
Journal of Software Engineering Research and Development, 2021, 9:3, doi: 10.5753/jserd.2021.827
 This work is licensed under a Creative Commons Attribution 4.0 International License..

An Empirical Study of Bugs in COVID19 Software Projects
Akond Rahman [Tennessee Technological University| arahman@tntech.edu]
Effat Farhana [North Carolina State University| efarhan@ncsu.edu]

Abstract
The dire consequences of the COVID19 pandemic have influenced development of COVID19 software i.e.,

software used for analysis and mitigation of COVID19. Bugs in COVID19 software can be consequential, as
COVID19 software projects can impact public health policy and user data privacy. The goal of this paper is to help
practitioners and researchers improve the quality of COVID19 software through an empirical study of open source
software projects related to COVID19. We use 129 open source COVID19 software projects hosted on GitHub to
conduct our empirical study. Next, we apply qualitative analysis on 550 bug reports from the collected projects to
identify bug categories. We identify 8 bug categories, which include data bugs i.e., bugs that occur during mining
and storage of COVID19 data. The identified bug categories appear for 7 categories of software projects including
(i) projects that use statistical modeling to perform predictions related to COVID19, and (ii) medical equipment
software that are used to design and implement medical equipment, such as ventilators. Based on our findings, we
advocate for robust statistical model construction through better synergies between data science practitioners and
public health experts. Existence of security bugs in user tracking software necessitates development of tools that
will detect data privacy violations and security weaknesses.

Keywords: bugs, covid19, empirical study, pandemic, software quality

1 Introduction
The novel Coronavirus disease (COVID19) is a world
wide pandemic that spreads through droplets generated
from coughs or sneezes and by touching contaminated sur
faces (John Hopkins University, 2020). As of May 31 2020,
COVID19 has caused 370,247 deaths across theworld (John
Hopkins University, 2020). Apart from causing thousands of
deaths and creating long term health repercussions for vul
nerable populations, COVID19 has severely impacted the
economic sector. According to a recent study (Erin Duffin,
2020), due to COVID19 gross domestic product (GDP) will
decrease from 3.0% to 2.4% worldwide. As of May 28 2020,
nearly 41 million citizens reported unemployment in USA
alone (Mitchell Hartman, 2020). More than 3.9 billion peo
ple around the world were under some form of stay at home
order due to COVID19 (Alasdair Sandford, 2020).
Health care professionals are at the frontline of combat

ing COVID19. Practitioners from other domains, such as
software engineering have also joined forces to analyze and
mitigate the negative consequences of COVID19. For ex
ample, statistical modeling was used to build a software that
identifies pneumonia caused by COVID19 from lung scan
images (Tom Simonite, 2020). The software was used in 34
Chinese hospitals (Tom Simonite, 2020). In response to the
food insecurity caused by COVID19, practitioners have cre
ated an interactive visualization software that displays free
meal sites across USA (Why Hunger, 2020). The creators
of the software envision in building a social movement to
eradicate hunger and address economic inequalities. As an
other example, Apple and Google have jointly announced
of creating a software framework that will help practitioners
build tools to trace COVID19 infection status of mobile app
users (Apple, 2020). The abovementioned examples show
COVID19 software i.e., software used for analysis and miti
gation of COVID19, to have nearterm and longterm effects

on public health and society.
Despite the abovementioned advancements, COVID19

software projects are susceptible to bugs. Let us consider Fig
ure 1 in this regard. Figure 1 provides a snapshot of a bug re
port related to statistical modeling (Begley, 2020a). We ob
serve when implementing a statistical model the practition
ers did not consider the correlation between intensive care
unit (ICU) bed availability and death rate prediction. Further
more, the number of ICU beds is incorrectly assumed to be
40,000 instead of 1,000.
We hypothesize systematic analysis can reveal bug cate

gories including statistical modeling bugs similar to Figure 1.
In prior work researchers (Garcia et al., 2020; Rahman et al.,
2020; LinaresVásquez et al., 2017; Catolino et al., 2019;
Thung et al., 2012;Wan et al., 2017) have documented the im
portance of bug categorization. For example, for autonomous
vehicle software Garcia et al. 2020 stated that categorization
of bugs can help to construct bug detection and testing tools.
LinraesVásquez et al. 2017 stated categorizing vulnerabil
ities can help Android practitioners “in focusing their veri
fication and validation activities”. According to Catolino et
al. 2019, “understanding the bug type represents the first and
most timeconsuming step to perform in the process of bug
triage”.
In prior work, researchers have categorized bugs for infras

tructure as code (IaC) (Rahman et al., 2020), autonomous
vehicle (Garcia et al., 2020), and machine learning (Thung
et al., 2012; Islam et al., 2019) software. However, COVID
19 software is different from previously studied software in
the following aspects: (i) development context: unlike previ
ously studied software projects, COVID19 software is de
veloped in response to a pandemic that infected 6.1 million
individuals in five months (John Hopkins University, 2020),
and (ii) public health: unlike previously studied software
projects, COVID19 software has direct implications on pub

https://orcid.org/0000-0002-5056-757X
mailto:arahman@tntech.edu
mailto:efarhan@ncsu.edu

An Empirical Study of Bugs in COVID19 Software Projects Rahman and Farhana 2021

Figure 1. An example of a bug report related to statistical modeling in a software project called ‘neherlab/covid19_scenarios’.

lic health and relevant policy making for inhabitants in 188
countries.
In response to the pandemic, researchers have conducted

studies related to modeling (Dehning et al., 2020; Yang and
Wang, 2020; Tamm, 2020), biological science (Jin et al.,
2020; Wang et al., 2020; De Clercq, 2006; Helms et al.,
2020), social science (Van Bavel et al., 2020; Pulido et al.,
2020; Evans et al., 2020;Will, 2020; Jarynowski et al., 2020),
and policy making (Corey et al., 2020; Mello and Wang,
2020; Rourke et al., 2020; Kraemer et al., 2020). However,
characterization of bugs in COVID19 software remains an
unexplored area.
The scope of our paper is to get a systematic understand

ing of bugs in COVID19 software projects. In our paper,
we refer to COVID19 software projects as software projects
that were created to analyze and mitigate the consequences
of COVID19. These projects were created in response to
a global pandemic that created a worldwide impact on pub
lic health, economy, and societal activities. Our hypothesis
is that the utility of COVID19 software projects and the ur
gency associated with these projects can yield (i) manifesta
tion of bugs unique to the COVID19 reality, and (ii) bug res
olution time. Furthermore, from our empirical analysis what
categories of bugs appear for what types of COVID19 soft
ware projects.

The goal of this paper is to help practitioners and re
searchers improve the quality of COVID19 software through
an empirical study of open source software projects related
to COVID19.
We answer the following research questions:

• RQ1: What categories of open source COVID19
software projects exist? We identify seven categories
of software projects related to COVID19: aggregation,
education, medical equipment, mining, user tracking,
statistical modeling, and volunteer management.

• RQ2: What categories of bugs exist in open source
COVID19 software projects? How frequently do
the identified bug categories appear?What is the res
olution time for the identified bug categories? We
identify eight bug categories: algorithm, data, depen
dency, documentation, performance, security, syntax,
and user interface. Except formining andmedical equip

ment projects, for types of COVID19 software projects
the most frequently occurring bug category is UI.

• RQ3: How similar are the identified bug cate
gories to that with previously studied software
projects? Identified bug categories for COVID19 soft
ware projects also appear for other software types, but
their manifestation of the bugs is different for COVID
19 software projects.

Contributions: We list our contributions as follows:

• A categorization of bugs that appear in COVID19 soft
ware projects;

• A categorization of OSS projects related to COVID19;
• An empirical study that identifies what category of
bugs appear for what category of COVID19 software
projects; and

• A comparison of bug categories for COVID19 soft
ware projects to that with previously studied software
projects.

We organize rest of the paper as follows: We discuss re
lated work in Section 2. We provide the methodology to an
swer the three research questions in Section 3 and provide
the results in Section 4. We discuss our results with a sum
mary of our findings in Section 5. We provide the limitations
of our paper in Section 6. Finally, we conclude the paper in
Section 7. Our constructed dataset is available as a public,
citable repository (Rahman and Farhana, 2020).

