
 CITAR Journal, Volume 8, No. 2 – December 2016

 CITAR JOURNAL
 7

Fractal Image Editing with PhotoFrac

Tim McGraw
Computer Graphics Technology,
Purdue University,
West Lafayette, IN, USA

tmcgraw@purdue.edu

Esteban Garcia Bravo
Computer Graphics Technology,
Purdue University,
West Lafayette, IN, USA

garcia0@purdue.edu

Jo McGraw
Independent Artist,
West Lafayette, IN, USA

jomcgraw@gmail.com

Lisa Parker
Independent Artist,
West Lafayette, IN, USA

lisap1005@gmail.com

ABSTRACT

In this paper, we describe the development and use
of PhotoFrac, an application that allows artists and
designers to turn digital images into fractal patterns
interactively. Fractal equations are a rich source of
procedural texture and detail, but controlling the
patterns and incorporating traditional media has been
difficult. Additionally, the iterative nature of fractal
calculations makes implementation of interactive
techniques on mobile devices and web apps
challenging. We overcome these problems by using
an image coordinate based orbit trapping technique
that permits a user-selected image to be embedded
into the fractal. Performance challenges are
addressed by exploiting the processing power of
graphic processing unit (GPU) and precomputing
some intermediate results for use on mobile devices.
This paper presents results and qualitative analyses of
the tool by four artists (the authors) who used the
PhotoFrac application to create new artworks from
original digital images. The final results demonstrate a
fusion of traditional media with algorithmic art.

KEYWORDS

Fractals; Photography; Digital Art.

1 | INTRODUCTION

Benoit Mandelbrot (1989) described fractal art as
inhabiting the blurred intersection between discovery,
invention and creativity. By incorporating the
compositional elements from other media into the
resulting images we aim to develop an application
which pushes that intersection further into the
‘creativity’ territory. Although fractals were not
visualized until 1975, complex fractal-like patterns
have been always an inspiration for artists and
designers who became aware of the complex
geometries they observed in natural systems, such as
plants or terrain. Artists have explored the
simultaneous complexity and beauty of floral patterns
as decorative elements for tiles, plates or vases
across all civilizations. Examples of this are Celtic
Knots, the tile mosaics from the Ottoman Empire and
Persian rugs. These intricate patterns convey a sense
of order through their organized complexity, and often
are used to represent higher spiritual concepts in a
visual way. It is not by chance that “Psychedelic Art”
has embraced kaleidoscopic, Mandelbrot-like imagery
to represent higher states of consciousness.

 CITAR JOURNAL
 8

Creating fractal-like structures is difficult due to the
number of compositional elements that need to be
aligned exactly. Obtaining a desired image may
require a time-consuming search through many
parameter values and spatial locations. PhotoFrac
presents an alternative technique – combining fractal
mathematical structures with the expressive power of
existing digital imagery to enable artists to compose
new works in real time.

Fractal patterns are characterized by self-similar
features over many spatial scales. The mathematical
techniques which have been used to generate these
patterns, include escape-time iterative maps, strange
attractors and iterated function systems. In the case
of some iterated function systems, such as the
Sierpinski gasket or Koch snowflake, the fractal
structure is obvious given the details of their
construction. For example, the construction of the
Koch snowflake begins with an equilateral triangle. A
new triangle one-third the size of the original triangle is
added to the middle of each edge. This process of
appending smaller triangles to each edge is repeated
indefinitely. Zooming into the resulting structure
reveals a familiar jagged appearance at all scales.
However, for many fractal patterns it is much more
difficult to get an intuitive feel for how the construction
technique gives rise to the final image.

