
 Journal of Science and Technology of the Arts, Volume 9, No. 3 – Special Issue: xCoAx 2017

 CITARJ
 83

Language Without Code: Intentionally
Unusable, Uncomputable, or Conceptual
Programming Languages
Daniel Temkin
Independent Artist,
609 Kappock St., #3E, Bronx, NY 10463
USA

daniel@danieltemkin.com

ABSTRACT

The esoteric class of programming languages,

commonly called esolangs, have long challenged the

norms of programming practice and computational

culture. Esolangs are a practice of hacker/hobbyists,

who don’t primarily think of their work as art. Most

esolangs are experiential works; we understand the

languages by writing code in them. Through this

action, the logic of the language becomes clear.

However, a smaller subset of esolangs make their

point not through actively writing code, but instead by

simply contemplating their rules. We can think of

these esolangs as conceptual rather than

experiential. Some are designed in such a way that

they don’t allow any code to be written for them at all.

By stepping away from usability, the conceptual

esolangs offer the most direct challenge to the

definition of programming language, a commonly

used term which is surprisingly unspecific, and

usually understood through utility, despite the fact

that programming languages predate digital

computers. This paper delves into the conceptual

esolangs and looks at their challenge to the idea of

programming languages.

KEYWORDS

Esolangs; Programming Languages; Esoteric

Programming Languages; Fluxus; Oulipo.

ARTICLE INFO

Received: 15 November 2017

Accepted: 27 November 2017

Published: 22 December 2017

https://dx.doi.org/10.7559/citarj.v9i3.432

1 | INTRODUCTION

Esolangs (for "esoteric programming languages") are

a subversive practice within computer science, taking

programming language design to places far outside

of practical utility. Some ask programmers to give up

control of which command will fire first (David

Morgan-Marr's Whenever) or to encode commands

into images (Piet, also by Morgan-Marr) or express

commands across a 2D plane, to be triggered by lines

of code running up, down, to the left or right, or off

one side of the page to the other (Chris Pressey's

Befunge). Each of these languages investigates

programming by postulating what-if scenarios and

then designing a language around them.

Most esolangs are experiential works; to understand

the language (e.g. what is it like to encode commands

into colour changes across an image?), you write

code—in the case of Piet, a visual aesthetic emerges

from the language's rules—but it takes a fair amount

of effort, and usually a community of programmers, to

find it. Scott Feeney, founder of the largest wiki and

archive of esolangs, esolangs.org, puts it this way:

“I think what’s most interesting about

esolangs is the conversation between

languages, which ask questions, and

programs written in those languages, which

answer the questions. When you build a new

esoteric language with a weird set of

constraints, you get people thinking: I wonder

if I can do X in this language? I wonder if

there’s a way to do Y? And figuring that out,

by writing programs that do X and Y, can be

a fun challenge.” (Feeney, 2015)

 CITARJ
 84

However, not all esolangs have concepts that lead to

working code. Since esolangs are an experimental

form, it is common for the limits of the language to not

be immediately clear. For instance, take the language

Three Star Programmer, created in 2015 by ais523.

This language asks programmers to write code with

three levels of indirection: pointers to pointers to

pointers to memory cells. A program in Three Star

Programmer is in the form of a string of numbers;

each can be thought of as both raw data and as a

pointer to another location in memory, where that

memory is also the code itself. The numbers are

consecutively read, each dereferenced three times

(meaning the interpreter jumps to the location

corresponding to the number in that cell), until we get

to a final number which is then incremented.

However, that final location is also a pointer (to a

pointer to a pointer), meaning where it points has just

changed. On the esolangs wiki, ais523 (the creator of

the language) says "it's very hard to actually write

anything in the language, because of the fundamental

nature of the language, in which everything affects

everything else and no change is really reversible."

Despite this, at the time of writing, it was not yet

known how powerful it was, in terms of the language’s

potential to represent algorithms. Between the time of

writing and final publication of this paper, ais523 has

reported that the language has indeed been proven

Turing Complete. (“Three Star Programmer -

Esolang,” 2015).

