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In most discussions, the Principles of Dynamics are expressed using the force as a measure
of mechanical interaction between the bodies. The intention of the paper is to extend the
usual discussion on basic theorems, laws and principles in Dynamics of rigid bodies including
the torque as another independent measure of mechanical interaction between the bodies. In
D’Alambert’s principle of Dynamics, beside the forces, the active and reaction torques are
also included. The torque is introduced in the Euler-Newton equations for general motion of
the rigid body. The General Equation of Dynamics is reformulated by including the virtual
work of the torques on the virtual rotation. An additional view to Newton’s Laws is also
given.
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1. Introduction

In 1687, Sir Isaac Newton published his three laws in Philosophie Naturalis Principia Mathe-
matica: Axiomata sive leges motus for which is stated that represent the basis of the classical
mechanics. Let us adduce the Laws, as were given by Newton (1687), with the translation from
Latin to English done by Prof. Johns in late 2005 (the first translation from Latin to English
was published in 1727):

Lex I: Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum,

nisi quatenus illud a viribus impressis cogitur statum suum mutare. (Law I: Every body
preserves in its state of rest, or of uniform motion in a right line, unless it is compelled to
change that state by forces impressed thereon.)

Lex II: Mutationem motus proportionalem esse vi motrici impressae, et fieri secundum lineam

rectam qua vis illa imprimitur. (Law II: The alteration of motion is ever proportional to
the motive force impressed, and is made in the direction of the right line in which that
force is impressed.)

Lex III: Actioni contrariam semper et eaqualem esse reactionem: sive corporum duorum ac-

tiones in se mutuo semper esse eaquales et in partes contrarias dirigi. (Law III: To every
Action there is always opposed an equal Reaction: or the mutual actions of two bodies
upon each other are always equal, and directed to contrary parts.)

Analyzing the text of the Laws, it is evident that they refer to the general behavior of a
“body”. This conclusion is proved by the examples given by Newton in the same section of his
book where the bodies are considered as macroscopic, ordinary objects.

The three Newton’s Laws are axiomatic to studies in Mechanics as they are based on experi-
mental observation without analytical description and proof. It gives the chance to be translated
and interpreted in a variety of ways from their original state. For example, the most often used
version of the Law II is as follows (see the textbooks of Starzhunskii (1982), Ginsburg (2008),



172 L. Cveticanin

etc.): The resultant force F (that is, the sum of all forces) acting on a particle is proportional
to the acceleration a of the particle

ma = F (1.1)

where the factor of proportionality is the mass m. The remarkable feature of this interpretation
of the Law is that it addresses only the object that can be modeled as a particle.

Remark: The resultant force includes all active and passive forces (constraint forces) which act
on the particle. This assumption will be used in the whole paper.

An extension to Newton’s Law II was done by multiplying Eq. (1.1) with the position vector r
of the particle respectively to the fixed point O. It follows

r×ma =MF0 (1.2)

where MF0 = r × F is the moment about the fixed point O of the force F. This feature of
motion is not described with the mentioned Newton’s Laws, explicitly.
Let us consider the body as a system of particles and form equations of motion (1.1) for each

of the particles with mass mi and acceleration ai on which also the inner forces between the
particles act. Summarizing these equations and using Newton’s Law III, which eliminates the
inner forces, it follows

∑

i

miai = F (1.3)

where F is the resultant force of the system. Multiplying each of Eq. (1.2) with the position
vector ri and summarizing the so obtained relations, we have

∑

i

ri ×miai =M
F

0 (1.4)

where the moment MF0 is the sum of moments of each force according to the fixed point O, i.e.,

MF0 =
∑

i

M
Fi
0 =

∑

i

ri × Fi

If the body is assumed to be with continual mass distribution, the sums on the left-hand side
of (1.3) and (1.4) transform into the integrals

∫

(m) a dm and
∫

(m) r× a dm. Using the property

of mass centre of the body, we have
∫

(m) a dm = aCm, where m is the mass of the body and
aC is the acceleration of the mass centre C. Using the aforementioned, Eq. (1.3) is rewritten as

maC = F (1.5)

where F is the resultant force. If the position of the particle of the body is expressed as a
function of the position of the mass centre rC and of the position of the particle to the mass
centre ρ, i.e., r = rC + ρ and the properties of the mass centre are applied (

