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Stability characteristics of the second mode waves are investigated theo-
retically. Numerical results are compared with the experimental data of
Stetson. The sensitivity of calculated amplification rates of disturban-
ces to various physical parameters (viscosity-temperature law, thermal
boundary conditions, Stokes hypothesis) is tested.
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1. Introduction

The successful design of the future hypersonic vehicle demands an accurate
determination of the whole transition process from laminar to the turbulent
boundary layer state. Prevention or delay of transition has the dual benefits
of reducing both the viscous drag and surface heating resulting, among other
things, in increased payloads and less stringent material requirements. It is
known that various factors influence the location and extent of the transition
zone. Among these are surface roughness, acoustic waves, free stream turbu-
lence and bluntness of a body. The boundary layer stability theory provides
means for studying the effects of various control parameters on transition.
Every theoretical method for transition prediction must be verified by experi-
mental results; therefore it is very important to improve both the theoretical
and experimental method in order to minimize their errors. In the present
paper numerical calculations are made to find how sensitive are the calculated
amplification rates of disturbances in laminar boundary layer to variations of
physical parameters and precision of theoretical modeling of the stability pro-
blem. Calculations made for hypersonic flow (where the so-called second mode
waves are dominant) are compared with the experimental data of Stetson et
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al. (1983) and the theoretical results of Simen and Dallmann (1992) and Mack
(1987).

Experiments which make possible a direct comparison between spatial am-
plification rates of disturbances obtained from the linear stability theory and
those obtained from measurements were carried out at supersonic flow on flat
plates by Demetriades (1960), Laufer and Vrebolovich (1960), Kosinov et al.
(1989), (1990), Kendall (1967) and for a sharp cone of zero angle of attack
at hypersonic flow by Kendall (1975), Demetriades (1977) and Stetson et al.
(1983). The largest number of results and the best description were given by
Stetson. This was the main reason for taking Stetson’s data as a reference for
comparison between theory and experimnent. Additionally, a cone geometry
(used by Stetson) is closer to the practical configuration than a flat plate.

The stability analysis used liere is based on the linear, local primary sta-
bility theory. Using the local linear theory we neglect such physical effects
as: receptivity, nonlinearity, interaction of disturbances, non-parallel flow and
bluntness of the body, so we cannot expect that the calculated instability cha-
racteristics reflect exactly the experimental data. IHlowever, the inaccuracy due
to theoretical simplification made in the linear stability theory is considered
to be small enough to draw reliable qualitative conclusions out of the results.

2. Second mode instability

As mentioned in Section 1, in hypersonic boundary layer the second mode
waves are dominating. The stability theory of Lees and Lin (1946), Lees and
Roshodko (1962) and the theory of Mack (1963), (1964), (1965), which esta-
blished the existence of unstable higlier modes, have important consequences
for the instability of supersonic and hypersonic boundary layer.

Lees and Lin classified the instability waves as:

— subsonic U
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U.— ¢ < a < =Ma. < 1
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where
U - velocity
a - speed of sound
¢ — phase speed of the wave
Ma. - Mach number of [ree stream flow relative to the phase

velocity
and e denotes boundary layer edge values.

Neutral supersonic waves are the Mach waves of relative flow, and can exist
as either outgoing or incoming waves. Almost all the true instability waves,
which satisfy the boundary condition at the wall and at infinity, are subsonic.
Only subsonic waves are considered in this paper.

Lees and Lin showed that the necessary and sufficient condition for exi-
stence of neutral and unstable wave in inviscid boundary layer is that there
is a point y, > yo (so-called the generalized inflection point) in the boundary
layer where

d ¢pdU
— = 2.1
(ly< dy ) 0 (2.1)
y — coordinate perpendicular to the wall
0 - point at which dimensionless velocity U/U. =1 —1/Ma

p — density.

The Lees and Lin proof requires the local relative Much number to be
subsonic everywhere Ma’ < 1 (Ma = (U - ¢)/a = Ma—¢/a). If Ma® < 1
everywhere in the boundary layer there is a unique wave number corresponding
to the phase speed of neutral wave.