Overview of the Empirical Study An overview of our pa
per is available in Figure 2. First, we mine software projects
related to COVID19 fromGitHub by applying a filtering cri
teria based on number of issues, number of developers etc.
Next, we apply qualitative analysis technique called open
coding (Saldana, 2015) on the README files of the col
lected open source software (OSS) projects to identify what
categories of OSS projects exist related to COVID19. After
characterizing the collected software projects, we again ap
ply open coding on 550 bug reports from the collected OSS
projects to identify bug categories. We also quantify the fre
quency and resolution time of each bug category across the
identified project categories. Finally, we conduct a scoping

An Empirical Study of Bugs in COVID19 Software Projects Rahman and Farhana 2021

review (Munn et al., 2018) to find the similarities in bug
categories between COVID19related software projects and
other categories of software projects.

2 Related Work

Our paper is related with prior research that has focused on
categorization of bugs in OSS projects. Mockus et al. 2002
studied the contribution nature in OSS Apache and Mozilla
projects. They (Mockus et al., 2002) observed contributors
who submit bug reports are approximately 8.2 times higher
in number than contributors who address bugs in bug reports.
Ma et al. 2017 investigated Python GitHub projects that are
used in the scientific domain, and observed developers to use
stack traces, as well as communicate with upstream devel
opers, to identify root causes of bugs. Zhang et al. 2019 ex
amined bug reports for mobile and desktop software hosted
on GitHub, and identified differences on how the reports are
constructed. Ray et al. 2014 studied the correlations between
bugs and the language the software is being developed, and
reported a modest correlation using an empirical study of
729 GitHub projects. Categorization of domainspecific OSS
bugs has also been investigated: Thung et al. 2012, Garcia et
al. 2020, Wan et al. 2017, Islam et al. 2019, and Rahman
et al. 2020 in separate research papers used OSS projects
to classify bug categories respectively, for machine learning,
autonomous vehicle, blockchain, deep learning, and IaC.
Our paper is also related with publications that have in

vestigated the impact of COVID19 on software develop
ment. Ralph et al. 2020 surveyed 2,225 practitioners and re
ported fear related to COVID19 to affect productivity of
software practitioners. Butler and Jaffe 2020 conducted a di
ary study with 435 practitioners and reported practitioners to
face challenges, such as having too many meetings and feel
ing overworkedwhile working from home due to COVID19.
Oliveira et al. 2020 surveyed 413 practitioners from Brazil
and reported practitioners’ perceived productivity to increase
due to fewer interruptions.
From the abovementioned discussion we observe bugs

in software projects related to COVID19 to be an under
explored area. While there exists several bug categorization
studies (Thung et al., 2012; Garcia et al., 2020; Wan et al.,
2017; Islam et al., 2019; Rahman et al., 2020) no studies ex
ist for COVID19related projects. The bug categorization
related studies for IaC, block chain, and deep learning moti
vated us to derive bug categories and quantify the identified
bug categories. Wan et al. 2017’s paper on blockchain bugs
motivated us to study bug resolution time for each identified
bug category. In our paper, we study COVID19 software
bugs in the following manner:

• categories of bugs;
• frequency of identified bug categories;
• resolution time of identified bug categories; and
• categories of software projects.

3 Methodology

In this section we provide the methodology to answers re
search questions: RQ1, RQ2, and RQ3.

3.1 Methodology for RQ1:What categories of
open source COVID19 software projects
exist?

We define COVID19 software projects as software projects
used for analysis and mitigation of COVID19. We hypoth
esize multiple categories of COVID19 software projects to
exist in the OSS domain. We validate our hypothesis by sys
tematically categorizing COVID19 software projects. Our
categorization will provide insights on how the software de
velopment community has responded to the COVID19 pan
demic. We answer RQ1 by completing the following steps:

3.1.1 Dataset Collection

We conduct our empirical analysis by collecting COVID
19 software projects hosted on GitHub. To collect these
projects we use GitHub’s search utility (GitHub, 2020c),
where we first identified projects tagged as ‘covid19’. We
use the search string ‘covid19’, as it is a topic designated
for COVID19 by GitHub (GitHub, 2020a). Our assumption
is that by using a GitHubdesignated tag we can collect OSS
projects hosted on GitHub that are related to COVID19.
OSS projects hosted on GitHub are susceptible to quality

issues, as GitHub users often host repositories for personal
purposes that are not reflective of realworld software de
velopment (Munaiah et al., 2017). Upon collection of the
projects we apply a set of filtering criteria so that we can
identify projects that contain sufficient data for analysis. We
describe the filtering criteria below:

• Criterion1: The project must have at least 2 developers.
Our assumption is that this criterion will filter out projects
used for personal purposes.

• Criterion2: The project has at least 5 open issues. We use
this filtering criterion to identify projects that are actively
maintained. Our assumption is that by using this criterion
we will able to identify COVID19 software projects that
are not used for personal purposes as well as projects that
are active. Prior research (Agrawal et al., 2018) has also
used the count of issues to filter OSS projects hosted on
GitHub to conduct empirical studies.

• Criterion3: The project must have at least two commits
per month. Munaiah et al. 2017 used the threshold of at
least two commits per month to determine which projects
have enough development activity for software organiza
tions. We use this threshold to filter projects with short de
velopment activity.

• Criterion4: The README of the project is written in En
glish. README projects related to COVID19 can be non
English. We do not include nonEnglish projects as raters
who will perform categorization are not familiar with non
English languages, such as Spanish and Cantonese.

An Empirical Study of Bugs in COVID19 Software Projects Rahman and Farhana 2021

Public
GitHub

Filtered
COVID-19 Projects

Characterization of
COVID-19 Projects

Characterization of
COVID-19 Software Bugs

Figure 2. An overview of our empirical study.

• Criterion5: The project is related with COVID19. We
use the ‘topic’ 1 feature of GitHub to search and identify
COVID19 software projects. However, practitioners can
mislabel projects using the ‘topic’ feature of GitHub po
tentially including projects in our dataset that are not re
lated with COVID19. For example, from manual inspec
tion we observe the ‘RehanSaeed/Schema.NET’ 2 project
to be tagged as ‘covid19’, even though it is not related
with COVID19. In fact, the project is used to convert blob
objects into C# classes.

3.1.2 Qualitative Analysis of README files

We apply a qualitative analysis called open coding (Saldana,
2015) on the content of README files for each of the down
loaded projects from Section 3.1.1. README files describe
the content of the project and give GitHub users an overview
of the software project (Prana et al., 2019). We hypothesize
that by systematically analyzing the content of the README
files we can derive what types of software projects are devel
oped that are related to COVID19.
In open coding a rater identifies and synthesizes patterns

within unstructured text (Saldana, 2015).We select open cod
ing because we can obtain detailed information on the soft
ware project categories. We use a hypothetical example to
demonstrate our process of open coding in Figure 3. First,
we collect text from the README files for each of the col
lected projects from Section 3.1.1. Next, we extract text snip
pets that describe the purpose of the software project. For
example, from the raw text ‘The COVID19 Vulnerability In
dex (CV19 Index) is a predictive model that identifies people
who are likely to have a heightened vulnerability to severe
complications from COVID19’ we extract the text snippet
‘a predictive model’, as the extracted text snippet describes
the purpose of the software project. Next, from the text snip
pets ‘a predictive model’ and ‘modelling estimated deaths’
we generate an initial category called ‘Models to predict’.
Two initial categories ‘Models to predict’ and ‘Models to un
derstand’ are combined into one category ‘Statistical mod
eling’, as they both indicate the descriptions of the software
projects to be related with statistical modeling.

1https://github.com/topics
2https://github.com/RehanSaeed/Schema.NET

The first and second authors conduct the open coding
process separately. Both authors used Excel spreadsheets
to conduct the open coding process manually. The first
and second authors respectively an experience of 10 and
6 years in software engineering and has experience in con
ducting open coding upon software project artifacts, such
as commit messages (Rahman et al., 2020) and Stack Over
flow posts (Farhana et al., 2019). Upon completion of the
open coding process, the first and second authors identify
agreements and disagreements. Disagreements are resolved
upon discussion, agreement rate is calculated using Cohen’s
Kappa (Cohen, 1960). During the discussion phase both au
thors agreed present their justification, and recheck the cat
egory derivation based on the discussion and revisiting con
tent. The mapping determined upon discussion is considered
final. One project can map to multiple categories.