∫

(m) ρ dm = 0),
Eq. (1.4) with the corresponding integral gives

∫

(m)

ρ× aρ dm =M
F

C (1.6)

where

aρ = ε× ρ+ ρ× (ω × ρ) (1.7)
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ε is the angular acceleration of the body, ω is the angular velocity of the body, MFC = ρ×F is
the moment of the force F with respect to the mass centre C and

rC ×maC = rC × F (1.7)

Expressions (1.5) and (1.6) describe the general motion of the body and are usually called
the Newton-Euler equations. As the rigid body is treated as an indefinite number of particles,
differential equations of motion (1.5) and (1.6) are obtained by summaring the equations of
motion for each particle, separately. Due to this procedure, we obtain only the moment caused
by the forces which are introduced on the right side of the equations. Namely, as the only measure
of interaction between two particles is the force, only the action of the forces on the rigid body
are treated. The forces produce translation but also rotation due to the moment. As it can be
seen, the force is assumed as a basic measure of mechanical interaction between the bodies. The
question is: is the force the only basic measure of mechanical interaction between the bodies,
and is relation (1.1) the only possible mathematical interpretation of second Newton’s law?

In this paper, the torque, as another basic measure of mechanical interaction between the
bodies, is considered. The paper is arranged as follows: in Section 2, torques resulting from con-
tact between the bodies and also as a measure of the action-at-a-distance are discussed. Various
types of torques, active and passive, are analyzed. The rheological models of the torques are
considered. In Section 3, we introduce active and passive torques (resulting from constraints)
into d’Alembert’s balancing equations. The Euler-Newton equations are rewritten. For the spe-
cial case when only a torque acts, Newton’s Laws are reformulated defining the relation between
the torque and the rotation of a body about an axis. In Section 4, applying the virtual work of
the torques on the virtual rotation, the Lagrange-D’Alamber principle (the General Equation of
Dynamics) is reformulated. The inclusion of the torque into the generalized force is presented.
Finally, this type of generalized force, due to the torque, is considered in Lagrange’s second kind
differential equations of motion.

2. About torques in general

The answer to the aforementioned question is: undoubtedly, the force is not the only measure of
mechanical interaction between bodies. Still in 1754, Immanuel Kant (see Efroimsky and Wil-
liams, 2009) in his short work, known as “Spin-Cycle Essey”, mentioned the so called “retarding
torque” which slows down the Earth’s rotation. He believed that this torque is a quite another
measure of mechanical interaction between the bodies than is the force. Johannes Kepler, the
key figure in the 17th century scientific revolutions, remarked that the body deformation may
be caused not only by a force, but also by another unique physical impression called the torque.
Since that time, various torque models have been formed in celestial mechanics, quantum and
classical mechanics, electromagnetism, radiation, ... For example, in the planetary astronomy,
Karato (2007) considered the tidal torque, emerging from the bodily tides. Various rheological
models called MacDonald’s torque (Darwin, 1879), Darwin’s torque (Darwin, 1880), ... have be-
en developed and discussed in celestial mechanics. Nowadays, when nanotechnology is developed
and nanosystems are investigated, the importance of the torque is increased. In electromagne-
tics, the spin torques, induced by current in ferromagnetic materials, attract increased attention
(see Gambardella and Miron, 2011). Ralph and Stiles (2008) considered the effect of flow of
an electric current in a crystalline structure lacking inversion symmetry, which transfers orbital
angular momentum from the lattice to the spin system, and named it the spin-orbit torque. It
gives an opportunity to integrate magnetic functionality into electronic circuits. The spin-orbit
torque enabled reduction of dimensions of write heads and the extension of the stray field. Very
recently, the spin-orbit torque, relying on the presence of a strong spin orbit coupling intrinsic
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to the nuclear composition and atomic structure of a material, opens a promising new avenue
to manipulate the magnetization of spintronic devices by means of electric currents as it is
discussed by Miron et al. (2010). Dresselhaus (1955) concluded that the spin-orbit torques ori-
ginate from either bulk inversion asymmetry in noncentrosymmetric crystals with a zinc blende
structure or from a wurtzite-type crystal with a single high symmetry axis, which presents that
structure inversion asymmetry allow the transfer of orbital angular momentum from the crystal
lattice to local spin magnetization. The discovery of the Rashba-type torque (1960) in a ferro-
magnetic metal at room temperature opens very promising perspectives in spintronics, namely
for fabrication of magnetic storage and logic gates operating through intrinsic current-induced
spin-orbit torques. Spin-orbit torques are equivalent to an effective magnetic field because of the
intrinsic coupling between charge and spin, and can be induced in a uniformly magnetized layer
without the need of non-collinear polarization layers. In the paper of Sluka et al. (2011), the
spin-transfer torque induced vortex dynamics in metallic nanopillars within in-plane magneti-
zed layers is considered. Spin-transfer devices are promising candidates for future information
technology. As spin-polarized currents can propel steady spin precession, spin-transfer torque
devices are also envisaged to be used as integrated microwave sources. Therefore, finding hi-
ghly tunable spin-transfer torque nano oscillators is a matter of great current interest. It was
found that the spin-transfer torque can drive oscillatory motion of a magnet vortex and of gy-
rotropic vortex motion. Experimentally is shown that the spin-transfer torque can excite vortex
dynamics in Fe/Ag/Fe pillars. The spin-transfer torque effect which appears in tunnel ferroma-
gnetic junctions can be used in the random access memories and is connected with the charge
transport in systems composed of ferromagnetic materials. Wilczynski (2011) investigated the
spin-transfer torque generated by the temperature gradient in the planar tunnel junction con-
sisting of ferromagnetic layers and a nonmagnetic tunnel barrier in the free-electron-like spin
one-band model.