Such potential is measured through a classification

called computational complexity. Many esolangs

strive for the most complex category, Turing

Completeness, understood as tantamount to what

computers can do, and which most mainstream

languages belong to (Kandar, 2013). The reason for

this is aesthetic: showing that a strange idea is also

very powerful. For example, the highly influential

esolang brainfuck (typically spelled lower-case)

expresses all code in eight commands, each

represented by a punctuation mark. What makes

brainfuck interesting is how such a minimal language

with such odd logic is provably as powerful a

language as Python or C, despite having no built-in

representation of the number 2 or of the action of

multiplication. With Three Star Programmer, we have

an example of a new idea, something that is so odd

that it remained unclear exactly how to write

performative code in the language. It could have

taken years to be proven Turing Complete or a lesser

computational class (e.g. a Finite State Machine),

which would itself be a fascinating result. At this point,

TC is proven, but a path to practical coding in the

language is still elusive. (Temkin, 2013).

So why would an esolang designer (or “esolanger”)

set out to deliberately design a hobbled language,

one with no potential for Turing Completeness, or one

not even runnable on current technology? Where we

can think of brainfuck and Three Star Programmer as

experiential esolangs—languages we understand

through the experience of writing code in them—the

nonprogrammable programming languages have a

different agenda. Experiential esolangs are run on the

machine, but the nonprogrammable ones are

conceptual works: they can only be run in our heads.

This paper explores these languages.

2 | WHAT IS A PROGRAMMING LANGUAGE?

Conceptual languages, like their experiential cousins,

are a radical challenge to what programming

languages are: how they are designed and how they

can function. However, in their lack of codability, they

perhaps more directly challenge how the very term

programming language is defined. Surprisingly, this

concept is hard to pin down. It is usually defined

through utility: a programming language is used to

express commands to a computer. The Merriam

Webster definition, Wikipedia's definitions (both the

longest-posted one and the one currently posted at

the time of writing) are all variations of these,

sometimes with "formal language" mentioned, which

at least points to a substantial difference from natural

language.

Wikipedia helpfully notes that the first programming

languages were used for automation before

existence of the digital computer, which points to

perhaps the biggest issue with the term: what is a

computer and do we need it to execute code? Before

the first modern digital computer, we had the Turing

Machine, a purely theoretical automaton used for

mathematical proofs about computation. Are we

defining programming languages in terms of

computers as they are today? As we imagine them

tomorrow? Or always in terms of the theoretical

machine, as the first languages were designed?

Microsoft, IBM, and others have designed quantum

computing languages for computers that don't yet

physically exist and perhaps won’t, at least as they

are currently conceived (Simonite, 2017). While we

have a system of computational complexity that

shows the algorithmic potential of a language, as we

 Journal of Science and Technology of the Arts, Volume 9, No. 3 – Special Issue: xCoAx 2017

 CITARJ
 85

will see through example, there is no established

lower boundary of what we expect programming

languages to be capable of in order to consider them

languages. As the (possibly apocryphal but wholly-in-

character) quote from Edsger Dijkstra goes,

"Computer science is no more about computers than

astronomy is about telescopes" (Dourish, 2017).

Chris Pressey, creator of the esolang Befunge and its

mailing list, where much of the early discussion

around esolangs took place, makes a similar point

about esolangs:

“[T]hey’re made up of concepts, and these

concepts would exist even if our computing

equipment wasn’t electronic, or wasn’t digital,

or if we didn’t have computing equipment at

all. It’s just that having computing equipment

makes it a lot easier to design and experience

these programming languages.” (Pressey,

2013)

But if we remove the computer from the programming

language, what are the other aspects of programming

languages left to explore? Technical books on

compilers get more exact about what a programming

language is, the qualities that, while secondary in

terms of the ordinary definition, get more to the heart

of what programming languages actually are. The

popular textbook Programming Language

Pragmatics describes languages this way:

“Unlike natural languages such as English or

Chinese, computer languages must be

precise. Both their form (syntax) and meaning

(semantics) must be specified without

ambiguity, so that both programmers and

computers can tell what a program is

supposed to do.” (Scott, 2006)

Programming languages as logical systems lacking in

ambiguity, along with their relentlessly imperative

tone (even for the non-imperative languages, which

are different in form but not in mood)—are perhaps

what most clearly differentiate programming

languages from natural language. Esolangs like

brainfuck add the semblance of ambiguity (to us

human readers or programmers) through complexity,

but the language is still clearly defined in both its

syntax and semantics; each brainfuck program still

has only one semantic interpretation to the machine.