The Mandelbrot set (Mandelbrot, 1983) and Julia sets
arise from a simple recursive formula applied to
complex numbers. Unlike the Koch snowflake the
resulting patterns are much less predictable, and can
vary depending on location. The shape of the fractal is
defined by the set of points in the complex plane
which diverge to infinity (or “escape”) after repeated
iteration of the formula. In practice, however, points
which exceed a fixed distance threshold during
iteration are assumed to diverge. There are several
ways to use these mathematical constructs in
computer graphics applications. A simple approach is
to apply a colormap or palette to some quantity, such
as the iteration counter, to create an image. Another
general approach called “orbit trapping” (Carlson,
1999) requires keeping track of how close the
sequence of generated points (the “orbit”) comes to
some geometric shape. That distance can then be
mapped to a color. Points, lines, circles and crosses
have been popular shapes to use as geometric orbit
traps. We use a variation on this approach called

“bitmap orbit traps” which permits the user to apply
colors from a selected image to the generated fractal
pattern. This permits the user to incorporate other
artistic works such as photographs or scanned
paintings into the procedurally generated patterns.
Using images as input to the creation process
simplifies user interaction on mobile devices where
editing code and navigating complex user interfaces is
not convenient.

In the following sections, we describe related work,
present the technical details of implementing a mobile
app and web app, discuss the images generated for
an art show, and describe prospects for future work.

2 | RELATED WORK

The full body of contemporary fractal art is too
extensive to describe here, but we will highlight some
notable works and artists. In the 1980s William
Latham and Stephen Todd collaborated on several
evolutionary art systems (Todd and Latham, 1994)
based on mathematical methods like genetic
algorithms, shape grammars and fractals. The
resulting creations have been described as “artificial
life.” Conceptual artist Carlos Ginzburg considered
fractals as a philosophical concept. His “Homo
Fractalus” (2001) explored the ideas of chaos and
self-similarity across the spatial scales of microscopic
structures, individual humans, and culture. Artist and
researcher Kerry Mitchell (1999), in his “fractal art
manifesto”, emphasizes the roles of composition,
color and an expressive visual language in fractal art.
He argued that the fractal artist is the most critical part
of the creative process – not the algorithm or the
computer. The theoretical implications of fractal
geometry have been explored in applications ranging
from image compression (Fisher, 1994) to modelling
of natural (Oppenheimer, 1986) and synthetic
structures (McGraw, 2015). Taylor (2006) found
evidence that exposure to fractal artwork could lead
to lower physiological signs of stress.

Image editing apps on mobile devices have become
popular and powerful (Marcolina, 2011). These apps
fall under the Photography category in the Google
Play app store. Since there are currently more than
40,000 apps in this category it is difficult to assess all
of them. Surveying the most popular and top rated
apps we have found several distinct classes: image

 CITAR Journal, Volume 8, No. 2 – December 2016

 CITAR JOURNAL
 9

filtering apps which perform cropping and color
manipulation effects (e.g. Instagram, Google’s
Snapseed, Repix), style transfer apps which perform
noninteractive computations in the cloud (Prisma),
image collage creation (Layout, Photo Grid), and the
category most closely related to PhotoFrac –
kaleidoscope generators (Mirror Lab, Camera
Kaleidoscope). Other related apps are fractal
generating tools, such as Frax and Fractoid. These
apps maintain interactivity by progressively rendering
fractals from coarse to fine resolution, and some offer
the ability to render large images in the cloud. We did
not find any, however, which offered bitmap orbit
trapping or a truly interactive full-resolution editing
experience. By precomputing results we maintain the
responsiveness of the application which network
latency would make impossible when offloading
computation to cloud-based servers.

The bitmap orbit trap technique is a general approach
that can be applied to any escape-time fractal, but in
this project, we use the Julia and Mandelbrot sets. It is
difficult to trace the origins of the bitmap orbit traps.
They seem to have originated in the computer
graphics demo scene (Scheib, 2002) and have not
been documented in academic publications.

The Julia set is defined by the recurrence formula zn+1

→ zn
2 + c, where c and z are complex numbers. Since

complex numbers, z = x + iy, have a real and
imaginary part, we can consider there to be a one-to-
one correspondence between points in the complex
plane, z, and points in the 2D image plane, (x,y),
making it trivial to transform back and forth between
the two spaces. For each pixel on the screen the initial
value z0 is computed from the coordinate of the pixel
(x0, y0). The number c that defines the Julia set is a

constant. The Mandelbrot set is defined by a similar
formula, zn+1 → zn

2 + z0.