Bohren (2011) proved that, beside radiation forces, the radiation torques are exerted by
radiation and are the consequence of electric and magnetic fields acting on charges and currents
that the fields induce within illuminated objects. The importance of the radiation forces and
torques is that the treatment of them on illuminated objects usually invokes photon linear and
angular momentum transfer. The radiation forces and torques have physical origins.

The review given by Junge et al. (2009) attempts to describe the mechanisms of torque ge-
neration which powers the electrical rotary nanomotor of the enzyme, which drives the chemical
nanomotor by elastic mechanical-power transmission producing adenosine triphosphate, the uni-
versal fuel of the cell. Finally, new approaches are developed which extend the description from
the nanosecond time domain of molecular mechanics to the level of milliseconds. This provides
fresh mechanics insights and gives us the way for new experiment approaches. Only when we
solve the problem, we will come close to full understanding of this remarkable piece of cellular
machinery. It requires inclusion of the torque into consideration.

In technique, the effect of torque is very widely applied, too. The most exploited is the effect
of gyroscopic torques as mentioned by Birtae et al. (2011), for example. The gyrostatic torques,
affine gyroscopic torques, nonlinear torques studied by Yehia (2003), gyroscopic torques along
one axis of inertia investigated in the paper of Yehia and Elmandouh (2011), are already in use.
All of these torques are generated by the axisymmetric force field. The effects of these torques are
applied in micro/nanocoordinate measuring machines (see Liang et al., 2012). Shi et al. (2011)
emphasized the cutterhead torque as an important parameter in the design and operation of the
earth pressure balance shields of tunneling machines. Tunneling plays a very important role in
the underground engineering. The earth pressure balance shield tunneling machine is the most
applied one to the tunnel construction for subway, highway, metro tunnel, etc., due to its ability
to adapt to a variety of geological conditions and discharge control. The torque model is based
on the experimentation proves. The model takes into account the cutterhead structure, cutting
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principle and the interaction between the cutterhead and soil. It is concluded that the cutterhead
torque varies with geological conditions apparently, and the opening ratio of the cutterhead as
well as the earth pressure are the two most important factors in determining the cutterhead
torque. Rotational speed and torque are two critical parameters of the cutterhead drive, and
they are directly related to drive power.
Nowadays, Fujiya et al. (2011) stated that very little is known about the effect of applied

torque about the long axis of the bone in combination with muscle load, specially in legs and
arms, and generally in biomechanics. The same is the case for tibia in combination with muscle
loads on anterior cruciate ligament properties. It is of special interest to study the effect of the
torque applied about the long axis of the bone on the anterior cruciate ligament strain behavior.
The torques that are generated internally and externally to the knee or hands are thought to
produce anterior cruciate ligament injuries by internal or external rotation about the axis of
these bones. The experimental investigation gives us the opportunity to form the rheological
model of the torque.
For all of the aforementioned torques, it is common that they represent a unique vector

which is the measure of mechanical interaction between bodies. The most of the torques are the
consequence of the contact between the bodies.
Based on the aforementioned, it is evident that beside the force, the torque is also a measure of

body interaction. Djukic and Jones (1997) suggests that two independent measures of mechanical
interaction exist: force, which causes translation and torque, which causes rotation around an
axis of a body. In the paper of Djukic and Jones (1997), the reformulation of the Axioms of
Statics are suggested where forces and torques are treated as the independent measures of the
mechanical action.
The formulation given by Djukic and Jones (1997) includes the statement of the Theorem in