However, even this definition fails to separate a

language like C++ from the form of English we use to

speak to natural language processing systems like

Alexa, which likewise translate to computer

instructions, but which we would not likely want to

categorize as programming language.

Another potential objection is that we expect the

semantics of such languages to be opcodes

(individual machine instructions): writing to memory,

moving data in memory, adding two numbers, etc. As

many a creative coding teacher has illustrated by

having students enact a virtual computer,

impersonating the CPU and other parts of the

machine, there is nothing about "copy the value from

memory cell 103 to register A" that we can't capture

symbolically and effectively by transferring a piece of

paper from one student’s hand to another.

2.1 LANGUAGE SCHISMS

Malbolge, created by Ben Olmstead in 1998, was

designed to be the most difficult language to write

code in. Each program runs in a giant loop, requiring

a special operation to indicate the end of program.

Each command self-encrypts after it runs, mutating

from one command to another. All math is done using

a counter-intuitive operation called the "crazy"

operator, which uses base 3 math, a particularly non-

intuitive base for programmers.

When Olmstead put Malbolge out into the world, he

released no programs for it; he has to this day never

written a Malbolge program. It took three years before

its first program, a Hello World program, was written

for it. While this fact is often mentioned in terms of

Malbolge, Olmstead sees it as a bit overblown, as it

took a while for Malbolge to be noticed by those who

took a serious stab at writing code for it (Olmstead,

2014). This program was not written by hand, but by

another program, essentially treating Malbolge as a

cryptanalysis problem. This does away with the

programming language as a form of human/computer

interaction; it is a language entirely generated by one

program for another to read. Such languages do exist

in mainstream computing: an example is PostScript,

a document layout language (and ancestor of the

PDF format) which began as human-written mark-up,

but is now nearly always generated by a layout

program based on designs made using a visual

interface (Weingartner, 2006).

Although we can't internalize the logic of Malbolge as

we do with most esolangs, the sign of its experiential

status is the way that this language, developed in a

 CITARJ
 86

single afternoon, has inspired hundreds of hours of

coding, with analyses of the cycles of Malbolge's

commands, and studies of Malbolge algorithms

(Scheffer, 2015).

Less noted than Malbolge's general difficulty is the

fact that the documentation and the actual compiler

created by Olmstead are not entirely in agreement.

From an interview for esoteric.codes:

I know there is a mismatch between the

documented and implemented tables. I have

noticed that some people decide that the bug

is in the specification, and others decide the

bug is in the implementation; it certainly

makes Malbolge harder to use, and

fragments the user community (such as it is).

If I were to make a Malbolge 2000, I would

definitely make the documentation subtly

wrong. (Olmstead, 2014)

We expect a language to have a code processing tool

(a compiler or interpreter) to transform it into machine

code (or other machine-friendly formats). This tool

also serves as a gatekeeper, enforcing the syntax of

the language; if we try to compile FORTRAN code as

C, the C compiler will reject it as invalid: a syntax error

on every line. The compiler (and runtime system if it

exists for the language) is seen as the materialization

of language itself; it's what we interact with when we

write code. However, these executors are not

informational: they do not reveal the rules of the

language. If we are given a clearly expressed syntax

for the language (in a formal notation such as BNF or

Backus-Naur form), along with its semantics and

specifications of its runtime if needed (garbage

collection, special optimizations), we could write our

own compiler for the language. This has been done

many times for widely-used languages such as C,

with each compiler introducing its own quirks and

minor differences, obscure enough that they have not

been fixed; perhaps best known by the example of

the null program; the completely empty file, which is

valid in some versions of C and not others (Montfort,

2014).

By pitting the performance of the only available

interpreter against the formal definition of the

language, Malbolge undermines the sense that either

one is the true language.

INTERCAL (somehow short for "Compiler Language

With No Pronounceable Acronym"), generally

considered the first esolang (it was created in 1972),

included a set of documentation filled with

nonsensical diagrams and misleading statements.

Some aspects of the language were left to be

discovered, or intentionally ambiguous. INTERCAL

required the keyword PLEASE scattered throughout

the program. Not enough PLEASEs and the entire

program would be ignored, as the interpreter found

the program too rude. Too many PLEASEs and the

interpreter saw the programmer as simpering and

also ignored the entire thing. The correct proportion

of PLEASEs to commands was not in the

documentation, leaving the programmer to discover

on her own how to get the program running

(Bratishenko, 2009; Smith, 2007). The PLEASE

command also brings our attention to the one aspect

that nearly all programming languages have in

common: the relentlessness of their commanding

tone.