3.1.3 Closed Coding

We apply closed coding (Crabtree and Miller, 1999) to iden
tify which project maps to the identified categories from Sec
tion 3.1.2. Closed coding is the qualitative analysis technique
where a rater maps an artifact to a predefined category by
inspecting the artifact (Crabtree and Miller, 1999). The first
and second author separately conduct closed coding on the
collected README files. Both authors use Excel spread
sheets to conduct closed coding. After completing the closed
coding process the first and second authors identify agree
ments and disagreements. Agreement rate is recorded using
Cohen’s Kappa (Cohen, 1960). Disagreements are resolved
using discussion. During the discussion phase both authors
present their justification for disagreements. Next, based on
the discussion the authors recheck the labeling based on the
justification and content analysis. The categorization deter
mined upon discussion is considered final.

3.1.4 Rater Verification

The derived categories are susceptible to the bias of the first
and second author. We mitigate the limitation by allocating
an additional rater who applied closed coding for a subset of
the README files. The additional rater who is not an author
of the paper, is a fourth year PhD candidate in the Depart
ment of Computer Science at Tennessee Technological Uni

An Empirical Study of Bugs in COVID19 Software Projects Rahman and Farhana 2021

README excerpt Raw Text Initial Category Category

The COVID-19 Vulnerability Index
(CV19 Index) is a
predictive model that
identifies people who are likely to
have a
heightened vulnerability to
severe complications from COVID-
19

COVID-19 Agent-based Simulator
(Covasim):
a model for understanding novel
coronavirus epidemiology

Code for modelling estimated
deaths and cases for COVID19

a predictive
model

a model for
understanding

modelling
estimated deaths

Models to predict

Models to
understand

Statistical
modeling

Figure 3. A hypothetical example to demonstrate our process of open coding to categorize COVID19 software projects.

versity. The rater has a professional experience of 2 years in
software engineering and has conduced qualitative analysis
on software artifacts, such as bug reports. We randomly al
locate a set of 100 README files mined from 100 projects
to the rater. The rater applies closed coding on the content
of the README files, to identify the mapping between each
project and identified categories. Upon completion of closed
coding we calculate Cohen’s Kappa (Cohen, 1960) between
the rater and the first author, as well as with the second au
thor, separately.

3.2 Methodology for RQ2: What categories
of bugs exist in open source COVID19
software projects? How frequently do the
identified bug categories appear? What is
the resolution time for the identified bug
categories?

In this section, we answer “RQ2: What categories of bugs
appear in COVID19 software projects? How frequently do
the identified bug categories appear?What is the resolution
time for each bug category?” A categorization of bugs for
COVID19 software projects can inform practitioners and re
searchers about how software related to COVID19 is devel
oped and in which areas they can help. Furthermore, educa
tors can learn about the software bugs that occur in a soft
ware related to a pandemic and disseminate these findings
in the classroom. Frequency of the identified bug categories
can help us understand what categories of software tend to
contain what types of software bugs and provide quality im
provement suggestions accordingly. Quantifying the resolu
tion time for bugs in software projects can help software en
gineering researchers provide actionable guidelines to prac
titioners. For example, Wan et al. 2017 observed that for
blockchain software projects security bugs can take longer

to fix compared to other bug categories. Based on their find
ings Wan et al. 2017 recommended that blockchain project
maintainers can adopt security analysis and repair tools to fix
security bugs quickly. We provide the methodology to iden
tify bug categories, quantify bug category frequency, and bug
resolution time below:
Methodology to Identify Bug Categories: We identify

bug categories using the following steps:

• Step#1Filtering: We collect the 4,405 issue reports
from the 129 projects and manually inspect each issue
report. We do not rely on automated approaches, such
as keyword search or using bug labels, as automated
approaches tend to generate false positives, which may
bias research results (Herzig et al., 2013).While inspect
ing each issue report we use the following IEEE defini
tion for bugs: “an imperfection that needs to be replaced
or repaired” (IEEE, 2010), similar to prior work (Rah
man et al., 2020). By completing this step wewill obtain
a set of closed issues reports that correspond to bugs.We
use closed reports because as open bug reports are often
incomplete and may not help in identifying bugs (Wan
et al., 2017).
The first and second author manually inspect individu
ally to identify what issue reports correspond to bugs.
We record agreement rate and Cohen’s Kappa (Cohen,
1960) between the first and second author. Disagree
ments between the first and second author are resolved
through discussions. The process is subjective and sus
ceptible to the bias of the first and second author. We
mitigate the bias by using an additional rater, who in
spected randomly inspected 100 issue reports and clas
sified them as bug reports and nonbug reports. The ad
ditional rater is the fourth year PhD candidate at Ten
nessee Technological University who is also involved
in rater verification for RQ1.

BugPropAll(x) = # of bug reports labeled as category x

total # of bug reports
∗ 100% (1)

An Empirical Study of Bugs in COVID19 Software Projects Rahman and Farhana 2021

BugPropCateg(x, y) = # of bug reports labeled as x, of project type y

of bug reports for project type y
∗ 100% (2)

• Step#2Open coding: We apply open coding (Saldana,
2015) on the content of the collected bug reports from
Step#1. Our open coding process is illustrated in Fig
ure 4 using an example. First, we extract raw text from
bug report titles and description, from which we gener
ate initial categories. Next, we merge initial categories
based on the commonalities and generate categories.
Similar to deriving project categories, the first and sec
ond author separately apply the process of open cod
ing to generate bug categories. Upon completion of the
process we quantify agreement rate and measure Co
hen’s Kappa (Cohen, 1960). For disagreements we con
duct discussion. Generated categories upon discussion
is considered final.

Methodology to Quantify Bug Category Frequency:
We apply the following steps to quantify the frequency of
identified bug categories:

• Step#1Closed coding: We apply closed coding (Crabtree
and Miller, 1999) to map each identified category to the
bug reports that we study. The first and second author sep
arately apply closed coding for the collected bugs from
Step#1. Upon completion, we calculate the agreement rate
and Cohen’s Kappa (Cohen, 1960). Disagreements are re
solved using discussion.

• Step#2Metric calculation: We quantify the frequency of
the identified bug categories using two metrics: Bug
PropAll’ and ‘BugPropCateg’.We use Equations 1 and 2 to
respectively calculate ‘BugPropAll’ and ‘BugPropCateg’.
The ‘BugPropAll’ metric refers to the proportion of bugs
across all projects, and provides a holistic overview of
the frequency of identified bug categories. The ‘BugProp
Categ’ metric refers to the proportion of bugs for a certain
project category, and provides a granular overview of bug
category frequency for each software project types identi
fied from Section 4.1.2.

• Step#3Rater verification: The use of first and second au
thor as raters to conduct closed coding is susceptible to
rater bias. Wemitigate this limitation by allocating an addi
tional rater. We assign randomly selected 250 bug reports
to the additional rater who apply closed coding. We pro
vide the additional rater with a document that provides def
initions of each identified category with examples.
Similar to our process of rater verification for project cate
gorization, the additional rater is the fourth year PhD candi
date in the Department of Computer Science in Tennessee
Technological University. The fourth year PhD candidate
is involved in the rater verification process for identifying
project categories and labeling issue reports as bug reports.

Methodology to Quantify Bug Resolution TimeWe use
the open and closing timestamp for each closed bug report in
our dataset to quantify the resolution time for each bug cate
gory, similar to Wan et al. 2017. We calculate bug resolution

time by computing the number of hours that have elapsed
between when the bug report is opened and closed, and not
reopened again, as per our dataset , which was downloaded
on April 04, 2020. We report bug resolution time for all bug
categories, as well as for bug reports that belong to certain
categories of software projects.

3.3 Methodology to Answer RQ3: How simi
lar are the identified bug categories to that
with previously studied software projects?