The sequence of points (z0, z1, z2…) defines the so-
called ‘orbit’. The Julia set and Mandelbrot set are
defined as the set of points for which the sequence
does not diverge to infinity. Practically, however, we
do not form an infinite sequence and do not compare
with infinity. Good results can be obtained by
checking to see if the complex modulus !"# + %"#
exceeds 10 while generating a sequence of 500
points. A bitmap image trap computes the distance
from each zn and saves the point with minimum
distance to some geometric shape, such as a line or
circle. In bitmap orbit trapping the trapped point, zt =
xt + i yt, is used as an image coordinate. For the
output image, I, the pixel I(x0, y0) is set to the color of
the pixel J(xt, yt), where J is a user-selected image.

The bitmap orbit trap permits an interpretation of
fractals that is new to many users. The repeating
structures and patterns in the fractal define a
distortion field that stretches, compresses and
repeats an image. This contrasts with the more
common approach of visualizing fractals by mapping
from numerical values to colors in a palette.

3 | PHOTOFRAC

To reach a broad audience of users we decided to
release the application as a mobile app and web app.
The mobile app enables users to explore the fractal
and generate images using convenient touch gestures
without worrying about the security issues of
downloading, installing and maintaining software on a
desktop PC.

Our fractal image generation system, PhotoFrac,

Figure 1 | Source photograph (left), photo embedded into a Julia set (center), another embedding with a different transformation matrix, M
(right).

 CITAR JOURNAL
 10

generalizes the bitmap orbit trap concept described in
the previous section in several ways. We incorporated
additional transformations to permit the image to be
moved and resized relative to the orbit trap
coordinates. Image filters such as edge enhancement
and color grading were implemented to simplify the
user workflow on mobile devices where processing an
image using multiple apps can be inconvenient.

A transformation matrix, M, is applied when bitmap
orbit trapping [xm, ym] = M[xt, yt] to control the
appearance of the photograph within the fractal as
shown in Figure 1. Another matrix, N, controls the
framing of the fractal itself. The final fractal image, I, is
computed from the fractal orbit trap coordinates and
the photograph, J, by computing [xn, yn] = N[x0, y0] and
then I(xn, yn) = J(xm, ym). The image, J, is considered to
infinitely repeat over the image plane, which enables
negative image coordinates, and coordinates larger
than the image size to be handled.

In a desktop computer system with a modern
videocard the fractal generation process can be made
very computationally efficient. Our initial prototype
system was implemented in C++ and OpenGL. The
photograph, J, was bound as an OpenGL texture
map, and the orbit trap coordinates [xt, yt] are
computed in the fragment shader on the GPU. In this
framework, the only data that needs to be transferred
from the CPU to the GPU during image creation are
the matrices M and N which are updated in response
to user interaction. This permits very reactive and
smooth response to user input. In the following
subsections, we describe how we maintain low-
latency user interaction on mobile platforms and the
web.

3.1 MOBILE APP DEVELOPMENT

PhotoFrac was implemented in C#, Unity and the
OpenGL shading language (GLSL) (Rost et al., 2009).
The development team consisted of one programmer
(the first author of this paper). Total development time
was about four weeks. Using Unity permitted us to
easily deploy the application to iOS and Android
(Figure 2). The bulk of the image generation is handled
by a shader written in the OpenGL shading language,
as in the desktop prototype application. For each pixel
on the screen an iterative computation of several
hundred iterations is required. In preliminary
experiments this resulted in poor performance (a few

frames per second) on all but the highest-end phone
hardware. A decision was made to precompute high
resolution fractal results for a few selected fractals.
The results are orbit trap image coordinates stored in
a 32-bit color texture. This permits each image
coordinate to be encoded as a pair of 8-bit values.
Storing the image coordinates natively as floating-
point coordinates was not an option since most
mobile hardware does not support textures in this
format. So, 16-bit floating point coordinates were
computed in the shader from each pair of 8-bit values.
Precomputed coordinates are transformed by the
matrix, N, but the limited resolution of the
precomputed texture image effectively restricts the
range of scales and translations that can be applied
using the matrix, M, since we precompute the
coordinates only within a fixed rectangle and at a
given resolution.