Ma - cla =

~
—
y
33 =

1w

Fig. 1. Distribution scheme of the relative Mach number in boundary layer

Mack demonstated tlie existence of higher modes for inviscid, two-
dimensional stability equations which evidently have a different analytical
character depending on whether the relative Mach number Ma’ is less or
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greater than 1. In Fig.1 a schematic picture of the distributions of local Mach
number, phase speed ratio to the local speed of sound c¢/a (phase speed is
constant but the local speed of sound is a function of y) and the resulting
relative Mach number Ma in a typical hypersonic boundary layer is shown.
If the local relative Mach number is supersonic Ma’ > 1, say between y =0
and y = y,m (Fig.1), the mathematical nature of stability equations changes.
The equations are elliptic for Ma’ < 1 and become the wave equations for
Ma > 1 and, as in all problems governed by the wave equations, there is an
infinite sequence of solutions that will satisfy the boundary conditions. From
the sequence of solutions, only the first two are important, the so-called first
and second modes. The second mode which is expected to play a dominant
role in the transition process in hypersonic flow diflers consideriably from the
first mode instability.

For a boundary layer edge Mach number smaller than about four, the
major instabilities are expected to be those associated with the first mode.
These first modes in two-dimmensional compressible flow (Tollmien-Schlichting
type waves) are most unstable for obliqueness angles of 7y = 40 + 60 degrees
(7 = arctan(a/beta), a, B are the wave angle components) and are stabilized
by cooling. The first modes in three-dimensional boundary layers are stabilized
by wall cooling but this effect decreases with the increasing crossflow velocity
component.

In both two and three-dimensional boundary layers the second mode waves
are the two-dimensional waves. They are destabilized by wall cooling (which
is shown in Section 5).

The stabilizing effect of cooling on the first mode is said to be due to a
movement of generalized inflexion point within the boundary layer towards the
wall. Solutions obtained from the cone boundary layer equations for Ma = 6.8
and for different wall temperatures are shown in Fig.2 (§ is tle boundary layer
thicknes, ¢ is the coordinate perpendicular to the cone - Fig.4). For adiabatic
condition (T /T,q4 = 1.0) the generalized inflexion point corresponds to the
maximum value of pdU/d( and is located near the boundary layer outer edge.
As cooling is applied, a second generalized inflexion point appears close to the
wall; at this point pdU/d(¢ is minimum. With increasing cooling, the second
generalized inflexion point moves outwards, wlereas the altitude of the first
one decreases slightly. At a certain temperature inflexion points join each
other and finally both of them disappear.

Cooling does not stabilize second modes bhecause their existence is inde-
pendent of location of the inflexion point; it depends only on the existence of
supersonic range within the boundary layer where Ma’ > 1. Fig.3 illustrates
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the distribution of relative Mach number Ma in the boundary layer. Calcu-
lations were made for the same geometry and edge Mach number as in Fig.2.
From Fig.3 we can see that with increasing cooling the supersonic range of
boundary layer becomes larger and consequently the boundary layer becomes
more unstable.

3. Formulation of the problem

The evolution of disturbances in compressible boundary layers is governed
by the compressible continuity equation, Navier-Stockes equation and energy
equation

dp

En +V-(pV)=0
liA%
,o[W +(V-V)V]| = =Vp— V x [(V x V)] + V[(A+20)V - V] (3.1)
pes| S+ (V- 9)T) = V- (b9T) 4 L4 (v Vg 0
where
| 4 — velocity vector
P — density
P — pressure
T — temperature
Cp — specific heat under constant pressure
k - termal conductivity
i, A — first and second coeflicients of viscosity, respectively.

The viscous dissipation function is given as
@ =\V-V)?+ g(vv+ VYT (3.2)
The equation of state is given by the perfect gas relation
p=pRT (3.3)

It can be well assumed that under the considered conditions of free stream
Mach number up to eight and wall temperature up to 800 K the perfect gas
assumption is still valid (a typical case ol chemical reactions appearance in the
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flow is Mach number about twenty five and the wall temperature of 1200 K;
Simen and Dallmann (1992)).