When INTERCAL was rewritten as C-INTERCAL (by

Eric S. Raymond in 1990), making it available to a

wider audience, he had to choose which features

were critical to maintain and which to modernise. He

chose to better document the language (spoiler: it's

"approximately 3 non-polite identifiers for every polite

identifier used") (Raymond, 2015).

2.2 UNCOMPUTABLE LANGUAGES

Brainfuck has been an inspiration for hundreds of

derivative languages, in part due to its simplicity of

design: an easy way to get to Turing Completeness.

According to the esolangs wiki, Chris Pressey has

called it the "twelve-bar blues of esolangs" (“Brainfuck

- Esolang,” n.d.).

Lenguage embraces the minimalism of brainfuck, and

uses the same command set, with a different

encoding of signifiers. Lenguage’s name is a play on

words; LEN() is the command in many languages that

reports the length of a string. In Lenguage, the length

of the program in characters is the only thing that

matters. A C program could be a Lenguage program

as well, if its length were correct to correspond to a

series of commands (“Lenguage - Esolang,” 2014).

Lenguage asks the question: do we need both 0 and

1? If we're going for pure minimalism, why not just

one symbol? With a vocabulary of undifferentiated

symbols (such as 1s), we could represent code with

anything: the length of a line, or enumerating each in

a pile of rocks.

 Journal of Science and Technology of the Arts, Volume 9, No. 3 – Special Issue: xCoAx 2017

 CITARJ
 87

In Lenguage, this is performed by translating each of

brainfuck's commands into a binary sequence: 000

for + (increment), 001 for - (decrement) etc., and set

in order, to produce a single number. A program with

the length of that number will be read by the

Lenguage interpreter by translating that number into

binary and reading the sequence, giving us the

program.

The Hello World program for Lenguage is any file with

17,498,005,810,995,570,277,424,757,300,680,353,

162,371,620,393,379,153,004,301,136,096,632,219

,477,184,361,459,647,073,663,110,750,484

characters. At 1.75 * 10^102, it's more than a Googol

characters. This means the Hello World program, if

stored at the atomic level (counting individual atoms

to determine the program), would be larger than the

size of the known Universe.

If Lenguage had adopted the approach of the

language Spoon, another binary-based brainfuck

derivative, it would be in a somewhat more usable

state. Spoon, created by S. Goodwin in 1998, took

brainfuck and represented each of the commands

with a binary sequence, similar to Lenguage. Where

Lenguage took a minimalist approach to variety in

input, Spoon allows us to simply write the number,

rather than use the length of the sequence of the

number. Furthermore, Spoon uses Huffman-encoded

binary sequences, meaning the most commonly used

commands (+ and -) are represented with the shortest

sequence in binary digits; + is a single 1, - is 000. Had

Lenguage used Huffman-encoding, its Hello World

program would be only nineteen quattuorvigintillion,

10^76, only the informational content of a one-solar-

mass black hole.

Chris Pressey created a derivative language of

Spoon, called You are Reading the Name of this

Esolang (pronounced "You are Hearing the Name of

this Esolang"). It is Spoon with two additional

symbols; opening and closing brackets. Code held in

the brackets are read as complete Spoon programs

in themselves and executed first. If they complete,

they are translated to 1s and dropped back into the

original sequence. If they do not halt (get stuck in an

infinite loop), they are translated into 0s (“You are

Reading the Name of this Esolang - Esolang,” n.d.).

While some trivial infinite loops can be detected, Alan

Turing proved that there is no generalized solution to

determining whether a piece of code will halt; this is

known as the Halting Problem (Turing, 1937). You are

Reading the Name of this Esolang has taken a

fundamental computational problem and moved it

from the performance of code into the lexical analysis

of code. While some You are Reading the Name of

this Esolang programs may be validated by a human

reader or the compiler, it has been proven definitively

that the machine has no general way to validate a

sequence as being a You are Reading the Name of

this Esolang program. It could take exponential time,

or possibly forever, to compile such a program.