We conduct a scoping review of publications related to soft
ware bug categorization. Using a scoping review, researchers
can synthesize results using a limited search (Anderson et al.,
2008). According toMunn et al. 2018 “Researchers may con
duct scoping reviews instead of systematic reviews where the
purpose of the review is to identify knowledge gaps, scope a
body of literature, clarify concepts or to investigate research
conduct.”. Unlike a systematic literature review, a scoping
review is less comprehensive, and can be used as a precursor
to conduct a systematic literature review. Scoping review can
be useful to collect emerging evidence, which eventually can
be used to inform further research decisions (Anderson et al.,
2008). For example, if a researcher is inexperienced in the do
main of software fuzzing, and wants to get an understanding
of existing topics such as practices and techniques to imple
ment fuzzing, then a scoping review could be useful to that
researcher of interest.
We conduct a scoping review by identifying wellknown

venueswhere software engineering research is published.We
select five conferences: International Conference on Soft
ware Engineering (ICSE), Symposium on Foundations of
Software Engineering (FSE), International Conference on
Automated Software Engineering (ASE), International Con
ference on Mining Software Repositories (MSR), and Inter
national Symposium on Software Testing and Analysis (IS
STA).We select these conferences because these conferences
are considered reputed venues to publish literature related to
software engineering (Emery Berger, 2021), and sponsored
by special interest groups of the Association of Computing
Machinery (ACM). We select conferences as they tend to
have a shorter review cycle and are more likely to include
recent advances in the field of interest (Vardi, 2009). We con
duct the review by applying the following steps:

• Step1: We download all papers from 2010 to 2020 for
each of the four conferences. We select papers from 2010
to 2020 to identify and synthesize state of the art bug tax
onomies and categories used for a wide range of software
projects. Papers that studied bug categories prior to 2010
may not give us an understanding of the state of art. Our
hypothesis is that by identifying papers from the last 10
years we will get a better overview of what types of bugs
appear for a wide range of software projects.

An Empirical Study of Bugs in COVID19 Software Projects Rahman and Farhana 2021

Bug report excerpt Raw Text Initial Category Category

fix historical nyc data transition to
borough/county level reporting

Temperature data not saved in the
backend

Rajasthan district names are
wrong

fix nyc data

data not saved in
the backend

district names
are wrong

Data bugs related
to location

Data bugs related
to storage

Data Bugs

Figure 4. A hypothetical example to demonstrate our process of open coding to identify bug categories for software projects.

• Step2: We read the title, abstract, and keywords to deter
mine if the downloaded papers are related to software bug
categorization.

• Step3: Upon completion of Step2, one rater reads each
collected paper, and identifies topics discussed in the pa
per of interest using qualitative analysis. For each paper
the rater determines if the paper focuses on bug categoriza
tion. If so, the rater documents the bug categories for the
reported software project.

Upon completion of the abovementioned steps, we derive
reported bug categories for multiple software projects.

4 Results
In this section, we provide answers to the three research ques
tions, RQ1, RQ2, and RQ3.

4.1 Answer to RQ1: What categories of open
source COVID19 software projects exist?

We answer RQ1 by first providing summary statistics of our
dataset in Section 4.1.1. Next, we report categories of the
projects in Section 4.1.2.

4.1.1 Summary of Dataset

Altogether we download 129 projects for analysis. Using
the search feature we identify 3,276 public projects upon
which we apply our filtering criterion. A complete break
down of our filtering criterion is available in Table 1. At
tributes of the projects are available in Table 2. ‘Languages’
in Table 2 correspond to the count of main programming lan
guages of the collected projects as determined by GitHub’s
linguist tool (GitHub, 2020b). Example languages include
JavaScript, Python and R.
A temporal evolution of the 129 COVID19 software

projects based on creation date is available in Figure 5. We
observe sharp increase in project creation after Feb 29, 2020.

Table 1. Filtering of COVID19 projects used in paper.
Criteria GitHub
Initial 3,276
Criterion1 (Devs >= 2) 1,287
Criterion2 (Open issues >= 5) 169
Criterion3 (Commits/month >= 2) 154
Criterion4 (README is English) 131
Criterion5 (Actually COVID19) 129
Final 129

Table 2. Attributes of studied COVID19 projects.
Attributes Total
Commits 38,152
Developers 2,243
Duration 12/201903/2020
Files 24,839
Issues 4,405
Languages 18
Releases 286
Projects 129

4.1.2 Categorization of COVID19 Software Projects

We identify 7 categories of COVID19 software projects. We
describe each of the categories below in alphabetic order:

I: Aggregation:: This category includes software
projects that curate data related to COVID19 and present
collected COVID19 data in an aggregated format using vi
sualizations. The purpose of these projects is to help users un
derstand the spread of the COVID19 disease over time and
location. Software projects that belong to this category can be
country specific as done in ‘juanmnl/covid19monitor’ (juan
mnl, 2020) and ‘dsfsi/covid19za’ (Marivate and Combrink,
2020) respectively, for Ecuador and South Africa. Aggrega
tion of COVID19 data can also be at a global level, for ex
ample, ‘boogheta/coronaviruscountries’ (boogheta, 2020) is
a software that aggregates COVID19 data across the world
and allows software users to compare the reported cases on
a countrybycountry basis.

II:Education:: This category includes projects that pro
vide utilities on educating people about COVID19. Lack
of knowledge related to infections and symptoms can con
tribute to rapid spreading of COVID19. The purpose of

An Empirical Study of Bugs in COVID19 Software Projects Rahman and Farhana 2021

●
● ● ●

●

●

●
●

●

●

●

●

●

● ●

0
10
20
30
40
50
60
70
80
90

100
110
120
130
140
150

20
19

−1
2−

22

20
19

−1
2−

29

20
20

−0
1−

07

20
20

−0
1−

14

20
20

−0
1−

21

20
20

−0
1−

28

20
20

−0
2−

07

20
20

−0
2−

15

20
20

−0
2−

22

20
20

−0
2−

29

20
20

−0
3−

07

20
20

−0
3−

15

20
20

−0
3−

22

20
20

−0
3−

29

20
20

−0
4−

04

Date

C
ou

nt
 o

f p
ro

je
ct

s

Count of COVID−19 software projects over time

Figure 5. Temporal evolution of COVID19 software projects based on their creation date. We observe sharp increase in project creation after Feb 29, 2020.

these projects is to build software, where users can ask
questions and obtain answers. We observe two categories
of software: first, question and answer websites similar to
Stack Overflow 3, such as ‘nthopinion/covid19’ (nthopinion,
2020), where users can ask questions about COVID19, and
other users answer such questions. Second, we observe bot
specific software, such as ‘deepsetai/COVIDQA’ (deepset
ai, 2020) that provides answers for questions related to
COVID19 automatically.

III: Medical equipment:: This category includes
projects to curate andmaintain source code for the design and
implementation of medical equipment used to treat COVID
19. The purpose of these projects is to create designs of
COVID19 related medical equipment, such as ventilators at
scale, so that the growing need of medical equipment in hos
pitals is satisfied. One example of such repository is ‘makers
forlife/makair’ (makersfor life, 2020), which states the fol
lowing in it’s README page: “Aims at helping hospitals
cope with a possible shortage of professional ventilators dur
ing the outbreak. Worldwide. ... We target a perunit cost well
under 500 EUR, which could easily be shrunk down to 200
EUR or even 100 EUR per ventilator given proper economies
of scale, as well as choices of cheaper ontheshelf compo
nents”. The project includes design of the proposed ventila
tors as CAD files, as well as relevant firmware available as
C++ code files.
Another example is the ‘popsolutions/openventila

tor’ (popsolutions, 2020), which aims to provide cheap
but reliable ventilators to treat COVID19 in economically
underdeveloped regions of the world. The software project
initiated from a Facebook group called ‘Open Source
COVID19 Medical Supplies’ 4, where members discussed
the scarcity of ventilators and the importance of creating
cheap ventilators through efficient design. In the project we
notice developers to create, build, and share designs using
OpenSCAD scripts. OpenSCAD is an open source tool to
build computeraided design (CAD) objects 5.

IV: Mining:: This category includes projects that
provide APIs to mine COVID19 data from data sources,
such as the US Center for Disease Control and Prevention

3https://stackoverflow.com/
4https://www.facebook.com/groups/opensourcecovid19medicalsupplies/
5https://www.openscad.org/

(CDC) 2020, the World Health Organization (WHO) 2020,
and data reported from local institutions. The purpose of this
category of software is to provide utilities for software devel
opers so that they can get realtime access to COVID19 data
to build aggregation software, discussed above. Because of
the nature of the pandemic, access to realtime data is pivotal
for accurate aggregation and analysis. The mining tools help
developers to get such support. Mining software can be lo
cation specific, for example ‘dsfsi/covid19africa’ (Marivate
et al., 2020) is dedicated to curate and collate COVID19 re
lated data for African countries.

V: User tracking:: This category includes software
projects that collects information from users regarding their
COVID19 infection status. Tracking of user information
can happen voluntarily, where the user voluntarily self re
ports COVID19 infection status. The ‘enigmampc/Safe
Trace’ (enigmampc, 2020) software is an example where
users self report their infection status as well as location his
tory. Tracking of user information can also be done using
inference, as done in ‘OpenMined/covidalert’ (OpenMined,
2020), where the software collects user’s location informa
tion to predict if the user is in a location with high infection
density. One utility of these projects is to identify highrisk
locations so that users can have an understanding of which
nearby location can be avoided. Self reporting software have
yielded benefits for China and South Korea (Huang et al.,
2020).