In this research, we formulate the compressible stability problem in the
body oriented coordinate system (&, (,n) shown in Fig.4. The coordinates ¢,
¢, n represent the streamwise, wall-normal and spanwise directions, respecti-
vely. All the lengths are scaled by a viscous scale /v€/U,, velocity by U.,,
density by pe, pressure by p.UZ, time by /v€/U./U, and other variables
by the corresponding boundary-layer edge values denoted by e. The flow
is perturbed by fluctuations in the flow, therefore the total field can be de-
composed into its mean value (U,V,W, P, T, py, I, 20, Ao) and a perturbation
(u/’ oW, p, ™, p, K, /\/)

u=U+1 v=V 4+ w=W4+uw
p=P+p  1t=T+7 p=po+yp (3.4)
k=K+F =g+ A=+ N

where u, v, w are velocity components in £, (, n directions respectively.
Substituting Eq (3.4) into the Navier-Stokes equations, subtracting from
the governing equations those corresponding to the steady mean flow, and
using the equation of state, we obtain the governing equations for the distur-
bances as
ov ov ov ov

— 1A = el —
Fat + 0§+B()C+c + DV =

(3.95)
0w o*w 0w 0w o*w 0w
= H¢e— — — e — —
133 oe? + Hf( 0EC + H(( aC? + HU? 9Edn + H(ﬂ dCon + Hnn on?
where ¥ is defined as
= [/, v, W', 7, '] T (3.6)

Matrices F, A, B, C, D, H¢e, Hee, Hee, Hey, Hey and  Hy, are decomposed
following Chang and Malik (1991), (1993) to a linear part with only mean flow
quantities (denoted by superscripts !) and the nonlinear one which contains
mean flow and perturbation quantities (denoted by =n). I'or instance

F=F"+F (3.7)

The governing PDEs of disturbances are hyperbolic in time and elliptic in
the streamwise direction. To solve such a system of equations we must know
the outflow boundary condition which is very dilficult to predict. However,
with appropriate simplification the equations could be parabolized. Herbert
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(1991) and Bertolotti (1991) described ways of parabolizing the governing
PDEs.

Following the linear theory (neglecting nonlinear terms in Igs (3.5) and
restricting ourselves to axisymmetric bodies) we assume that the disturbance
vector ¥ can be expressed as

£
W& G m,0) = B(E Q) expi( [ ae) de + mn - w)] (3.8)
o
where ¥(£,() stands for the complex amplitude function. The wave angle is

expressed as
m
v = a,rcta.n(ﬁa) (3.9)

where R = h, is the Lame parameter.

After introducing Eq (3.8) into Eq (3.5), neglecting the nonlinear terms
and after parabolizing the equations, we obtain stability equations of three-
dimensional, compressible, nonparallel llow along curved, divergent bodics.

As compared to linear stability theory in which the disturbance vector is
defined as

W = (()eleétmn—wi) (3.10)

the amplitude function in parabolic stability theory is a function of both ¢
and ( coordinates due to the growth of the boundary layer, and the wave
number « is a [function of £ On the contrary, in the local primary linear
stability theory (Iiq (3.10)) the stability of mean flow in a certain position is
investigated and the mean flow is regarded to be locally paraliel.

The present study is concentrated on the local stability theory. Ilowever,
we might stress that parabolized stability equations can be derived by gene-
ralizing this approach in a straightforward manncr. As pointed out in the
introduction, results are compared with the experimental data of Stetson et
al. (1983) and the numerical parabolic calculation to find the reason for discre-
pancy between theoretical and experimental results and to find how sensitive
are the calculated amplification rates of second mode waves —a; to physical
parameters and the precision of theorctical modeling of the basic flow and
stability problem.