The transformation matrix, M, can represent rotation,
translation and uniform scale. This permits the user to
interactively control the mapping from precomputed
trap coordinates to the image coordinates. Scale is
controlled with a pinch gesture, translation by

Figure 2 | Screenshot of PhotoFrac for Android.

 CITAR Journal, Volume 8, No. 2 – December 2016

 CITAR JOURNAL
 11

dragging, and rotation with a two-finger rotation
gesture. Scale controls the number of repetitions of
the image within the fractal. When the image is scaled
smaller it will repeat more times, but to reduce the
appearance of sudden discontinuities across the
image boundary we use a repeat and mirrored repeat
modes that cause the image to be either copied or
reflected across its boundaries, leading to
kaleidoscopic effects. Other image manipulation
features incorporated into the shader are color
grading, and edge detection.

The orbit trap coordinates are precomputed at a
resolution of 2048 x 2048. When the fractal is zoomed
in such that a texel in the precomputed image is
bigger than a pixel on the screen interpolation is
required to maintain visual continuity. This results in
visual artifacts in the bitmap orbit trap mapping which
are not fractal in nature, but have nevertheless been
used by some users to great effect.

We tested PhotoFrac on a low-end hardware device
to determine the worst-case scenario for
performance. The test platform was a Samsung
Galaxy S3 phone, which was a three-year-old model
when we began software development. Since most of
the computational work is precomputed, the
bottleneck to performance is the fragment shader,
which runs once for each pixel on the screen. The

screen resolution of the test device was 720 x 1280.
After logging render times during several interactive
sessions, we found that the time per frame varied
between 39 ms and 26 ms (25 - 38 frames per
second), which is sufficient for interactive applications.
Preliminary experiments without precomputation
(computing all fractal interactions at runtime) resulted
in 1 – 2 frames per second and frequent crashes. The
Galaxy S3 and other devices of the same generation
run version 4 of the Android operating system.
Statistics available to registered app developers tell us
that over 35% of the Android devices on which
PhotoFrac is installed are running Android 4.
Combined with the positive user ratings (3.79 out of 5)
this suggests that most users find the performance to
be acceptable.

PhotoFrac was deployed to the Google Play and
iTunes app stores in the Summer of 2015 as a free
download. As of Summer 2016 the Android version of
the app has been downloaded 1342 times, and the
iOS version 375 times.

3.2 WEB APP DEVELOPMENT

WebGL (Marrin, 2011) is a standard for high-
performance graphics on the web. It is a subset of
OpenGL ES, a graphics standard for embedded and
mobile devices, which is itself a subset of the OpenGL
standard. As such, WebGL lacks some advanced

Figure 3 | Screenshot of PhotoFrac for the web.

 CITAR JOURNAL
 12

features of OpenGL ES and OpenGL. The WebGL
version of our app is intended to be run on desktop
PCs with powerful videocards, so we are not
constrained by computational power as we were on
the mobile version. WebGL, however, can also run on
several mobile web browsers, so users with powerful
mobile devices can also use the web version. The
supporting application framework is written in
JavaScript, and the webpage it is embedded in is
implemented in HTML and CSS. The web version of
PhotoFrac can be found at http://www.skeezix6.com.

The web app opened a new opportunity for providing
user-control of the image editing process: live-coding.
Shader code in WebGL can be represented as
human-readable text, and is compiled via a JavaScript
function call. This permits us to provide a text window
in the webpage in which the user may enter shader
code, as shown in the right side of Figure 3. Modified
shaders can be recompiled and used on-the-fly
without reloading the webpage, permitting a much
more flexible system than one which uses preselected
equations and orbit traps. It is also a convenient way
for the developers to iteratively refine the built-in
fractal formulas.

4 | SHOW

Preliminary experiments incorporating photographic
images into fractal patterns demonstrated that
PhotoFrac was a versatile tool that allowed users to
create unique images in their own style. Three of the
authors (McGraw, McGraw and Parker) held an art
show at the Athens of Indiana Arts Studio & Gallery.
“Art Meets Math, Fascinating Fractals” opened on
April 8th, 2016 in Crawfordsville Indiana. In the
following subsections, the authors share their results
and discuss their experiences in using the software to
create works for the show.