VI: Statistical modeling:: This category includes soft
ware that use statistical models to predict attributes related
to COVID19. The purpose of the projects is to make pre
dictions for the future based on existing data. Example us
age of statistical models include (i) predicting death rate as
done in ‘ImperialCollegeLondon/covid19model’ (Imperial
CollegeLondon, 2020), (ii) automating the process of lung
segmentation with computerized tomography (CT) scan, as
done in ‘JoHof/lungmask’ (JoHof, 2020), (iii) predicting the
impact of the COVID19 pandemic on hospital demands as
done in ‘neherlab/covid19_scenarios’ (neherlab, 2020), and
(iv) predicting presence of COVID19 with Xray images us
ing deep learning as done in ‘elcronos/COVID19’ (elcronos,
2020).

VII: Volunteer management:: This category includes
software used to efficiently manage volunteering effort. The

An Empirical Study of Bugs in COVID19 Software Projects Rahman and Farhana 2021

purpose of this software is to build software platforms so that
users can volunteer and participate in activities to help dis
tressed families and communities. One example is the ‘covid
volunteers’ (helpwithcovid, 2020) software, which provides
a web portal where users can sign up for 650 projects that
include donation of masks, personal protective equipment
(PPEs), and testing of COVID19 6. Platforms can be global,
such as ‘covidvolunteers’, and also regional, for example
‘Applifting/pomuzeme.si’ (Applifting, 2020) creates a web
portal so that people inside Czech Republic can volunteer.

4.1.3 Frequency of the Identified Categories

Based on project count aggregation is the most frequent cat
egory. Along with project count, we provide summary statis
tics of projects that belong to each category in Table 3. We
also observe on average user tracking projects to be more
frequently released compared to other project types.
We identify four software projects that belong to multiple

categories. As an example, the ‘soroushchehresa/awesome
coronavirus’ (soroushchehresa, 2020) project belongs to the
categories: aggregation, mining, and statistical modeling.

4.1.4 Rater Agreement

We report agreement rate for three steps: open coding, closed
coding, and rater verification.
Open coding: After completing open coding, the first and sec
ond author respectively, identified 7 and 10 categories. The
agreement rate is 70.0%, and the Cohen’s Kappa is 0.7, indi
cating ‘substantial’ agreement (Landis and Koch, 1977). The
authors disagreed on ‘Volunteering software related to local
communities’, ‘Education bots’, and ‘Aggregated visualiza
tions’, additional categories identified the second author.
Disagreements were resolved through discussion. Both au

thors provided justifications for their categorization. The first
author pointed out that the category ‘Education bots’ can be
merged with ‘Education’ as the category ‘Education’ encom
passes all categories of knowledge software, such as bots
and web applications. The first author also pointed out that
‘Volunteering software related to local communities’ can be
merged with ‘Volunteer management’, as the category is an
extension of the category ‘Volunteer management’. Further
more, the first author also pointed out that ‘Aggregated visu
alizations’ can be merged with ‘Aggregation’, as ‘Aggrega
tion’ includes software that aggregates COVID19 data and
displays aggregated data with visualizations. The second au
thor was convinced by the first authors’ justification and up
dated her derived list of categories.
Closed coding: During closed coding the first and second au
thors mapped each of the 129 projects to an existing category.
The agreement rate is 93.8%. The Cohen’s Kappa is 0.92.
The authors disagreed on the labeling of 8 projects, which
are resolved through discussion. During the discussion phase
both authors agreed to present their justification, and recheck
the labeling based on the justification and content analysis.
The categorization determined upon discussion is considered
final.

6https://helpwithcovid.com/medical

Rater verification: We also measured the agreement rate be
tween an additional rater and the authors for categorizing
README files of projects. Cohen’s Kappa between the ad
ditional rater and the first author for a randomly selected set
of 50 README files is 0.73, indicating ‘substantial’ agree
ment (Landis and Koch, 1977). Cohen’s Kappa between the
additional rater and the second author for a randomly se
lected set of 50 README files is 0.73, indicating ‘substan
tial’ agreement (Landis and Koch, 1977). The agreement rate
between the additional rater and the first and second author
is respectively, 78.0% and 76.0%.

4.2 Answer to RQ2: What categories of bugs
exist in open source COVID19 software
projects? How frequently do the identified
bug categories appear?What is the resolu
tion time for the identified bug categories?

We answer RQ2 by first providing a breakdown of how we
obtained our bug reports in Table 4 and 5. As shown in Ta
ble 5, the categories with themost and least bug reports are re
spectively, aggregation and medical equipment. One project
can belong to multiple categories, and that is why the total
count of bug reports does not total 550.
Next, we describe the identified bug categories in Sec

tion 4.2.1 by applying open coding on the collected 550 bug
reports. The frequency of the identified bug categories is pro
vided in Section 4.2.2.We provide details of rater verification
in Section 4.2.3. Finally, we provide the bug resolution time
in Section 4.2.4.

4.2.1 Bug Categories of COVID19 Projects

We identify 8 bug categories, which we describe below al
phabetically:

I: Algorithm:: This category corresponds to bugs when
implementation of an algorithm does not follow expected be
havior. An algorithm is a sequence of computational steps
that transform input into output (Cormen et al., 2009).We ob
serve algorithm bugs to include two subcategories: (i) bugs
related to statistical modeling algorithms, where statistical
modeling results are incorrect due to incorrect assumptions
and/or implementations, and (ii) bugs related to incorrect
logic implemented in the software.
Example: We provide examples for the two sub

categories:

• Statistical modeling: In a bug report titled “Death rates
should increase when ICU’s are overwhelmed” (Beg
ley, 2020a), a practitioner describes how incorrect as
sumption can result in incorrect modeling behavior. The
practitioner discusses that bed space is correlated with
estimation of fatality rate. When bed space of hospi
tals are exhausted hospitals will not be able to treat
new COVID19 new patients, which could potentially
increase the fatality rate.
The bug report provides evidence that if the context
of COVID19 is not correctly incorporated in statis
tical models, those models will provide incorrect re
sults. Incorrect statistical models can be consequential,

An Empirical Study of Bugs in COVID19 Software Projects Rahman and Farhana 2021

Table 3. Summary statistics of projects that belong to each category. Based on project count ‘Aggregation’ is the most frequent category
as highlighted in green.

Proj. Categ. Projects Com. Devs Files Iss. Rele.
Aggregation 50 14,985 663 8,641 908 72
Mining 35 9,671 894 6,714 515 21
Stat. model. 22 7,214 429 3,464 491 38
Education 9 4,550 196 1,696 406 14
User track 9 2,020 152 2,291 119 286
Volunteer. 7 2,186 143 2,041 320 0
Med. equip. 3 859 38 790 14 63

Table 4. Filtering of bug reports from COVID19 software projects.
Initial 4,095
Criterion1 (Closed issues) 2,965
Criterion2 (Valid bug reports) 550
Final 550

Table 5. Count of bug reports for each category of COVID19
software projects. Aggregationrelated projects have the highest
amount of bug reports.

Project category Count (%)
Aggregation 220 (40%)
Mining 150 (27.3%)
Stat. Model. 98 (17.8%)
Education 58 (10.5%)
Volunteer. 40 (7.3%)
User Track 31 (5.6%)
Med. Equip. 4 (0.7%)

as countries are adopting public health policies specific
to COVID19. For example researchers have critiqued
the statistical models derived by the Institute for Health
Metrics and Evaluation at the University of Washing
ton (IHME), and advised USA policymakers to use the
modeling results with caution (Begley, 2020b).

• Incorrect logic: In a bug report titled “Fix Prefecture
Sorting” (reustle, 2020), a practitioner describes a sort
ing bug which occurs when trying to visualize COVID
19 cases based on prefectures in Japan. A prefecture is
an administrative jurisdiction in a country similar to a
state or province (Hu andQian, 2017). The bug occurred
due to an incorrect logic that did not perform sorting by
prefectures.