In our code it is assumed that the ratio of specific heats is constant

K= 214 (3.11)

as well as the Prandtl number. According to Bertolotti (1991), this simplifi-
cation can have an influence on the amplification rates. The ratio of second
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viscosity to the first viscosity is

Ao 2(d-1)

- . (3.12)

where d = 0.0 represents the Stokes hypothesis which is valid for monoatomic
gases. For polyatomic gases like air d = 1.2. In the present investigations we
apply the Stokes hypothesis however, in the discussion of obtained results the
effect of parametr d on the amplification rate is shown.

The transport coefficients are functions of temperature only (the viscosity
it is assumed to vary according to the Sutherland formula) so their fluctuations
can be represented as the first order expansions in temperature

duo , dXo , dko
= — A= — E=—1' 13
=rar” ar” ar’ (3.13)
Mean flow is obtained from boundary layer equations using Mangler’s trans-
formation and similarity variables. I'inally we obtain the following ordinary
differential system of equations
(A d? d

W+BE+C)W:0 (3.14)

where A, B, C are 5 x 5 matrices.
We lave the following homogeneous boundary conditions at the wall for
velocity and temperature amplitude functions

i(0) = 9(0) = @(0) = 7(0) = 0 (3.15)

Disturbances decay exponentially in the region of inviscid flow. To determine
the normal mode solution in this region we first transform the system of equ-
ations (3.14) into a system of eight first-order differential equations (secking
solutions in outer flow region we assume constant coelficients of Eqs (3.14))
then we solve it using the expounential method. This solution can be written
as follows

8
p=> Cige' (3.16)
i=1
where
[1_ diu — dr (lzD}T
= |u,—.,0 [ 7 J—
(lo 7([(7 71’ 7d<7’l ,dC

and g¢; is a column vector. Eliminating solutions physically impossible (with
the real part of r; greater than zero) and the coelficients Cy, k£ = 1,2,3,4
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we obtain four necessary boundary conditions at the far ficld. The method of
introducing outer edge boundary condition into supersonic flow was discussed
by Chang (1990). He used linearized Rankin-Hugoniot conditions as the outer
boundary conditions in supersonic flow, taking into account the influence of
oscillating shock wave on outer boundary conditions. According to Chang,
only for problems where the inviscid region between the boundary layer and
the shock plays an important role (such as the entropy layer in blunt body
flows), it is necessary to replace the free-stream boundary conditions with the
adequate shock conditions. Our investigations are carried out for the pointed
cone so the influence of oscillating shock wave on boundary edge conditions
can be neglected and we can use the results obtained from exponential method
as an outer boundary condition.

The linear compressible stability equations are solved using the fourth
order accurate two-point scheme which is derived by means of the Euler-
Maclaurin formula

k-1

k k—1 _ Ik (M dy

h} (d%p* Aok 5
ot = (e dc)___( - ) +0hg)  (3.17)

12\ d(2 dC?

where @f = ¢(C¥).
The final eigenvalue problem is solved using the direct method which is
described in detail by Malik et al. (1982).

4. Comparison of experimental and theoretical results

As mentioned before, we based our comparison of theoretical with experi-
mental results on Stetson et al. (1993) stability experiments. The experiments
were carried out in a hypersonic wind tunnel operated at a free stream Mach
number Ma,, = 8.0, stagnation temperature Ty = 723K and free stream
unit Reynolds number Re,, = 3.28 - 10%/m under adiabatic condition. Flow
around a cone of 7 degrees half angle with the nose radius of 3.81-10"¢m
was examined. The radius was so small that the inviscid entropy layer effects
were negligible. Under these conditions the Mach number of inviscid flow at
the wall is Ma, = 6.8. Calculations made in the present paper as well as all
the quoted results were made for Stetson’s wind tunnel parameters.

In Fig.5 the instability characteristics, i.e. spatial amplification rates —a;
of linear stability theory versus dimensionless frequency (F = w/Re) obtained
numerically by different authors and the experimental measurement of Stetson
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Fig. 5. Instability characteristics obtained numerically by different authors, and the
experimental results of Stetson et al. (1983)

et al. (1983) are analyzed. Calculations are obtained for the Reynolds number
Re = 1730 (Re = /UL ve).

