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ABSTRACT 

In this paper, we describe the development and use 
of PhotoFrac, an application that allows artists and 
designers to turn digital images into fractal patterns 
interactively. Fractal equations are a rich source of 
procedural texture and detail, but controlling the 
patterns and incorporating traditional media has been 
difficult. Additionally, the iterative nature of fractal 
calculations makes implementation of interactive 
techniques on mobile devices and web apps 
challenging. We overcome these problems by using 
an image coordinate based orbit trapping technique 
that permits a user-selected image to be embedded 
into the fractal. Performance challenges are 
addressed by exploiting the processing power of 
graphic processing unit (GPU) and precomputing 
some intermediate results for use on mobile devices. 
This paper presents results and qualitative analyses of 
the tool by four artists (the authors) who used the 
PhotoFrac application to create new artworks from 
original digital images. The final results demonstrate a 
fusion of traditional media with algorithmic art. 
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1 | INTRODUCTION 

Benoit Mandelbrot (1989) described fractal art as 
inhabiting the blurred intersection between discovery, 
invention and creativity. By incorporating the 
compositional elements from other media into the 
resulting images we aim to develop an application 
which pushes that intersection further into the 
‘creativity’ territory. Although fractals were not 
visualized until 1975, complex fractal-like patterns 
have been always an inspiration for artists and 
designers who became aware of the complex 
geometries they observed in natural systems, such as 
plants or terrain. Artists have explored the 
simultaneous complexity and beauty of floral patterns 
as decorative elements for tiles, plates or vases 
across all civilizations. Examples of this are Celtic 
Knots, the tile mosaics from the Ottoman Empire and 
Persian rugs. These intricate patterns convey a sense 
of order through their organized complexity, and often 
are used to represent higher spiritual concepts in a 
visual way. It is not by chance that “Psychedelic Art” 
has embraced kaleidoscopic, Mandelbrot-like imagery 
to represent higher states of consciousness.  
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Creating fractal-like structures is difficult due to the 
number of compositional elements that need to be 
aligned exactly. Obtaining a desired image may 
require a time-consuming search through many 
parameter values and spatial locations. PhotoFrac 
presents an alternative technique – combining fractal 
mathematical structures with the expressive power of 
existing digital imagery to enable artists to compose 
new works in real time. 

Fractal patterns are characterized by self-similar 
features over many spatial scales. The mathematical 
techniques which have been used to generate these 
patterns, include escape-time iterative maps, strange 
attractors and iterated function systems. In the case 
of some iterated function systems, such as the 
Sierpinski gasket or Koch snowflake, the fractal 
structure is obvious given the details of their 
construction. For example, the construction of the 
Koch snowflake begins with an equilateral triangle. A 
new triangle one-third the size of the original triangle is 
added to the middle of each edge. This process of 
appending smaller triangles to each edge is repeated 
indefinitely. Zooming into the resulting structure 
reveals a familiar jagged appearance at all scales. 
However, for many fractal patterns it is much more 
difficult to get an intuitive feel for how the construction 
technique gives rise to the final image.  

The Mandelbrot set (Mandelbrot, 1983) and Julia sets 
arise from a simple recursive formula applied to 
complex numbers. Unlike the Koch snowflake the 
resulting patterns are much less predictable, and can 
vary depending on location. The shape of the fractal is 
defined by the set of points in the complex plane 
which diverge to infinity (or “escape”) after repeated 
iteration of the formula. In practice, however, points 
which exceed a fixed distance threshold during 
iteration are assumed to diverge. There are several 
ways to use these mathematical constructs in 
computer graphics applications. A simple approach is 
to apply a colormap or palette to some quantity, such 
as the iteration counter, to create an image. Another 
general approach called “orbit trapping” (Carlson, 
1999) requires keeping track of how close the 
sequence of generated points (the “orbit”) comes to 
some geometric shape. That distance can then be 
mapped to a color. Points, lines, circles and crosses 
have been popular shapes to use as geometric orbit 
traps. We use a variation on this approach called 

“bitmap orbit traps” which permits the user to apply 
colors from a selected image to the generated fractal 
pattern. This permits the user to incorporate other 
artistic works such as photographs or scanned 
paintings into the procedurally generated patterns. 
Using images as input to the creation process 
simplifies user interaction on mobile devices where 
editing code and navigating complex user interfaces is 
not convenient.  