II: Data:: This category corresponds to bugs that occur
during mining and storage of COVID19 data. As discussed
in Section 4.1.2 we observed our dataset to include projects
that mine and aggregate COVID19 data. We observe four
subcategories of data bugs: (i) storage: bugs that occur while
storing data in a database, (ii) mining: bugs that occur while
retrieving data from data APIs, (iii) location: bugs where lo
cation information in stored data is incorrect, and (iv) time
series: bugs that correspond to missing data for a certain time
period.
Example: We provide examples for each of these sub

categories below:

• Storage: In a bug report titled “Temperature data not
saved in the backend” (pavel ilin, 2020), a practitioner
describes a bug where patient temperature data is in
serted in the frontend but not stored in the database.

• Mining: Bugs occur when COVID19related data is
being mined. A practitioner describes a mining bug
in a bug report titled “CDC Children scraper is out

dated” (Timoeller, 2020). The mining tool mines data
related to children affected by COVID19.

• Location: In a bug report titled “Rajasthan District
names are wrong”, a practitioner describes that inserted
location data for an Indian state called ‘Rajasthan’ is
wrong (SinghRajenM, 2020).

• Time series: Missing data was reported for a project and
reported in a bug report titled “Data has a gap between
2020311 and 2020324” (zbraniecki, 2020).

III: Dependency:: This category corresponds to bugs
that occur when execution of the software is dependent on
a software artifact that is either missing or incorrectly speci
fied. For COVID19 projects, an artifact can be an API or a
build artifact.
Example: In a bug report titled “Missing PostGIS” (va

clavpavlicek, 2020), a practitioner describes that installation
and execution of the software is prohibited due to a software
package called ‘PostGIS’, which is used to store spatial and
geographic measurements, such as area, distance, polygon,
and perimeter in PostgreSQL databases.

IV: Documentation:: This category corresponds to
bugs that occur when incorrect and/or incomplete informa
tion in specified in release notes, maintenance notes, and doc
umentation files, such as README files.
Example: In a bug report titled “Missing code of conduct”,

a practitioner describes a ‘CODE_OF_CONDUCT.md’ file
to be missing in a Markdown file that describes how practi
tioners can contribute to the project (mdeous, 2020).

V: Performance:: This category corresponds to bugs
that cause performance discrepancies for the software. Per
formance bugs are manifested in slow response of the web
or mobile app.
Example: In a bug report titled “Cluster animation slow

ing down the browser. It also takes much time”, a practitioner
describes how a performance bug related to an animation fea
ture is slowing down a Firefox browser onWindows 10 (Sub
ratappt, 2020). The performance bug was reported for a web
site called ‘covid19india.org’ 7, which aggregates COVID
19 data for India and displays them.

VI: Security:: This category corresponds to bugs that
violate confidentiality, integrity, or availability for the soft
ware.
Example: In a bug report titled “Fix password reset proce

dure” (landovsky, 2020), a practitioner describes a password
reset bug, where the password reset procedure ends arbitrar
ily after 500 login attempts.

VII: Syntax:: This category corresponds to bugs related

7https://www.covid19india.org/

An Empirical Study of Bugs in COVID19 Software Projects Rahman and Farhana 2021

Table 6. Frequency of identified bug categories. UIrelated bugs are
the most frequent.

Bug category BugPropAll (%)
UI 38.2
Data 30.9
Dependency 18.9
Algorithm 7.8
Syntax 6.7
Security 2.5
Performance 1.6
Documentation 1.4

with the syntax of the programming languages used to de
velop the software.
Example: We notice bugs related to data types in ‘ne

herlab/covid19_scenarios’. In the bug report titled “Fix types
and linting errors” (ivan aksamentov, 2020), a practitioner
describes how linting and type checking was disabled for the
project, which led to bugs related to linting and type check
ing.

VIII: UI:: This category corresponds to bugs that in
volve the user interface (UI) of the software. UI bugs include
navigationrelated bugs on web pages, bugs related to acces
sibility, displaying incorrect images, links, and color, and re
sponsiveness.
Example: In a bug report titled “accessibility

fixes” (abquirarte, 2020) describes a UI bug related to
accessibility. According to the bug report, a screen reader
incorrectly renders check marks and crosses in front of the
“Do’s and Don’t as M’s and N’s”.

4.2.2 Frequency of Identified Bug Categories

Based on the ‘Proportion of Bugs Across All Projects (Bug
PropAll)’ metric we observe UI bugs to be the most frequent
category, whereas documentation is the least frequent cate
gory. We provide a complete breakdown of the metric in Ta
ble 6. Data bugs have four subcategories: storage, mining,
location, and time series. The frequency for storage, mining,
location, and time series is respectively, 4.7%, 5.8%, 87.2%,
and 2.3%. Algorithm bugs have two subcategories: statisti
cal modeling and wrong logic. The frequency for statistical
modeling and wrong logic is respectively, 42.3% and 57.7%.
We observe bug category frequency to vary for differ

ent categories of projects. We provide the ‘Proportion of
Bugs For a Certain Project Category (BugPropCat)’ val
ues for each project category in Table 7. ‘AGG’, ‘MINE’,
‘STA’, ‘EDU’, ‘TRAK’, ‘VOL’ and ‘EQU’ respectively, cor
responds to the seven project categories: aggregation, min
ing, statistical modeling, education, user tracking, volunteer
management system, and medical equipment.
According to Table 7, except for mining and medical

equipment software, the dominant bug category is UI. One
possible explanation can be the analyzed software projects
have UIs, which may have contributed to the frequency of
UI bugs. For mining software the dominant bug category is
data bugs i.e., bugs that occur due to storing and processing
of COVID19 data. Formedical equipment software the dom
inant bug category is dependency. We also notice algorithm
bugs to be the second most frequent bug category for statis
tical modeling software. Similar to prior work on machine
learning (Thung et al., 2012), we expected algorithm bugs to

be the most dominant category for statistical modeling. Sta
tistical modeling software also have UIs for user interaction,
and the count of UI bugs may have foreshadowed the count
of algorithm bugs.

4.2.3 Rater Agreement and Verification

We report agreement rate for four steps: issue labeling, open
coding, closed coding, and rater verification.
Labeling issues as bugs: While labeling collected issue re
ports as bug reports and nonbug reports the agreement rate
is 96.5% and the Cohen’s Kappa is 0.9.
Open coding to identify bug categories: The first and sec
ond author respectively, identified 9 and 10 categories. The
agreement rate is 72.7%, and the Cohen’s Kappa is 0.70, indi
cating ‘substantial’ agreement (Landis and Koch, 1977). The
first author identified ‘database’ as a category not identified
by the second author. Upon discussion both authors agreed
that ‘database’ is related to data storage and belongs to the
data category. The second author identified two additional
categories ‘Public health data’ and ‘Type errors’. After dis
cussing the definitions of all categories both authors agreed
that ‘Public health data’ and ‘Type errors’ can respectively,
be merged with data and syntax.
Closed coding to quantify bug category frequency: Dur
ing closed coding the first and second author mapped each
project to an existing category. The agreement rate is 95.1%
and the Cohen’s Kappa is 0.93. The authors disagreed on the
labeling of 27 bug reports, which are resolved through dis
cussion.
Rater verification: For the randomly selected 250 issue re
ports we allocate an additional rater who manually identi
fied which of the issue reports are bug reports and nonbug
reports. The Cohen’s Kappa between the additional rater
and the first author is 0.80, indicating ‘substantial’ agree
ment (Landis and Koch, 1977). The Cohen’s Kappa between
the additional rater and the second author is 0.84, indicating
‘perfect’ agreement (Landis and Koch, 1977). The agreement
rate between the additional rater and the first and second au
thor is respectively, 89.0% and 93.0%.
We have also measured the agreement rate between an ad

ditional rater and the authors for categorizing bug reports.
Cohen’s Kappa between the additional rater and the first au
thor for a randomly selected set of 250 bug reports is 0.65,
indicating ‘substantial’ agreement (Landis and Koch, 1977).
Cohen’s Kappa between the additional rater and the second
author for a randomly selected set of 250 bug reports is 0.68,
indicating ‘substantial’ agreement (Landis and Koch, 1977).
The agreement rate between the additional rater and the first
and second author is respectively, 78.0% and 81.6%.