Rather than being larger than the universe, You are

Reading the Name of This Esolang is beyond the

reach of any currently conceivable technology.

Traditional programming languages try to remain

unobtrusive, to let us see how the code will function

as clearly as possible, rather than drawing attention

to its actual structure as symbols on a screen,

esolangs frequently bring our attention back to the

surface layer of the language. With a language like

You are Reading the Name of This Esolang, the

name alone is a constant reminder that we are

dealing with something very different, where the

language is not something we can easily see through,

but a structure to be wrestled with, or a puzzle for us

to ponder and consider in its own right.

2.3 LANGUAGE AS PURE DOCUMENTATION

Immateriality is a returning theme in esolangs,

perhaps drawn from the fact that languages are

already almost nothing: sets of rules, with no

particular implementation.

The best known of these is Whitespace, a fully

functional language you code with just three

whitespace characters: space, tab, and return. A

Whitespace program can be a file that looks entirely

empty. While Whitespace is Turing Complete, it's a

language we can consider conceptual in the sense

that we experience it by considering its aesthetic. We

don’t learn a lot by actually creating programs; the

language is a fairly typical procedural language;

what’s exciting about it is its strange concept and

vocabulary.

Incidentally, C++, a particularly whitespace-

ambivalent language (unlike, say, Python, where

indentation has syntactic meaning), nearly had

meaningful whitespace. Its creator, Bjarne

Stroustroup, suggested allowing the overloading of

whitespace, meaning C++ programmers could assign

actions to it, such as to multiply two numbers, in the

 CITARJ
 88

interest of formatting multiplication closer like how

mathematicians do, without the * symbol (Stroustrup

& Park, 2000).

It would not make much sense to design the

Whitespace language as less than a Turing Complete

language. A language written with whitespace

characters is interesting because of the surprise of it

being functional (“Whitespace Tutorial,” 2004).

Whitespace shows that the signifiers for a language

are not meaningful to the machine; it is only of limited

signification for us, not for the machine, for which all

symbols are essentially interchangeable.

When we take the gesture toward immateriality into

the language definition itself, we get smaller and

stranger languages, less capable of expression, and

often severely limited in usability. Most of the

following languages are treated as joke languages.

The esolangs wiki has them listed as such explicitly,

adding:

“This is a list of esoteric languages that are

not of any interest except for potential humour

value. Generally speaking, they are

completely unusable for programming even in

theory, trivial and less interesting variations

on existing esoteric languages, or too

underspecified to determine any potential

usability.

For esoteric languages that are potentially

interesting in some way, or that are actually

capable of running programs and producing a

useful output, see the normal list of esoteric

languages.” (“Joke language list,” n.d.)

This, I believe is unfair; Whitespace itself was taken

as a joke when it first launched with an

announcement to Slashdot (to be fair, on April Fool’s

Day) in 2003, but has remained in public

consciousness and an inspiration for embracing the

immaterial in esolangs. Whitespace is generally more

respected because it was a new idea at the time —

although perusing the original Slashdot thread shows

that, even then, there were naysayers exclaiming that

it had been done before (“New Whitespace-Only

Programming Language - Slashdot,” 2003).

Part of this dislike comes from the so-called “theme”

languages; ArnoldC and LOLCATS, where one writes

code that sounds like Schwarzenegger or the lolcat

meme (O HAI etc.). There’s a Trump version and at

least six distinct emoji languages. The problem with

these languages is that they are very ordinary apart

from their vocabulary. This makes it easy to dismiss

the great number of interesting vocabulary-oriented

languages, such as Whitespace, or, as I argue with

the next few examples, some of the extreme

minimalist pieces such as Unnecessary and

Καλλίστῃ.

The legendary compiler book known as the Dragon

Book describes a compiler as "a program that reads

a program written in one language—the source

language—and translates it into an equivalent

program in another language—the target language."

It also explains the Recognizer, the part of the

compiler that affirms that a piece of code is legitimate

in a language (Aho, Lam, Sethi, & Ullman, 2006).

The esolang Unnecessary (created in 2005 by

Keymaker) can be thought of as a pure Recognizer.

It reads only code that doesn’t exist, and has only one

possible program; a program which does nothing.

Since there is no code to write, the author helpfully

describes the language as “easy to learn” (Keymaker,

2005).