4.1 USER STUDY: LISA PARKER

As an artist, my primary interests are in printmaking,
but I also enjoy drawing, painting and sculpting. My
subjects vary, and I move freely between
representational and abstract imagery. The consistent
thread throughout my work is a desire to create a
visual metaphor. Prior to using PhotoFrac, I had little
experience in creating digital art.

Figure 4 | “Architecture Dream”.

Figure 5 | “Big Brain Mask”.

Figure 6 | “Tsunami”.

 CITAR Journal, Volume 8, No. 2 – December 2016

 CITAR JOURNAL
 13

Many of my results make use of the image processing
options (e.g. edge enhancement and contrast
adjustment) which offer the ability to apply filters
without leaving the app.

The math and technical aspects are hidden in the
mobile app, so as a user I don’t have to understand
fractals or math to control the visual order created by
applying these algorithms.

Moving within the fractal, I can choose to find balance,
rhythm, texture, line, color, and shape. These
elements combine and change according to the
choice of fractal equation and location within the
fractal.

“Architecture Dream” (Figure 4) demonstrates how
PhotoFrac can amplify the elements of line and shape
from my original photo. “Big Brain Mask” (Figure 5) is
an example of new images being created and
enhanced by combining shapes and lines as they
move through the fractal. In “Tsunami” (Figure 6)
rhythm and perspective are created by the diminishing
size and repetition of shapes in an image.

4.2 USER STUDY: JO MCGRAW

I am primarily a painter and photographer of wildlife.
As an artist living with a computer programmer, I
appreciate that mathematics is a language that
describes natural processes at work, even though I
don’t always fully understand the details. But the way
fractals can stretch, duplicate, and distort an image
give me a sense of the meaning of the equations.

As a user, I preferred using the mobile app. The touch
interface gave me a better sense of control – with a
pinch or pull of my fingers I could watch the figures in
my photographs contort and change as they move
through the shifting dimensions of the fractal. I tend to
stay at the shallower levels of the fractal, where I can
still see recognizable faces or objects, and use the
transformations to explore distortions of their familiar
features. I find that those changes can produce a
surprisingly diverse emotional gauntlet. I often like to
push an image through the fractal until a face collides
with itself, or the fractal presents multiple images of
the same figure, pulled and twisted in different
directions.

In my work, I often edit my images in other apps
before plugging them into PhotoFrac because I like to

Figure 7 | “Eye ball”.

Figure 8 | “Egg Solitude”.

Figure 9 | “My Orange Heart”.

 CITAR JOURNAL
 14

soften and smooth the background so it blends
continuously, or add texture or non-photorealistic
effects to the image. Using multiple apps in my
workflow gives me access to an expanded range of
image filters and effects. In addition to photographs, I
also use these apps to edit scans of my original
paintings.

In Figure 7 four repeating images of the same cat face
disappear into a single point in the fractal creating an
"eye ball." To generate this image, the original photo
was first edited in Repix (another photo editing app) to
blur the background before editing it with PhotoFrac.
This produces a more seamless blending of borders
when the image is multiplied.

The edit of the robin's nest and eggs (Figure 8) shows
how greatly magnified a small part of an image can
become. In this case the pine needles in the
background assume monstrous proportions, and the
eggs multiplying in space look like they occupy
underground tunnels.

An original acrylic painting with a variety of textures
and two faces provided many potential combinations
and collisions. The edit in Figure 9 generated several
echoing heart shapes and minimal facial features on
the cat in the middle.

4.3 USER STUDY: TIM MCGRAW

As a graphics programmer, and the sole software
developer of PhotoFrac, my goal in working with the
tool was to explore the extensible nature of the web
version. Users with some programming experience
are the target audience for the optional “expert mode”
interface shown on the right-hand side of Figure 3. In
this text window the GLSL shader code may be
edited, and dynamically recompiled with a button
click.

Recompilation of the shaders takes only a few
milliseconds, and I found that editing the code
became a natural part of the image processing
workflow. The interface includes two general purpose
sliders which are mapped to shader variables that can
be used for any purpose. This is useful for exploring
the parameter space of the algorithms to find optimal
values. Those values can later be hard-coded in the
shader. There is also a built-in variable representing

Figure 10 | “Urban Caterpillar”.