In the following sections, we describe related work, 
present the technical details of implementing a mobile 
app and web app, discuss the images generated for 
an art show, and describe prospects for future work. 

2 | RELATED WORK 

The full body of contemporary fractal art is too 
extensive to describe here, but we will highlight some 
notable works and artists. In the 1980s William 
Latham and Stephen Todd collaborated on several 
evolutionary art systems (Todd and Latham, 1994) 
based on mathematical methods like genetic 
algorithms, shape grammars and fractals. The 
resulting creations have been described as “artificial 
life.” Conceptual artist Carlos Ginzburg considered 
fractals as a philosophical concept. His “Homo 
Fractalus” (2001) explored the ideas of chaos and 
self-similarity across the spatial scales of microscopic 
structures, individual humans, and culture. Artist and 
researcher Kerry Mitchell (1999), in his “fractal art 
manifesto”, emphasizes the roles of composition, 
color and an expressive visual language in fractal art. 
He argued that the fractal artist is the most critical part 
of the creative process – not the algorithm or the 
computer. The theoretical implications of fractal 
geometry have been explored in applications ranging 
from image compression (Fisher, 1994) to modelling 
of natural (Oppenheimer, 1986) and synthetic 
structures (McGraw, 2015). Taylor (2006) found 
evidence that exposure to fractal artwork could lead 
to lower physiological signs of stress.  

Image editing apps on mobile devices have become 
popular and powerful (Marcolina, 2011). These apps 
fall under the Photography category in the Google 
Play app store. Since there are currently more than 
40,000 apps in this category it is difficult to assess all 
of them. Surveying the most popular and top rated 
apps we have found several distinct classes: image 
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filtering apps which perform cropping and color 
manipulation effects (e.g. Instagram, Google’s 
Snapseed, Repix), style transfer apps which perform 
noninteractive computations in the cloud (Prisma), 
image collage creation (Layout, Photo Grid), and the 
category most closely related to PhotoFrac – 
kaleidoscope generators (Mirror Lab, Camera 
Kaleidoscope). Other related apps are fractal 
generating tools, such as Frax and Fractoid. These 
apps maintain interactivity by progressively rendering 
fractals from coarse to fine resolution, and some offer 
the ability to render large images in the cloud. We did 
not find any, however, which offered bitmap orbit 
trapping or a truly interactive full-resolution editing 
experience. By precomputing results we maintain the 
responsiveness of the application which network 
latency would make impossible when offloading 
computation to cloud-based servers. 

The bitmap orbit trap technique is a general approach 
that can be applied to any escape-time fractal, but in 
this project, we use the Julia and Mandelbrot sets. It is 
difficult to trace the origins of the bitmap orbit traps. 
They seem to have originated in the computer 
graphics demo scene (Scheib, 2002) and have not 
been documented in academic publications. 

The Julia set is defined by the recurrence formula zn+1 

→ zn
2 + c, where c and z are complex numbers. Since 

complex numbers, z = x + iy, have a real and 
imaginary part, we can consider there to be a one-to-
one correspondence between points in the complex 
plane, z, and points in the 2D image plane, (x,y), 
making it trivial to transform back and forth between 
the two spaces. For each pixel on the screen the initial 
value z0 is computed from the coordinate of the pixel 
(x0, y0). The number c that defines the Julia set is a 

constant. The Mandelbrot set is defined by a similar 
formula, zn+1 → zn

2 + z0. 

The sequence of points (z0, z1, z2…) defines the so-
called ‘orbit’. The Julia set and Mandelbrot set are 
defined as the set of points for which the sequence 
does not diverge to infinity. Practically, however, we 
do not form an infinite sequence and do not compare 
with infinity. Good results can be obtained by 
checking to see if the complex modulus !"# + %"# 
exceeds 10 while generating a sequence of 500 
points. A bitmap image trap computes the distance 
from each zn and saves the point with minimum 
distance to some geometric shape, such as a line or 
circle. In bitmap orbit trapping the trapped point, zt = 
xt + i yt, is used as an image coordinate. For the 
output image, I, the pixel I(x0, y0) is set to the color of 
the pixel J(xt, yt), where J is a user-selected image. 