When one attempts to compile any file at all as an

Unnecessary program, it fails with an error message.

An empty document, an image, a Word document,

each is rejected as insufficiently Unnecessary. Only a

file which can’t be found (a file location that doesn’t

exist on disk) succeeds to compile. The result is the

creation of an empty program made up of a single

instruction, the NOP (pronounced “no op” for “no

operation”). This is the minimal command to generate

the program as an executable. As Keymaker

describes it:

“The main idea was that the language could

not have programs, other than the kind that

don’t exist. (Can it have those then if they

don’t exist?) Then I noticed that every valid

program (whatever that is) is a/the nullquine

but that was more of a by-product of the main

idea. Fitting nonetheless!” (Keymaker, 2011)

A Quine is a program which prints its own source

code to the screen. The Null-quine is a program with

empty source code that prints its source (which is

nothing) to the screen.

The idea of codeless language goes much farther

than one might think. Each has its own attitude toward

why nothing happens. It can be useful to think of

these in terms of the null program; the program

 Journal of Science and Technology of the Arts, Volume 9, No. 3 – Special Issue: xCoAx 2017

 CITARJ
 89

without code, which, as explained in Nick Montfort’s

No Code: Null Programs, can still instigate activity

despite its lack of content, such as logging by the

compiler (Montfort, 2014). The null language is never

completely without attributes; since a language is a

set of rules, the refusal to enforce rules always has

some reasoning, revealed in the documentation or

(un)implementation.

The language Καλλίστῃ (or Kallisti), a collaborative

project from 2007 led by The Prophet Wizard of the

Crayon Cake and the Seven-Inch Bread, was

inspired by Discordianiam, the Dada-like fake religion

once popular with programmers, that plays with

meaning and nonsense. Its list of rules is:

• Obey as many rules as possible

• There is plenty nothing

• Everything is true

• Everything is false

• There is only nothing

• Obey as few rules as possible

It also includes BNF notation, which shows the

language is all-accepting. Unlike Unnecessary, which

rejects all data, Καλλίστῃ accepts it all—but because

of this, it doesn’t value one type of data over another.

Καλλίστῃ turns everything back into what it already

was. Its transformation is from source code back to

itself (“Καλλίστῃ - Esolang,” n.d.).

If the “joke” languages are so disliked by much of the

esolang community, it’s interesting that they are not

simply deleted from the wiki as being not

programming languages at all. But what is a language

other than a formal system? Is Καλλίστῃ’s refusal to

specify a signifier as something other than “anything”

make it no longer a language? Does the ruleset have

to be self-consistent (formal) to be a programming

language? How small a gesture can one make toward

programming or language for a system to qualify?

While Καλλίστῃ and Unnecessary might seem like the

conclusion of how small a language can be, there are

actually many others that have essentially no code.

The language 2014 only worked in its name year;

announced on Dec 31 of that year, no code was

written for it. Since any code written after that time is

invalid, it has not only no programs, but no defined

grammar.

I am personally responsible for several languages

that are only programmed in by accident. Inspired by

work from the Fluxus movement (based in NYC in the

early 1960’s), these languages are two of the most

commonly coded in the world, although nothing has

been written for either intentionally; they take texts or

events created for other reasons and interpret them

as code.

2.4 ACCIDENTAL TURING MACHINES

One potential objection to these non-programming

programming languages are their lack of Turing

Completeness. Some esolangs belong to somewhat

more limited categories; Malbolge is a Finite State

Machine, like many other systems e.g. some

implementations of calculators. While we are unlikely

to call Malbolge not a programming language

because of this, perhaps it’s reasonable to set a

minimal complexity, below which we would not

consider a system to truly be a programming

language.

A counter-argument to this is the number of systems

that are actually Turing Complete that were created

with no intention of using them this way. It was

accidentally discovered that C++’s templating system

is Turing Complete, which is a problem, as it means

there is no way to know that a C++ compilation will

complete, due to the Halting Problem (Veldhuizen,

2003).

The card game Magic: The Gathering has been

shown to be have complex enough rules to achieve

Turing Completeness. We can play Magic: The

Gathering in a way that is effectively a computer.