The calculations were made for two-dimensional waves of second mo-
des (which are dominant under the flow conditions assumed) and three-
dimensional first mode using spatial theory. From Fig.5 it is seen that di-
screpancies between the results are big.

The growth rates obtained by Simen and Dallmann (1992) based on the
Chapman and Rubesin (1946) similarity solution with the linear viscosity-
temperature law (u* = CT*, C = 0.693873-10~7 kg/(msK)) specified strongly
overpredict the measured values. The results obtained in the present paper
and by Mack (1984) (Mangler flat plate transformation and Sutlierland’s law)
are only in qualitative agreement with Stetson’s experimental data. The best
agreement is found if the stability calculations are based on the mean flow
solutions obtained from the Thin Layer Navier Stokes equations (SLNSE) (cf
Simen and Dallmann (1992)). In the TLNSE viscous/inviscid interaction is
taken into account. The viscous/inviscid interaction can be expected to be
present under the flow conditions assumed, as the shock distance from the
wall (in the range where instability waves are amplified) is only about three
to seven times longer than tle boundary layer edge distance from the wall.
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Fig. 6. Amplification rate —a; (a) and the frequency F (b) ol second mode over a
vide range of Reynolds numbers. Comparison between theoretical results and
experimental data

In Fig.6a the amplification rates —a«; of second mode disturbances over a
wide range of Reynolds number obtained in the present paper and by Simen
and Dallmann (1992) and Mack (1984) are compared with the experimental
data of Stetson. It is seen that amplification rates are uniformly stabilized by
the viscous/inviscid interaction taken into account by Simen and Dallmann
(1992).

From Fig.5 we see that the range of most unstable {requency in second
mode region is relatively well predicted in all theoretical results. In the region
of the most unstable frequencies amplification rates obtained for basic state
from TLNSE approach almost perfectly match the experimental results. In
Fig.6b the frequencies of maximum amplification rate of second mode distur-
bances versus the Reynolds number are analyzed. The solution based on the
TLNSE is again in the best agreement with the experiment.

From Fig.5 and Fig.6 we can draw the conclusion that quantitative discre-
pancy between experimental and theoretical results in second mode region can
be minimalized by a more complete formulation of the equations governing the
steady mean flow.

For the first mode (Fig.5) at each frequency the wave angle of most unstable
wave must be determined. In the present research these angles have varied
from 73 at the lowest frequency to about 35 degrees at the frequency where
the second mode waves are dominant. In the first mode region discrepancies
between theoretical results and Stetson’s measurcments are the biggest.
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Fig. 7. Instability characteristics obtained for different ratios ol second viscosity to
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In Fig.7 the result obtained in the present contribution for Re=1730 and
Ma, = 6.8 and different ratios of sccond viscosity to lirst viscosity are analyzed
(d = 0.0, Stoke’s hypothesis valid for monoatomic gases and d = 1.2 valid for
polyatomic gases). Introducing d = 1.2 leads to the 5 percent reduction in
maximum amplification rate of second mode.
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Fig. 8. Amplification rate spectra of maximum amplified first and second mode
disturbances obtained by Dallmann (1993) using the linear stability theory and the
parabolized theory

In Fig.8 the amplification rate spectra of maximum amplified first and se-
cond mode disturbances obtained by Dallman (1993) using the linear stability
theory and the parabolized linear stability theory, are compared. We see that
the parabolized stability theory gives more stable results.
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5. Temperature effect

Stagnation temperature and wall cooling have a strong influence on the
growth rates in hypersonic flow. The stabilizing effect of wall cooling on first
modes in two and three-dimensional boundary layer were considered by Le-
koudis (1979), Balacumar and Reed (1989), Tuliszka-Sznitko (1993). Experi-
mental data which illustrate the influence of cooling on transition onset were
collected by Potter and Whitfield (1962), Lysenko and Maslov (1984). In the
present investigation we analyze the influence of wall cooling on the second
mode instability and the effect of different viscosity-temperature laws on spa-
tial amplification rates.
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Fig. 9. Amplification rate of second modes in function of frequency for different wall
thermal conditions; rotational speed of cone equals zero