Kinematics given by Chasles (1830) about the two independent motions: translatory and rotory
with respect to an axis. Namely, Chales proves that the general motion of a rigid body can be
represented as a superposition of two independent motions: translation following any point in
the body and pure rotation about that point.
Based on the previous consideration, this paper suggests, beside the force, the inclusion of the

torque vector as an independent measure of mechanical interaction into the classical Dynamics.
Namely, some extension of the existing theorems in quantum mechanics, like the Virial theorem,
which is usually expressed through the coordinate and the force, is extended to the case of
angular displacement-torque variables, as has already been done by Jiang et al. (2011). The
Virial theorem applied in celestial and galactic mechanics is about the balance between the
kinetic and potential contribution to the total energy, which although originally deduced from
classical mechanics (see the textbook of Johns, 2005) has a quantum mechanical counterpart,
and – as given by Hellmann (1937) – is related to the Hellmann-Feynman theorem. The result
of these investigation gives us an idea to include the torque as a unique vector into dynamic
equations of motion and to give an additional interpretation of the Newton’s laws.
The aim of this communication is to introduce the torque into the Euler-Lagrange differen-

tial equations of motion, but not only by adding them to the already written equations but
including the physical sense of the torque. The torque, as a vector, is described using the fol-
lowing information: the intensity of the rotational effect, the axis and/or plane of rotation and
the direction of rotation. The vector is aligned along the axis of rotation and directed toward
the side from which this rotation will be seen in the counterclockwise direction. The rotation
effect of the torque is given with the moment. The torque has the mechanical equivalent, and it
is the couple of forces, which is often mentioned in the textbooks in Mechanics.

Remarks on the couple of forces: The couple of forces is a system of two parallel forces with the
same intensity but opposite direction settled in the action plane which give the rotation
around the axis orthogonal to the plane of the forces and with the moment which is the
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product of the force intensity and the normal distance between the forces. The couple of
forces is characterized with the plane of action, magnitude of its moment and direction
of rotation. The couple of forces and the torque with the parallel rotation axis, with the
same rotation direction and with the same absolute values of their moments are said to
be equivalent. However, the couple can be transferred in its plane as a ’rigid construction’
without changing its action on the body, and the action of the couple does not change
when the magnitudes of the forces forming the couple and the distance between the forces
are varied so that the absolute value of the moment and the direction of rotation of the
couple remain unchanged. Due to this property of the couple of forces, the transformation
of the torque into the couple of forces is not straightforward: an infinite number of solutions
exist. In spite of the fact that the effect of the couple of forces is formally equivalent to
that of the torque, the physical sense is quite another. This lack seems to be only of formal
character, but it is not true, as it is mentioned in previously. To eliminate this formal
uncertainty and knowing the physical existence of the independent value of the torque, we
have to include the torque with its rheological model directly into mechanical expressions.

3. Torque in Euler-Newton equations

Based on the experience of the investigators shown in the previous Section, it is obvious that the
torque, as the independent measure of bodies interaction, exists. These torques do not appear
automatically in the equations as dynamical equations are obtained treating the rigid body as a
system of indefinite number of particles (see Sect. 2). Namely, the dynamic laws for the system
of particles are generalized for the body, and as the torque does not act on the particle it is
impossible for the torque to appear in the differential equation of motion.
To eliminate this disadvantage, let us consider d’Alembert’s principle of equilibrium for a

rigid body. Due to d’Alembert’s principle for a system of forces and torques applied to a rigid
body to be balanced, it is necessary and sufficient that the resultant force vector Fr and the
resultant moment vector MrC , with respect to the mass centre C, should be equal to zero

Fr = 0 MrC = 0 (3.1)

Let us discuss two balance equations (3.1):
1) The balance of forces for a rigid body exists if the sum of the resultants of the inertial

forces I =
∑

i Ii, active forces F =
∑

i Fi and passive forces N =
∑

iNi (constraint reactions)
of the body, is zero

I+ F+N = 0 (3.2)