“If the new token had been a Zombie rather

than an Ally, a different Kazuul Warlord and a

different Noxious Ghoul would have triggered,

as well as the same Aether Flash. So the

same would have happened except it would

be all the Zombies that got +1/+1 and all the

Allies that got -1/-1. This would effectively

take us one step to the right.” (Churchill, n.d.)

The movement to the right hints that this

implementation is a simulation of the Turing Machine.

Minesweeper has been proven to be Turing

Complete, at least if played on an infinite board. A

very strange paper announced that the human heart

has the capacity to function as a Turing Machine,

which is of interest because, due to the Halting

Problem, it proves that it is not possible to absolutely

predict cardiac tissue's behaviour (Ostrovsky, 2009).

 CITARJ
 90

3 | CONCLUSION

As Deleuze showed in his study of Spinoza, a logical

system is not necessarily rational (Lapoujade,

Rajchman & Jordan, 2017). This is well dramatized

by the experiential esolangs like Malbolge and

Brainfuck. The challenge of conceptual languages,

which don’t ask us to write code, is quite different. A

useful analogy is the difference between Oulipo

practice (the group of writers centred in Paris,

beginning in 1960) and that of the Fluxus event

scores.

Most esolangs are Oulipian in nature. The Oulipians

were writers who created constraint sets which were

explored by writing works within those constraints: for

example, George Perec’s novel A Void followed the

constraint of "write a novel without using the letter e".

Similarly, the esolanger designs a language for

herself or others to then figure out how to program.

Like the Oulipians, the esolangers are the rats who

build their own maze.

The Fluxus event scores are a bit different; they are

performance scores that "merge art and every-day

life," often sitting at the border of what can even be

called a performance. George Brecht's 3 Lamp

Events, a performance where one clicks on and off a

lamp several times, is performed far more often by

accident than on purpose. If one is aware of the work,

the accidental combination of events can be read as

a performance, carried out quite unintentionally

(Maciunas, 1966).

These event scores more strongly resemble the

conceptual esolangs: the languages for which we

don't write code. Many of Yoko Ono's early works

cannot be physically performed at all, but are meant

to be contemplated, much like the conceptual

esolangs. For example, her Earth Piece:

Listen to the sound of the earth turning.

 1963 Spring (Ono, 1964)

The conceptual languages emphasize the immaterial

nature of computation. More than bits or circuits, the

materiality of software is logic, running on theoretical

and virtual systems, sometimes embodied in

circuits—but which tomorrow could be embodied in

quantum qubits or another technology not yet dreamt

of. The conceptual esolangs twist that logic and turn

it against itself in poetic gestures that continue to

challenge the sensibility and the limits of code.

REFERENCES

Aho, A. V, Lam, M. S., Sethi, R., & Ullman, J. D.

(2006). Compilers: Principles, Techniques, and

Tools.

Brainfuck - Esolang. (n.d.). Retrieved September 29,

2017, from https://esolangs.org/wiki/Brainfuck

Bratishenko, L. (2009). Technomasochism. Cabinet.

Churchill, A. (n.d.). Magic: the Gathering is Turing

Complete. Retrieved September 28, 2017, from

http://www.toothycat.net/~hologram/Turing/HowItWo

rks.html

Dourish, P. (2017). The Stuff of Bits. Cambridge: MIT

Press.

Feeney, S. D. T. (2015). Interview with Scott Feeney.

Retrieved September 25, 2017, from

http://esoteric.codes/post/116998438745/interview-

with-scott-feeney

Joke language list. (n.d.). Retrieved September 28,

2017, from

http://esolangs.org/wiki/Joke_language_list

Kandar, S. (2013). Introduction to Automata Theory,

Formal Languages and Computation.

https://doi.org/10.1145/568438.568455

Καλλίστῃ - Esolang. (n.d.). Retrieved September 28,

2017, from https://esolangs.org/wiki/Καλλίστῃ

Keymaker. (2005). Unnecessary (another esoteric

programming language). Retrieved September 28,

2017, from

http://yiap.nfshost.com/esoteric/unnecessary/unnece

ssary.html

Keymaker. (2011). Interview with Keymaker -

esoteric.codes. Retrieved September 28, 2017, from

http://esoteric.codes/post/84939008828/interview-

with-keymaker

Lapoujade, D., Rajchman, J., & Jordan, J. D. (2017).

Aberant Movements.

