jaroszewicz J., ZoryJ L.M., 1983, O zastosowaniu metody szeregéw cha-
rakterystycznych do analizy gietnych drgait wlasnych preta z uwzglednieniem
masy wlasnej, Zeszyly Naukowe Polilechniki Bialostockiej, Bialystok, 40, 75-81

4. Jaroszewicz J., ZorvJ L.M., 1985, Drgania gietne belki wspornikowej
o zmiennym przekroju, Rozprawy Iniynierskie, 33, 4, 537-547



CRITICAL EULER LOAD... 851

5. Jaroszewicz J., ZoryJ L.M., 1994a, Analysis of Bending Curve and Critical
Load of a Variable Cross-Section Beam by Mecans of Influence Function Method,
Journal of Theoretlical and Applied Mechanics, 32, 2, 429-437

6. Jaroszewicz J., ZoryJ L.M., 1994Db, Izgibnye kolebaniya i dinamicheskaya
ustoichivost’ balok z peremennymi paraimetrami, Prikladnaya Mekhanika, Kiev,
30, 9, 75-81

7. TIMOSHENKO S.P., 1971, Uslojchivost’ slerzhnei, plastin obolochek, Nauka,
Moskva

8. RzuaNICYN A.R., 19585, Ustoichivist’ uprugikh sysiem, Gosudarstvennoe Izda-
telstvo Tekhniko-Teoreticheskoi Literatury, Moskva

Obcigzenie krytyczne Eulera w przypadku zbiczuej belki wspornikowej
Streszczenie

W pracy zastosowano metode funkeji wplywu do rozwiazania zagadnienia obcia-
zenia krytycznego DBulera w przypadku zbieznej belki wspornikowe). Rozpatrzono
obcigzenie pochodzace od cigzaru wlasnego belki. Otrzymano ogélng postaé réw-
nania charakterystycznego przy pomocy funkeji Cauchy zapisanej w postaci szeregu
potegowego, ktéra uwzglednia zmienna silg krytyczna Eulera w przypadku wspornika
w ksztalcie stozka ostrego i scietego. Pokazano duza ?Jol\]adnosc obliczen sily krytycz-
nej Eulera w przypadku $ciskanych wspornikéw w poréwnaunit ze znanymi wynikami
rozwiazan teoretycznych. Pokazano, ze mozliwe jest otrzymanie dobrego przyblizenia
do rozwiazania scislego, wykorzystujac jedynie dwa pierwsze czlony szeregu charak-
terystycznego.
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