According to (1.5), the inertial force is I = −aCm. If the resultant of passive forces is zero,
relation (3.2) transforms into (1.5).
2) The balance of moments of forces and torques for a rigid body exists if the sum of the

resultant moment of inertial forces (MIC =
∑

iM
Ii
C ), active and passive forces with respect to

the mass centre (MFC =
∑

iM
Fi
C and M

N
C =

∑

iM
Ni
C ), and of the resultant active and passive

torques (M and R) is equal to zero

MIC +M
F

C +M
N

C +M+R = 0 (3.3)

Substituting the relation for the moment of the inertial force into (3.3)

MIC = −

∫

(m)

ρ× aρ dm = −

∫

(m)

d

dt
(ρ× v) dm (3.4)
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and assuming that no constraints exist (MNC = 0, R = 0), a simplified version of (3.3) is

∫

(m)

d

dt
(ρ× v) dm =MFC +M (3.5)

where v = ω × ρ and ω is the angular velocity of the body. If no active torque acts, Eq. (3.5)
is equivalent to (1.6).

Analyzing relation (3.5), it is obvious that the rotation of the body may be affected not only
by the moment of the force but also by the moment generated by the torque M. Even, if the
moment of forces is zero, Eq. (3.5) is

∫

(m)

d

dt
(ρ× v) dm =M (3.6)

and the rotation around the mass centre C is forced by the torque. This fact has already been
known for a long time, but it is not explicitly shown.

Using relation (3.6) and the assumption that

ρ = xi+ yj ω = ϕ̇k (3.7)

where x and y are coordinates of an arbitrary particle dm, ϕ̇ is the intensity of the angular
velocity of the body and i, j and k are the unit vectors of the coordinate system Oxyz, the
rotation of the body around the axis z under influence of the torque M is expressed as

Jzϕ̈ =M (3.8)

where
∫

(m)(x
2 + y2) dm is the so called moment of inertia Jz for the z axis. The moment

of inertia Jz can also be determined experimentally, if the mass and the position of the mass
center C are known.

The obtained relation can be discussed in the sense of the first and the second Newton law:

Law I: Every body preserves in its state of rest, or uniform rotation around an axis, unless it
is compelled to change that state by a torque impressed thereon.

Law II: The alteration of rotation around an axis is ever proportional to the motive torque
impressed, and is made around and in the direction in which that torque is impressed. The
coefficient of proportionality is the moment of inertia of the body for the corresponding
rotation axis.

4. Torque in the general equation of dynamics

Let us multiply Eq. (3.2) with the virtual displacement of the mass centre δrC and Eq. (3.3)
with the virtual rotation angle δΦk around an arbitrary axis in C, respectively

∑

i

(Ii + Fi +Ni)δrC = 0

∑

i

(MIiC +M
Fi
C +M

Ni
C )δΦk + (M+R)δΦk = 0

(4.1)

where the moments of the inertial force Ii, active force Fi and passive force Ni are

M
Ii
C = ρi × Ii M

Fi
C = ρi × Fi M

Ni
C = ρi ×Ni (4.2)
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and ρi is the position vector of the particle to the mass centre C. Substituting (4.2) into (4.1)2,
it follows

∑

i

[ρi × (Ii + Fi +Ni)]δΦk + (M+R)δΦk = 0 (4.3)

Using the fact that the position of the i-th particle due to the position of the mass centre C is

ri = rC + ρi (4.4)

we obtain the virtual displacement of the mass centre

δrC = δri − δρi (4.5)

and the virtual displacement due to body rotation for the angle δΦk

δρi = δΦk × ρi (4.6)

Substituting (4.5) and (4.6) into (4.1)1, we obtain

∑

i

(Ii + Fi +Ni)δri =
∑

i

(Ii +Fi +Ni)(δΦk × ρi) (4.7)

Using the property of vector multiplication

∑

i

(ρi × (Ii + Fi +Ni)δΦk =
∑

i

(Ii + Fi +Ni)(δΦk × ρi) (4.8)

and relation (4.7), Eq. (4.3) is rewritten as

∑

i

(Ii + Fi +Ni)δri + (M+R)δΦk = 0 (4.9)