The bitmap orbit trap permits an interpretation of 
fractals that is new to many users. The repeating 
structures and patterns in the fractal define a 
distortion field that stretches, compresses and 
repeats an image. This contrasts with the more 
common approach of visualizing fractals by mapping 
from numerical values to colors in a palette. 

3 | PHOTOFRAC 

To reach a broad audience of users we decided to 
release the application as a mobile app and web app. 
The mobile app enables users to explore the fractal 
and generate images using convenient touch gestures 
without worrying about the security issues of 
downloading, installing and maintaining software on a 
desktop PC. 

Our fractal image generation system, PhotoFrac, 

   
Figure 1 | Source photograph (left), photo embedded into a Julia set (center), another embedding with a different transformation matrix, M 
(right). 
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generalizes the bitmap orbit trap concept described in 
the previous section in several ways. We incorporated 
additional transformations to permit the image to be 
moved and resized relative to the orbit trap 
coordinates. Image filters such as edge enhancement 
and color grading were implemented to simplify the 
user workflow on mobile devices where processing an 
image using multiple apps can be inconvenient.  

A transformation matrix, M, is applied when bitmap 
orbit trapping [xm, ym] = M[xt, yt] to control the 
appearance of the photograph within the fractal as 
shown in Figure 1. Another matrix, N, controls the 
framing of the fractal itself. The final fractal image, I, is 
computed from the fractal orbit trap coordinates and 
the photograph, J, by computing [xn, yn] = N[x0, y0] and 
then I(xn, yn) = J(xm, ym). The image, J, is considered to 
infinitely repeat over the image plane, which enables 
negative image coordinates, and coordinates larger 
than the image size to be handled. 

In a desktop computer system with a modern 
videocard the fractal generation process can be made 
very computationally efficient. Our initial prototype 
system was implemented in C++ and OpenGL. The 
photograph, J, was bound as an OpenGL texture 
map, and the orbit trap coordinates [xt, yt] are 
computed in the fragment shader on the GPU. In this 
framework, the only data that needs to be transferred 
from the CPU to the GPU during image creation are 
the matrices M and N which are updated in response 
to user interaction. This permits very reactive and 
smooth response to user input. In the following 
subsections, we describe how we maintain low-
latency user interaction on mobile platforms and the 
web. 

3.1 MOBILE APP DEVELOPMENT 

PhotoFrac was implemented in C#, Unity and the 
OpenGL shading language (GLSL) (Rost et al., 2009). 
The development team consisted of one programmer 
(the first author of this paper). Total development time 
was about four weeks. Using Unity permitted us to 
easily deploy the application to iOS and Android 
(Figure 2). The bulk of the image generation is handled 
by a shader written in the OpenGL shading language, 
as in the desktop prototype application. For each pixel 
on the screen an iterative computation of several 
hundred iterations is required. In preliminary 
experiments this resulted in poor performance (a few 

frames per second) on all but the highest-end phone 
hardware. A decision was made to precompute high 
resolution fractal results for a few selected fractals. 
The results are orbit trap image coordinates stored in 
a 32-bit color texture. This permits each image 
coordinate to be encoded as a pair of 8-bit values. 
Storing the image coordinates natively as floating-
point coordinates was not an option since most 
mobile hardware does not support textures in this 
format. So, 16-bit floating point coordinates were 
computed in the shader from each pair of 8-bit values. 
Precomputed coordinates are transformed by the 
matrix, N, but the limited resolution of the 
precomputed texture image effectively restricts the 
range of scales and translations that can be applied 
using the matrix, M, since we precompute the 
coordinates only within a fixed rectangle and at a 
given resolution. 