Calculations were made for cone of hall angle @ = 7; Reynolds number
Re=1730, edge Mach number Ma, = 6.8 and rotational speeds of the cone
around the axis of symmetry 2/U, = 0.375 and 0.0. In Fig.9 the amplifica-
tion rate of second modes in function of {frequency is analyzed. Calculations
were made for the wall thermal conditions T, /T,q = 1.0, 0.8, 0.6, 0.4 and
the rotational speed 0.0 (w and «d denote the wall and adiabatic tempe-
ratures, respectively). We see that cooling strongly destabilizes second mode
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Fig. 11. Amplification rate of first mode in function ol lrequency for dillerent wall
thermal conditions;rotational speed of cone equals zero
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disturbances and shifts the most unstable frequency to larger values. Very
similar results for second mode disturbances were obtained [or the rotational
speed £2/U. = 0.375 (Fig.10). In Fig.11 the characteristics of first modes for
the same case as in Fig.9 are presented. The stabilizing cflect of cooling on
first modes is seen.

4| — $210.=0375
a;10 L £2/U. =0 Era
3 A
2 / \
1 N
0 0.5 1.0 , LS
' F-10

Fig. 12. Instability characteristics of second mode waves obtained for different
rotational speed of cone §2/U, = 0.375 and 0.0 (adiabatic conditions)

In Fig.12 the comparison of stability characteristics ol second modes ob-
tained for rotational speed 0.0 and 0.375 (adiabatic wall) is shown. We see
that the influence of crossllow Reynolds number (which is large in the case of
2/U, = 0.375) on second mode is insignificant.

The effect of wall thermal conditions on distribution of temperature fluc-
tuations in boundary layer for three-dimensional first niode waves and two-
dimensional second mode waves is shown in Fig.13 and T'ig.14. The different
characters of first and second mode disturbances are clearly seen.

In Fig.15 the influence of viscosity-temperature law on second mode cha-
racteristics is shown (line 1 is obtained lor the Sutherland formula, line 2 for
the linear function w* = CT=, C = 0.69387 - 10~7 kg/(msK); asterisk denotes
dimensional quantities). More stable results are obtained [or the Sutherland
law.

6. Conclusions

We have studied the effects of various physical parameters and precision of
modeling of mean and perturbated flow on the numerical results (on growth
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rate of disturbances) to find the reason of discrepancy between experiment
and theory with regard to instabilities in hypersonic flow. From comparison
it is seen that markedly better agreement between the linear stability theory
and experiment was found when a more complete formulation of steady mean
flow equations was taken into account (TLNSL, Simen and Dallmann (1992)).
We found that the relation between first and second viscosity had an influence
on the instability characteristics. The stabilizing ellect of wall cooling on first
and destabilizing effect on second mode was shown. It was found that the
influence of the viscosity-temperature law on second mode amplification rate

is strong.
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Niestabilnoéé drugich modéw

Streszczenie

W pracy analizowany jest metoda symulacji numerycznej rozwdj zaburzen
powstajacych w laminarnej warstwie przysciennej i doprowadzajacych do przejscia
Jaminarno turbulentnego w przeplywach hipersonicznych. Zaburzenia powstajace
w hipersonicznych warstwach przysciennych, zwane drugimi modami, sa falami dwu-
wymlarowyml 1 sa silnie destabilizowane przez chlodzeuie. UAysl\lwane w wyniku
rozwiazania réwnai niestabilnosci przeplywu tréjwymiarowego iscisliwego charakte-
rystyki poréwnane zostaly z badaniami eksperymentalnymi Stetsona i rozwigzaniami
numerycznymi innych autoréw. Badano wplyw réinych parametréw fizycznych oraz
modelowania przeplywu podstawowego 1 zaburzonego na uzyskiwane rezultaty.
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