Introducing into Eq. (4.9) the virtual works of the inertial forces δAi, active forces and torqu-
es δAa, and also passive forces and torques δAp on the virtual displacement and rotation

δAi =
∑

i

Iiδri δAa =
∑

i

Fiδri +
∑

k

MδΦk

δAp =
∑

i

Niδri +
∑

k

RδΦk
(4.10)

yields

δAi + δAa + δAp = 0 (4.11)

Equation (4.12) expresses the Lagrange-D’Alambert principle (The General Equation of Dyna-
mics): the total virtual work on the virtual displacement and rotation of all inertial forces, all
active forces and torques, and for all reactive forces and torques of nonideal constraints during
the motion is zero. It is worth to say that the active torques M and reactive torques R of noni-
deal constraints give the virtual work on the virtual rotation for the virtual rotation angle δΦk.
Namely, expression (4.12) includes not only the virtual works of the forces (as it is usual – see
for example Starzhunskii (1982)), but also the virtual works of the active and reactive torques.
For the ideal geometric constraints, the virtual work of the reaction forces and reaction

torques on the virtual displacement and rotation is zero, and relation (4.11) simplifies into

δAi + δAa = 0 (4.12)
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where the virtual work of the active torques on the virtual rotation is included into conside-
ration.
If the system of bodies has n degrees of freedom and n generalized coordinates qα, where

α = 1, 2, . . . , n, the virtual displacement and rotation angle are defined up to the first order of
the virtual coordinate variations as

δri =
∑

α

∂ri

∂qα
δqα δΦk =

∑

α

∂Φk

∂qα
δqα (4.13)

Substituting (4.12) into (4.9), gives

−

∑

α

(

∑

i

Ii
∂ri

∂qα

)

δqα =
∑

α

(

∑

i

(Fi +Ni)
∂ri

∂qα
+ (M +R)

∂Φk

∂qα

)

δqα (4.14)

Let us define the generalized force Qα and the generalized inertial force Zα

Zα =
∑

i

Ii
∂ri

∂qα
Qα =

∑

i

(Fi +Ni)
∂ri

∂qα
+ (M+R)

∂Φk

∂qα
(4.15)

Equation (4.14) is rewritten as
∑

α

(Zα +Qα)δqα = 0 (4.16)

Relation (4.16) is the Lagrange-d’Alembert principle in generalized coordinates: during motion,
the sum of the products of generalized forces and generalized inertial forces with the generalized
coordinates, is zero. The generalized forces are generated not only from the forces, as it is usual,
but also from the torques.

Remark: Introducing the well known formulation of the generalized inertial force based on the
kinetic energy T

Zα = −
d

dt

∂T

∂q̇α
+
∂T

∂qα
(4.17)

into (4.16) and separating the relations for every independent variation of the generalized
coordinate δqα, the well known system of n second kind Lagrange’s differential equations
is obtained

d

dt

∂T

∂q̇α
−

∂T

∂qα
= Qα α = 1, 2, . . . , n (4.18)

The generalized force Qα in (4.18) includes the action of torques, too.
Equations (4.1) are written for one rigid body. For the case of N rigid bodies, all active

forces and torques and those of the nonideal constraints have to be included into consideration,
and the corresponding generalized force transforms into

Qα =
∑

i

(Fi +Ni)
∂ri

∂qα
+
N
∑

k=1

(M+R)
∂Φk

∂qα
(4.19)

All of the statements and definitions given in the paper remain invariant.
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O momencie, jako mierze mechanicznego oddziaływania w zasadach dynamiki

Streszczenie

W większości rozważań, zasady dynamiki są wyrażane poprzez siły rozumiane jako miary mecha-
nicznych oddziaływań pomiędzy ciałami. Celem tej pracy jest rozszerzenie zwyczajowego podejścia do
aksjomatów, praw i zasad dynamiki o pojęcie momentu jako niezależnej miary mechanicznego oddziaływa-
nia. Wielkość tę wstawiono do zasady d’Alemberta w postaci momentu czynnego i biernego reakcyjnego.
Przedstawiono również momentowe równania Eulera-Newtona dla ogólnego przypadku ruchu bryły sztyw-
nej. Na nowo sformułowano ogólne równanie dynamiki poprzez wstawienie pracy przygotowanej momentu
na przemieszczeniu kątowym. Dodatkową dyskusją objęto trzy zasady dynamiki Newtona.
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