The transformation matrix, M, can represent rotation, 
translation and uniform scale. This permits the user to 
interactively control the mapping from precomputed 
trap coordinates to the image coordinates. Scale is 
controlled with a pinch gesture, translation by 

 
Figure 2 | Screenshot of PhotoFrac for Android. 
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dragging, and rotation with a two-finger rotation 
gesture. Scale controls the number of repetitions of 
the image within the fractal. When the image is scaled 
smaller it will repeat more times, but to reduce the 
appearance of sudden discontinuities across the 
image boundary we use a repeat and mirrored repeat 
modes that cause the image to be either copied or 
reflected across its boundaries, leading to 
kaleidoscopic effects. Other image manipulation 
features incorporated into the shader are color 
grading, and edge detection. 

The orbit trap coordinates are precomputed at a 
resolution of 2048 x 2048. When the fractal is zoomed 
in such that a texel in the precomputed image is 
bigger than a pixel on the screen interpolation is 
required to maintain visual continuity. This results in 
visual artifacts in the bitmap orbit trap mapping which 
are not fractal in nature, but have nevertheless been 
used by some users to great effect. 

We tested PhotoFrac on a low-end hardware device 
to determine the worst-case scenario for 
performance. The test platform was a Samsung 
Galaxy S3 phone, which was a three-year-old model 
when we began software development. Since most of 
the computational work is precomputed, the 
bottleneck to performance is the fragment shader, 
which runs once for each pixel on the screen. The 

screen resolution of the test device was 720 x 1280. 
After logging render times during several interactive 
sessions, we found that the time per frame varied 
between 39 ms and 26 ms (25 - 38 frames per 
second), which is sufficient for interactive applications. 
Preliminary experiments without precomputation 
(computing all fractal interactions at runtime) resulted 
in 1 – 2 frames per second and frequent crashes. The 
Galaxy S3 and other devices of the same generation 
run version 4 of the Android operating system. 
Statistics available to registered app developers tell us 
that over 35% of the Android devices on which 
PhotoFrac is installed are running Android 4. 
Combined with the positive user ratings (3.79 out of 5) 
this suggests that most users find the performance to 
be acceptable. 

PhotoFrac was deployed to the Google Play and 
iTunes app stores in the Summer of 2015 as a free 
download. As of Summer 2016 the Android version of 
the app has been downloaded 1342 times, and the 
iOS version 375 times.   

3.2 WEB APP DEVELOPMENT 

WebGL (Marrin, 2011) is a standard for high-
performance graphics on the web. It is a subset of 
OpenGL ES, a graphics standard for embedded and 
mobile devices, which is itself a subset of the OpenGL 
standard. As such, WebGL lacks some advanced 

 
Figure 3 | Screenshot of PhotoFrac for the web. 
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features of OpenGL ES and OpenGL. The WebGL 
version of our app is intended to be run on desktop 
PCs with powerful videocards, so we are not 
constrained by computational power as we were on 
the mobile version. WebGL, however, can also run on 
several mobile web browsers, so users with powerful 
mobile devices can also use the web version. The 
supporting application framework is written in 
JavaScript, and the webpage it is embedded in is 
implemented in HTML and CSS. The web version of 
PhotoFrac can be found at http://www.skeezix6.com. 

The web app opened a new opportunity for providing 
user-control of the image editing process: live-coding. 
Shader code in WebGL can be represented as 
human-readable text, and is compiled via a JavaScript 
function call. This permits us to provide a text window 
in the webpage in which the user may enter shader 
code, as shown in the right side of Figure 3. Modified 
shaders can be recompiled and used on-the-fly 
without reloading the webpage, permitting a much 
more flexible system than one which uses preselected 
equations and orbit traps. It is also a convenient way 
for the developers to iteratively refine the built-in 
fractal formulas.  

4 | SHOW 

Preliminary experiments incorporating photographic 
images into fractal patterns demonstrated that 
PhotoFrac was a versatile tool that allowed users to 
create unique images in their own style. Three of the 
authors (McGraw, McGraw and Parker) held an art 
show at the Athens of Indiana Arts Studio & Gallery. 
“Art Meets Math, Fascinating Fractals” opened on 
April 8th, 2016 in Crawfordsville Indiana. In the 
following subsections, the authors share their results 
and discuss their experiences in using the software to 
create works for the show. 