Figure 11| “Sprout”.

Figure 12 | “Stubble”.

 CITAR Journal, Volume 8, No. 2 – December 2016

 CITAR JOURNAL
 15

time that can be used to generate short animation
sequences.

A drawback of the “expert-mode” system, compared
to the mobile version of PhotoFrac is that the user-
generated procedures may not create usable images.
In fact, errors in the code may prevent it from even
compiling or running. Constraining the user to known
coordinates and ranges of parameter values in the
mobile app restricts the number of options available to
the user, and eliminates errors due to programming
language syntax and meaningless mathematical
equations.

However, the flexibility and power of the web version
comes at a price. When using the web version with a
mouse and keyboard, one loses the tactile experience
of transforming the images and fractals with touch
gestures.

Many of my images are the result of experimenting
with new orbit trapping schemes. Figures 10-12
demonstrate a scheme that does not compute a
single image coordinate, but instead blends together
image colors for each point in the orbit. This method
is computationally more intensive than the prior
methods, but still allows interactive frame rates.

This orbit trap allows some features of the original
image to still be recognizable at low iteration counts,
as in “Urban Caterpillar” (Figure 10). At higher iteration
counts the original image can become obliterated and
only the source colors remain.

4.4 USER STUDY: ESTEBAN GARCIA BRAVO

I am a visual artist working with digital media,
including computer animation, fabrication and
interactivity. When I first started manipulating images
in PhotoFrac the results were reminiscent of some
notable animation sequences: the distorted Donald
Duck in “The Three Caballeros”, and “Malice in
Wonderland” by Vince Collins. Neither of these
animations present logical narratives, but rather
display a colorful organization of bold shapes.
Watching these animations becomes an experience
on its own, free from reasoning and reminiscent of
psychedelic experiences. My main use of PhotoFrac
was processing my own original cartoon drawings.

In Figure 13, a “Bug” character is recombined into a
kaleidoscopic effect. In all my compositions, I focused

on the parts of the fractal that represented radial
symmetry. This allowed me to be more in control of
the fractal algorithm and not lose the consistency of
shape and the boldness of the cartoon aesthetic.

The input image for Figure 14 was a drawing of a
cartoon buzzard. During processing, I could control
how the lines and colors formed new interesting
shapes that did not necessarily represent the original
drawing anymore, but made it look more interesting.
By simplifying line and reducing the amount of color,
more unexpected shapes emerged. The last test was
to record the animations through the PhotoFrac
website. Figure 15 shows a single frame of one of
those animations.

Figure 13 | “Bug”.

Figure 14 | “Bird”.

Figure 15 | “Sad Dog”.

 CITAR JOURNAL
 16

The web version of PhotoFrac generates 15-second
animations of the user manipulating the fractal. This
feature is useful for animators wanting to produce
abstract film shorts or create animated kaleidoscopic
textures in real time.

5 | CONCLUSIONS

In this work, we have described PhotoFrac, a fractal
photo editing tool. The challenges and solutions to
creating an interactive user experience on mobile
hardware and the web were described, and the
experiences of three artists and the developer using
the tool were documented.

The PhotoFrac mobile app enables the user to
experiment with algorithmic art without working in
terms of equations or iteration counts or other
technical parameters. Colors, forms and textures are
specified by selecting a source image. The
transformation matrices which govern the result can
be quickly specified with familiar touch-screen
gestures. The more full-featured web version of
PhotoFrac permits the underlying equations and orbit
trap techniques to be dynamically modified, while
sacrificing the portability and gesture-based interface.

Areas for future work include incorporating 3D
fractals, such as the quaternion Julia sets, Mandelbulb
and Mandelbox. A separate branch of the PhotoFrac
project for experimenting with fractal music
visualization is currently under development.