4.2.4 Resolution Time of Identified Bug Categories

We provide bug resolution time as measured in hours for
all bug categories in Table 8. From Table 8 we observe that
based on min and median bug resolution times security bugs
take the longest to resolve, followed algorithm bugs. We also
observe data bugs to take as long as 548 hours to resolve.
A breakdown of bug resolution time across the seven

project categories is provided in Table 9. The ‘All’ row in

An Empirical Study of Bugs in COVID19 Software Projects Rahman and Farhana 2021

Table 7. Bug category frequency for each identified project type. All values are presented in (%).
AGG MINE STA EDU TRAK VOL EQU

Bug categ.
Algorithm 6.8% 6.7% 22.4% 3.4% 0.0% 2.5% 0.0%
Data 28.6% 60.6% 13.2% 15.5% 0.0% 12.5% 0.0%
Dependency 16.3% 18.0% 18.3% 24.1% 9.7% 27.5% 75.0%
Document 0.9% 1.3% 1.0% 0.0% 0.0% 10.0% 0.0%
Performance 2.7% 2.0% 0.0% 0.0% 3.2% 0.0% 0.0%
Security 1.8% 0.0% 3.0% 3.4% 6.4% 12.5% 0.0%
Syntax 5.9% 3.3% 14.3% 17.2% 3.2% 10.0% 0.0%
UI 50.0% 12.0% 34.7% 44.8% 77.4% 32.5% 25.0%

Table 8. Resolution time of identified bug categories. Resolution
times is measured in hours. Median resolution time is highest for
security bugs.

Bug category Min Median Max
Security 1.240 13.9 144.6
Algorithm 0.041 13.5 172.7
Syntax 0.004 12.1 174.2
UI 0.003 11.8 254.2
Data 0.003 8.4 548.0
Performance 0.961 7.1 104.4
Dependency 0.014 2.4 379.4
Documentation 0.013 1.4 76.8

Table 9. Resolution time of bug categories grouped by project cate
gories. Wemeasure resolution time in hours. Median bug resolution
time is highest for projects related to medical equipment software.

Project category Min Median Max
Medical Equipment 5.0 29.4 46.4
Volunteer Management System 0.013 21.1 174.2
User Tracking 0.124 16.5 294.5
Education 0.121 11.2 294.5
Aggregation 0.003 8.7 379.4
Statistical Modeling 0.004 7.2 168.3
Mining 0.005 2.5 548.1
All 0.003 7.4 548.0

Table 9 shows the minimum, median, and maximum bug res
olution time for all bug categories measured in hours.
In Table 9 we observe four instances where the minimum

bug resolution time is less than 6 minutes (< 0.1 hours). One
possible explanation can be practitioners’ habit of opening a
bug report after they have developed the fix for a bug (Wan
et al., 2017; Thung et al., 2012). In such cases, practitioners
notice the bug early, construct the fix for the bug, and then
submit the bug report by opening and closing the bug report
promptly.
Median bug resolution duration for each project type

and bug category is provided in Table 10. ‘AGG’, ‘MINE’,
‘STA’, ‘EDU’, ‘TRAK’, ‘VOL’ and ‘EQU’ respectively, cor
responds to the seven project categories: aggregation, min
ing, statistical modeling, education, user tracking, volunteer
management system, and medical equipment. We observe
median bug resolution time to vary across bug categories as
well as for project categories.

4.3 Answer to RQ3: How similar are the iden
tified bug categories to that with previ
ously studied software projects?

We report our findings in Table 11. The ‘Bug category’ col
umn presents the bug categories identified for COVID19
software projects, whereas, the ‘Other software projects’ col
umn presents the software projects for which the bug cate

gory was observed according to papers identified from our
scoping review. We observe bug categories for COVID19
software projects to also be observable for other categories
of software projects, such as deep learning and automated
vehicle.

5 Discussion
In this section, we first provide a summary of our findings
in Section 5.1. Next, we provide a discussion on the implica
tions of our findings in Section 5.2.

5.1 Summary

Project category: Aggregation
Definition: Aggregate COVID19 data and present using visualizations
Count : 50 out of 129 (38.7%)
Most frequent bug category: UI bugs
Median bug resolution time: 8.7 hours

Project category: Mining
Definition:Mine COVID19 data
Count : 35 out of 129 (27.1%)
Most frequent bug category: Data bugs
Median bug resolution time: 2.5 hours

Project category: Statistical modeling
Definition: Use of statistical models to make COVID19 predictions
Count : 22 out of 129 (17.0%)
Most frequent bug category: UI bugs
Median bug resolution time: 7.2 hours

Project category: Education
Definition: Educate people about COVID19
Count : 9 out of 129 (6.9%)
Most frequent bug category: UI bugs
Median bug resolution time: 11.2 hours

Project category: User tracking
Definition: Track user data related to COVID19
Count : 9 out of 129 (6.9%)
Most frequent bug category: UI bugs
Median bug resolution time: 16.5 hours

Project category: Volunteer management
Definition: Efficiently manage volunteering effort related to COVID19
Count : 7 out of 129 (5.4%)
Most frequent bug category: UI bugs
Median bug resolution time: 21.1 hours

Project category: Medical equipment
Definition: Source code for design and implementation of medical devices
Count : 3 out of 129 (2.3%)
Most frequent bug category: Dependency bugs

An Empirical Study of Bugs in COVID19 Software Projects Rahman and Farhana 2021

Table 10.Median bug resolution time for each bug category and each project type measured in hours. ‘—’ indicates categories for which
no bug reports exist.

AGG MINE STA EDU TRAK VOL EQU
Bug cat.
Algorithm 9.8 10.8 13.9 10.1 — 13.5 —
Data 12.2 4.4 15.2 17.0 — 42.0 —
Dependency 5.6 0.1 0.3 4.5 5.3 2.9 22.4
Document 1.3 39.0 1.5 — — 6.9 —
Performance 7.1 36.6 — — 1.5 — —
Security 8.1 — 3.1 84.1 13.9 20.4 —
Syntax 12.1 4.7 11.4 8.6 16.9 79.3 —
UI 8.3 2.7 13.1 16.8 18.7 21.9 46.4

Table 11. Comparison of bug categories of COVID19 software projects with that of other software project categories.
Bug category Other software projects
Security IaC (Rahman et al., 2020), OSS GitHub projects (Ray et al., 2014)
Algorithm Autonomous vehicle (Garcia et al., 2020), OSS GitHub projects (Ray et al., 2014)
Syntax IaC (Rahman et al., 2020), deep learning (Islam et al., 2019), OSS GitHub projects (Ray et al., 2014)
UI Blockchain (Wan et al., 2017)
Data Deep learning (Islam et al., 2019)
Performance OSS GitHub projects (Ray et al., 2014)
Dependency IaC (Rahman et al., 2020)
Documentation Autonomous vehicle (Garcia et al., 2020), IaC (Rahman et al., 2020)

Median bug resolution time: 29.4 hours

5.2 Implications
We discuss the implications of our findings below:
Security and privacy implications of user tracking soft

ware: From Table 3 we observe 9 projects to be related with
user tracking. While the benefits of user tracking software
have been documented for countries, such as Russia and
South Korea (Crowell Morning, 2020), this category of soft
ware can have negative impacts on privacy of endusers. Data
generated from user tracking software can be leveraged for
marketing purposes. We make the following recommenda
tions to preserve privacy of user data in user tracking soft
ware:

• Policymakers should construct policies specific to
COVID19 software that collects user data.

• Practitioners who develop user tracking software should
leverage existing privacy policy frameworks, such as
the ‘National Institute of Standards and Technology
(NIST) Privacy Framework’ 2020.

• Privacy researchers can build tools that will automati
cally detect and report privacy policy violations.

Evidence fromTable 7 shows that security bugs to exist for
user tracking software. We advocate security researchers to
systematically investigate if user tracking software includes
security bugs. Recent news articles suggest that user track
ing software, such as contract tracing apps may becomemore
and more prevalent as Apple and Google are already provid
ing frameworks to build software that tracks user data (Ap
ple, 2020). Our hypothesis is that availability of these frame
works will facilitate rapid development and deployment of
mobile apps that collect user data. Security weaknesses in
these apps can provide malicious users opportunity to con
duct largescale data breaches. We notice anecdotal evidence
in this regard: a researcher has identified vulnerabilities in a

user tracking app that could leak user location data (Green
berg, 2020). Panelists at EuroCrypt 2020, a cryptography
research conference, discussed limitations of user tracking
mobile apps for COVID19 with respect to API design, in
door location tracking, and informing users about privacy
risks (EuroCrypt, 2020a) (EuroCrypt, 2020b).
Towards constructing correct statistical models: From

Section 4.2.1 we have observed statistical modeling bugs
to exist. Bugs related to statistical modeling can be conse
quential because based on the predictions generated by sta
tistical models, policymakers enforce public health policies.
One possible explanation for buggy statistical models can be
attributed to the quality of datasets using which statistical
models are build (Koerth et al., 2020). For example, fatality
prediction models that are built using the ‘Diamond Princess
Cruise Ship Dataset’ may not be applicable for a specific geo
graphic region with low population density. Another possible
explanation can be a lack of context and knowledge related to
public health specific that hinders model builders to identify
appropriate independent variables to construct the models.
Incorrect estimation of hospital beds from our discussion in
Section 4.2.1 is one example. Other examples of independent
variables related to public health includes staff availability,
count of known cases, hospitalization rate etc. (Attia, 2020).
According to a health expert (Attia, 2020), statistical mod
els that predicted 2.4 million US residents to die, assumed a
hospitalization rate of 1520%, which in reality was 5%.
Based on our findings and abovementioned explanations

we make two recommendations:

• Automated testing for COVID19 modeling: We hope
to see novel research in the domain of COVID19 that
will test the correctness of constructed statistical models
used in forecasting in an automated manner. In recent
years, we have seen research efforts that test deep learn
ing models (Tian et al., 2018; Pei et al., 2017; Ma et al.,
2018). We expect similar research pursuits for COVID
19 statistical modeling.