4.1 USER STUDY: LISA PARKER 

As an artist, my primary interests are in printmaking, 
but I also enjoy drawing, painting and sculpting. My 
subjects vary, and I move freely between 
representational and abstract imagery. The consistent 
thread throughout my work is a desire to create a 
visual metaphor. Prior to using PhotoFrac, I had little 
experience in creating digital art.  

 
Figure 4 | “Architecture Dream”. 

 

 
Figure 5 | “Big Brain Mask”. 

 

 
Figure 6 | “Tsunami”. 
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Many of my results make use of the image processing 
options (e.g. edge enhancement and contrast 
adjustment) which offer the ability to apply filters 
without leaving the app.  

The math and technical aspects are hidden in the 
mobile app, so as a user I don’t have to understand 
fractals or math to control the visual order created by 
applying these algorithms.  

Moving within the fractal, I can choose to find balance, 
rhythm, texture, line, color, and shape. These 
elements combine and change according to the 
choice of fractal equation and location within the 
fractal.  

“Architecture Dream” (Figure 4) demonstrates how 
PhotoFrac can amplify the elements of line and shape 
from my original photo. “Big Brain Mask” (Figure 5) is 
an example of new images being created and 
enhanced by combining shapes and lines as they 
move through the fractal. In “Tsunami” (Figure 6) 
rhythm and perspective are created by the diminishing 
size and repetition of shapes in an image. 

4.2 USER STUDY: JO MCGRAW 

I am primarily a painter and photographer of wildlife. 
As an artist living with a computer programmer, I 
appreciate that mathematics is a language that 
describes natural processes at work, even though I 
don’t always fully understand the details. But the way 
fractals can stretch, duplicate, and distort an image 
give me a sense of the meaning of the equations.   

As a user, I preferred using the mobile app. The touch 
interface gave me a better sense of control – with a 
pinch or pull of my fingers I could watch the figures in 
my photographs contort and change as they move 
through the shifting dimensions of the fractal. I tend to 
stay at the shallower levels of the fractal, where I can 
still see recognizable faces or objects, and use the 
transformations to explore distortions of their familiar 
features. I find that those changes can produce a 
surprisingly diverse emotional gauntlet. I often like to 
push an image through the fractal until a face collides 
with itself, or the fractal presents multiple images of 
the same figure, pulled and twisted in different 
directions. 

In my work, I often edit my images in other apps 
before plugging them into PhotoFrac because I like to 

 
Figure 7 | “Eye ball”. 

 

 
Figure 8 | “Egg Solitude”. 

 

 
Figure 9 | “My Orange Heart”. 
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soften and smooth the background so it blends 
continuously, or add texture or non-photorealistic 
effects to the image. Using multiple apps in my 
workflow gives me access to an expanded range of 
image filters and effects. In addition to photographs, I 
also use these apps to edit scans of my original 
paintings. 

In Figure 7 four repeating images of the same cat face 
disappear into a single point in the fractal creating an 
"eye ball." To generate this image, the original photo 
was first edited in Repix (another photo editing app) to 
blur the background before editing it with PhotoFrac. 
This produces a more seamless blending of borders 
when the image is multiplied.  

The edit of the robin's nest and eggs (Figure 8) shows 
how greatly magnified a small part of an image can 
become. In this case the pine needles in the 
background assume monstrous proportions, and the 
eggs multiplying in space look like they occupy 
underground tunnels.  

An original acrylic painting with a variety of textures 
and two faces provided many potential combinations 
and collisions. The edit in Figure 9 generated several 
echoing heart shapes and minimal facial features on 
the cat in the middle. 

4.3 USER STUDY: TIM MCGRAW 

As a graphics programmer, and the sole software 
developer of PhotoFrac, my goal in working with the 
tool was to explore the extensible nature of the web 
version. Users with some programming experience 
are the target audience for the optional “expert mode” 
interface shown on the right-hand side of Figure 3. In 
this text window the GLSL shader code may be 
edited, and dynamically recompiled with a button 
click.  