Lenguage - Esolang. (2014). Retrieved September

28, 2017, from http://esolangs.org/wiki/Lenguage

Maciunas, G. (1966). Fluxfest Sale. Film Culture -

Expanded Arts, (#43), 6–7.

 Journal of Science and Technology of the Arts, Volume 9, No. 3 – Special Issue: xCoAx 2017

 CITARJ
 91

Montfort, N. (2014). No Code: Null Programs,

(December). Retrieved from

http://dspace.mit.edu/handle/1721.1/87669

New Whitespace-Only Programming Language -

Slashdot. (2003). Retrieved September 28, 2017,

from

https://slashdot.org/story/03/04/01/0332202/new-

whitespace-only-programming-language

Olmstead, B.. (2014). Interview with Ben Olmstead -

esoteric.codes. Retrieved September 28, 2017, from

http://esoteric.codes/post/101675489813/interview-

with-ben-olmstead

Ono, Y. (1964). Grapefruit.

Ostrovsky, I. (2009). Human heart is a Turing

machine, research on XBox 360 shows. Wait, what?

Retrieved September 18, 2017, from

http://igoro.com/archive/human-heart-is-a-turing-

machine-research-on-xbox-360-shows-wait-what/

Pressey, C. (2013). The Aesthetics of Esolangs.

Retrieved September 25, 2017, from

https://github.com/catseye/The-

Dossier/blob/master/article/The Aesthetics of

Esolangs.md

Raymond, E. S. (2015). Interview with Eric S.

Raymond - esoteric.codes. Retrieved September 29,

2017, from

http://esoteric.codes/post/130618094278/interview-

with-eric-s-raymond

Scheffer, L. (2015). Programming in Malbolge.

Retrieved September 29, 2017, from

http://www.lscheffer.com/malbolge.shtml

Scott, M. L. (2006). Programming Language

Pragmatics. Analysis (Vol. 20).

https://doi.org/10.1016/B978-0-12-374514-9.00008-

2

Simonite, T. (2017). Microsoft’s Nadella Wants to

Help Coders Take a Quantum Leap | WIRED. (2017).

Retrieved September 29, 2017, from

https://www.wired.com/story/microsofts-nadella-

wants-to-help-coders-take-a-quantum-leap/

Smith, A. (2007). C-INTERCAL 0.29 Revamped

Instruction Manual. Retrieved September 28, 2017,

from http://catb.org/esr/intercal/ick.htm

Stroustrup, B., & Park, F. (2000). Generalizing

Overloading for C ++ 2000.

Temkin, D. (2013). Brainfuck. Media-N. Retrieved

from

http://median.s151960.gridserver.com/?page_id=94

7

Three Star Programmer - Esolang. (2015). Retrieved

September 29, 2017, from

https://esolangs.org/wiki/Three_Star_Programmer

Veldhuizen, T. L. (2003). C++ Templates are Turing

Complete. URL Http://osl. Iu.

edu/tveldhui/papers/2003/turing. Pdf. Unpublished

Manuscript, 1–3. https://doi.org/10.1.1.14.3670

Weingartner, P. (2006). A First Guide to PostScript.

Retrieved September 28, 2017, from

http://www.tailrecursive.org/postscript/postscript.html

Whitespace Tutorial. (2004). Retrieved from

http://compsoc.dur.ac.uk/whitespace/tutorial.php

You are Reading the Name of this Esolang - Esolang.

(n.d.). Retrieved September 28, 2017, from

https://esolangs.org/wiki/You_are_Reading_the_Na

me_of_this_Esolang

BIOGRAPHICAL INFORMATION

Daniel Temkin makes images, programming

languages, and interactive pieces that use the

machine as a place of confrontation between logic

and human thought. His esoteric.codes, 2014

recipient of the ArtsWriters.org grant, documents the

history of programming languages as an art medium.

He has published in journals such as Leonardo and

World Picture Journal and has presented at

conferences including xCoAx, SXSW, GLI.TC/H,

SIGGRAPH, and Media Art Histories. He regularly

performs readings from his Internet Directory project,

a 37,000+ page loose-leaf book of all the .COM

domains in alphabetical order; he received a

commission from the Webby Awards to build an

online version, a scroll of domains that takes two

years to watch. He is expanding the esoteric.codes

project as a 2017-18 member of NEW INC, the New

Museum’s incubator.