REFERENCES

Carlson, P. W. (1999). Two artistic orbit trap rendering
methods for Newton M-set fractals. Computers &
Graphics, 23(6), 925-931. http://dx.doi.org/
10.1016/S0097-8493(99)00123-5

Fisher, Y. (1994). Fractal image compression.
Fractals, 2(03),347-361. http://dx.doi.org/10.1142/
S0218348X94000442

Ginzburg, C. (2001). The Neuronal Network of Social
Culture, Homo Fractalus. Leonardo, 34(1), 7-7.

Mandelbrot, B. B. (1983). The fractal geometry of
nature (Vol. 173). Macmillan.

Mandelbrot, B. B. (1989). Fractals and an art for the
sake of science. Leonardo. Supplemental Issue, 21-
24. http://dx.doi.org/10.1145/73877.73881

McGraw, T. (2015). Interactive Procedural Building
Generation Using Kaleidoscopic Iterated Function
Systems. In Advances in Visual Computing (pp. 102-
111). Springer International Publishing.
http://dx.doi.org/10.1007/978-3-319-27857-5_10

Marcolina, D. (2011). iPhone Obsessed: Photo editing
experiments with Apps. Pearson Education.

Marrin, C. (2011). WebGL specification. Khronos
WebGL Working Group.

Mitchell, K. (1999). The fractal art manifesto.
https://www.fractalus.com/info/manifesto.htm

Oppenheimer, P. E. (1986). Real time design and
animation of fractal plants and trees. ACM SIGGRAPH
Computer Graphics (Vol. 20, No. 4, pp. 55-64). ACM.
http://dx.doi.org/10.1145/15922.15892

Rost, R. J., Licea-Kane, B., Ginsburg, D., Kessenich,
J. M., Lichtenbelt, B., Malan, H., & Weiblen, M.
(2009). OpenGL shading language. Pearson
Education.

Scheib, V., Engell-Nielsen, T., Lehtinen, S., Haines, E.,
& Taylor, P. (2002). The demo scene. In ACM
SIGGRAPH 2002 conference abstracts and
applications (pp. 96-97). ACM.
http://dx.doi.org/10.1145/1242073.1242125

Taylor, R. P. (2006). Reduction of physiological stress
using fractal art and architecture. Leonardo, 39(3),
245-251.
http://dx.doi.org/10.1162/leon.2006.39.3.245

Todd, S., & Latham, W. (1992). Evolutionary art and
computers. Academic Press.

BIOGRAPHICAL INFORMATION

Tim McGraw is an Assistant Professor of Computer
Graphics Technology at Purdue University. His areas
of interest are procedural content generation, image
processing and scientific visualization. He has been
awarded 4 patents for visualization systems
developed with Siemens Corporate Research. He has
previous industry experience as a mechanical design
engineer and as a game developer (Electronic Arts,
Schell Games, Rainbow Studios). He received his
Ph.D. in Computer and Information Science and
Engineering from the University of Florida.

 CITAR Journal, Volume 8, No. 2 – December 2016

 CITAR JOURNAL
 17

Esteban García Bravo holds a PhD in Computer
Graphics from Purdue University, an MFA in Studio
Arts from Purdue University and a BFA in Time Based
and Electronic Media Art from Universidad de los
Andes, Bogotá. His research on computer art history
and digital media art practices has been featured in
the annual meetings of international organizations
such as SIGGRAPH, ISEA and Media Art Histories-
MAH. Esteban is currently an assistant Professor in
the department of Computer Graphics Technology at
Purdue University, where he teaches digital imaging
foundations and computational aesthetics.

Jo McGraw is an artist living in West Lafayette,
Indiana. She works primarily with heavily varnished
acrylic on wood. Her favorite subject is animal
portraits, with a focus on each animal as a unique
individual, especially cats and reptiles with emphasis

on the rhythms and textures suggested by fur and
scales. She also enjoys working in ceramics, digital
art, and watercolor. She studied Art and English at
West Virginia University.

Lisa Parker is an artist from Lafayette, Indiana. She
received her Master’s Degree in Printmaking from
Purdue University. She works in multiple mediums,
including printmaking, drawing, painting and
sculpture. She has had work in many group shows, a
solo show in 2014, and will have second solo show at
Tippecanoe Arts Federation in August 2016. She
describes her artwork as “visual metaphors about
dreams, daydreams and the universe within each of
us.”