Recompilation of the shaders takes only a few 
milliseconds, and I found that editing the code 
became a natural part of the image processing 
workflow. The interface includes two general purpose 
sliders which are mapped to shader variables that can 
be used for any purpose. This is useful for exploring 
the parameter space of the algorithms to find optimal 
values. Those values can later be hard-coded in the 
shader. There is also a built-in variable representing 

 
Figure 10 | “Urban Caterpillar”. 

 

 
Figure 11| “Sprout”. 

 

 
Figure 12 | “Stubble”. 
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time that can be used to generate short animation 
sequences.  

A drawback of the “expert-mode” system, compared 
to the mobile version of PhotoFrac is that the user-
generated procedures may not create usable images. 
In fact, errors in the code may prevent it from even 
compiling or running. Constraining the user to known 
coordinates and ranges of parameter values in the 
mobile app restricts the number of options available to 
the user, and eliminates errors due to programming 
language syntax and meaningless mathematical 
equations. 

However, the flexibility and power of the web version 
comes at a price. When using the web version with a 
mouse and keyboard, one loses the tactile experience 
of transforming the images and fractals with touch 
gestures.  

Many of my images are the result of experimenting 
with new orbit trapping schemes. Figures 10-12 
demonstrate a scheme that does not compute a 
single image coordinate, but instead blends together 
image colors for each point in the orbit. This method 
is computationally more intensive than the prior 
methods, but still allows interactive frame rates.  

This orbit trap allows some features of the original 
image to still be recognizable at low iteration counts, 
as in “Urban Caterpillar” (Figure 10). At higher iteration 
counts the original image can become obliterated and 
only the source colors remain.  

4.4 USER STUDY: ESTEBAN GARCIA BRAVO 

I am a visual artist working with digital media, 
including computer animation, fabrication and 
interactivity. When I first started manipulating images 
in PhotoFrac the results were reminiscent of some 
notable animation sequences: the distorted Donald 
Duck in “The Three Caballeros”, and “Malice in 
Wonderland” by Vince Collins. Neither of these 
animations present logical narratives, but rather 
display a colorful organization of bold shapes. 
Watching these animations becomes an experience 
on its own, free from reasoning and reminiscent of 
psychedelic experiences. My main use of PhotoFrac 
was processing my own original cartoon drawings.  

In Figure 13, a “Bug” character is recombined into a 
kaleidoscopic effect. In all my compositions, I focused 

on the parts of the fractal that represented radial 
symmetry. This allowed me to be more in control of 
the fractal algorithm and not lose the consistency of 
shape and the boldness of the cartoon aesthetic. 

The input image for Figure 14 was a drawing of a 
cartoon buzzard. During processing, I could control 
how the lines and colors formed new interesting 
shapes that did not necessarily represent the original 
drawing anymore, but made it look more interesting. 
By simplifying line and reducing the amount of color, 
more unexpected shapes emerged. The last test was 
to record the animations through the PhotoFrac 
website. Figure 15 shows a single frame of one of 
those animations.  

 
Figure 13 | “Bug”. 

 

 
Figure 14 | “Bird”. 

 

 
Figure 15 | “Sad Dog”. 
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The web version of PhotoFrac generates 15-second 
animations of the user manipulating the fractal. This 
feature is useful for animators wanting to produce 
abstract film shorts or create animated kaleidoscopic 
textures in real time. 

5 | CONCLUSIONS 

In this work, we have described PhotoFrac, a fractal 
photo editing tool. The challenges and solutions to 
creating an interactive user experience on mobile 
hardware and the web were described, and the 
experiences of three artists and the developer using 
the tool were documented. 

The PhotoFrac mobile app enables the user to 
experiment with algorithmic art without working in 
terms of equations or iteration counts or other 
technical parameters. Colors, forms and textures are 
specified by selecting a source image. The 
transformation matrices which govern the result can 
be quickly specified with familiar touch-screen 
gestures. The more full-featured web version of 
PhotoFrac permits the underlying equations and orbit 
trap techniques to be dynamically modified, while 
sacrificing the portability and gesture-based interface. 

Areas for future work include incorporating 3D 
fractals, such as the quaternion Julia sets, Mandelbulb 
and Mandelbox. A separate branch of the PhotoFrac 
project for experimenting with fractal music 
visualization is currently under development. 
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