• Better synergies between data science and public health

An Empirical Study of Bugs in COVID19 Software Projects Rahman and Farhana 2021

practitioners: Construction and verification of COVID
19 statistical modeling should involve practitioners
from public health and data science. Public health prac
titioners within a specific locality can provide necessary
context that data scientists can incorporate in their sta
tistical models.

Implications for Educators: Our findings have implica
tions for educators involved in teaching the following topics:

• Data science: Educators who teach data science can use
the examples of statistical modeling bugs to highlight
the value of considering the full context and related lim
itations that accompany statistical modeling.

• Information security and privacy: User tracking soft
ware can be discussed in information security and pri
vacy courses to demonstrate the value of protecting user
data. Such discussion can also include privacy policy
frameworks that are already in place, such as the NIST
Privacy framework (National Institute of Standard and
Technology, 2020).

• Software engineering: Our categorization of bugs re
lated to COVID19 software development can be dis
cussed to demonstrate that understanding and repair of
bugs requires contextualization.

Benchmark for practitioners and researchers: Ta
bles 6— 10 can be used as a measuring stick by practitioners
and researchers who are involved with COVID19 software
projects. Practitioners can estimate their bug resolution ef
forts by comparing median resolution times for bugs in their
COVID19 software projects to that of Tables 8, 9, and 10.
Compared to prior work related to blockchain andmachine

learning (Thung et al., 2012; Wan et al., 2017), median bug
resolution time is lower for COVID19 software projects.We
provide two possible explanations: one possible explanation
can be related to the sense of urgency. Practitioners may have
realized that bugs in COVID19 software projects could ham
per the analysis or mitigation of COVID19, and therefore,
needs immediate attention. Another possible explanation can
be the limitations of our dataset. The age of our software
projects does not exceed four months and that may have bi
ased median bug resolution time. We advocate for future re
search that will confirm or refute our explanations.
Recurrencerelated implications: Researchers (Kissler

et al., 2020; Chen et al., 2020) have provided evidence that
support the recurring nature of COVID19. About the re
currence of COVID19 Kissler et al. 2020 stated “a resur
gence in contagion could be possible as late as 2024.”. We
hypothesize that COVID19’s recurrence will lead to more
COVID19 software building. Whether or not our findings
hold for these newly constructed COVID19 software can be
validated through a replication of our paper. We expect to
observe more categories of COVID19 software projects as
well as more bug categories.

5.3 Differences between COVID19 Software
Projects and Other Software Projects

We provide the differences that we have noticed between
COVID19 software projects and other software projects,

which we discuss in the following subsections:

5.3.1 Differences in Bug Manifestation

A nonCOVID19 software project does not have the con
text of public health consequences that are associated with
a COVID19 software project. We define a COVID19 soft
ware project to be a software project that is related with an
alyzing and mitigating the consequences of COVID19. By
definition, we include software projects that directly captures
the consequences related to public health, which is absent
from a traditional software project. We observe empirical ev
idence that shows the unique context of COVID19 to yield
differences in bugs and bug resolution time when compared
with other software projects.
Let us consider the case of algorithm bugs. Algorithm bugs

manifest in COVID19 projects as well as in machine learn
ing and autonomous vehicle projects. A machine learning
project that uses statistical modeling can have algorithm bugs
that generates erroneous predictions. For a COVID19 soft
ware project that predicts death rates, a bug related to the
modeling algorithm can have serious consequences, as pub
lic health policies are derived based on these models, as it oc
curred during incorrect estimation of hospitalization rate (At
tia, 2020). As discussed in Section 4.3 algorithmrelated bugs
also appear for autonomous vehicles but presence of such
bugs manifest in components unique to autonomous vehicle
projects, such as lane positioning and navigation, and traffic
light processing.
We have observed that data bugs appear for both deep

learning projects and COVID19 software projects. The dif
ference is for COVID19 we have the concepts of location,
as practitioners tend to miss important locationrelated data
for COVID19, e.g., not able to identify states in India that
are observing an outbreak of COVID19. In the case of deep
learning projects, data bugs are related with structure and
type of training data.
As another example, dependencyrelated bugs appear for

both IaC scripts and COVID19 software projects. In the case
of IaC, dependencyrelated bugs are related to an IaCrelated
artifact, such as Puppet manifest, class, or a module, upon
which execution of an IaC script is dependent upon (Rahman
et al., 2020). For COVID19 software project dependencies
are relatedwithAPI and build artifacts, such asMaven depen
dencies. This difference with respect to dependent artifacts
also highlight the differences between COVID19 software
projects and IaCbased software projects.
In short, our findings suggest that while commonalities

for bug categories between COVID19 software projects and
other software projects, the manifestation and artifacts re
lated to the bug categories are different from other categories
of software projects.

5.3.2 Difference in Bug Resolution Time

Our findings indicate that median bug resolution time is
lower for OVID19 software projects than that of blockchain
and machine learning projects. Based on our findings, we
conjecture that the sense of urgency might have motivated
practitioners to fix bugs in COVID19 software projects.

An Empirical Study of Bugs in COVID19 Software Projects Rahman and Farhana 2021

5.3.3 Differences with Existing Healthcarerelated Soft
ware Projects

Our findings also demonstrate differences between COVID
19 software projects and other projects related to healthcare
domain. To illustrate these differences we use Janamanchi et
al. 2009’s work. Janamanchi et al. 2009 studied 174 open
source software projects related to the health domain and
identified 11 categories of software projects that do not in
clude the three categories of projects that we have iden
tified for COVID19 software projects: volunteer manage
ment, user tracking, and education. The inception and spread
of COVID19 have motivated software practitioners to cre
ate a wide range of software projects, such as projects related
to user tracking and volunteer management so that people are
aware about the consequences and hygiene practices related
to COVID19. In the context of COVID19 software projects,
projects related to user tracking focus on tracking user loca
tion data emitted from smartphones to assess the proximity of
individuals who might be exposed to COVID19. Software
projects related to volunteer management are related with
managing volunteers to address COVID19related societal
issues, such as food banking. A pandemic of this nature was
not experienced by health professionals prior to 2020. Exist
ing research related to software projects that belong to health
domain were not able to perform characterization of COVID
19 software projects and identify project categories unique
to COVID19. Janmanchi et al. 2009 did not systematically
study the types of bugs that appear in health care software
projects. Our paper complements Janamanchi et al. 2009’s
work by studying healthcarerelated projects that are related
with COVID19 by characterizing the bugs and the types of
software projects related to COVID19 in which the bugs ap
pear in.

6 Threats to Validity
We describe the limitations of our paper as following:
Conclusion validity: We have used raters who derived the

software and bug categories. Both raters are authors of the
paper. Our derived categories are susceptible to the authors’
bias. We mitigate this limitation by allocating another rater
who is not the author of the paper who verified our ratings.
Our categories might not be comprehensive because our

categorization for projects and bugs is limited to the dataset
that we collected. The bug resolution time could be limiting
as our dataset includes projects that have a duration of four
months.
We use the topic ‘covid19’ to identify and filter COVID

19 software projects from GitHub. Any software project
that is not labeled as ‘covid19’ will not be included in our
dataset.
Our datasets have limited lifetime as the COVID19 was

discovered in December 2019, and the lack of maturity in our
datasets may influence our analysis. We mitigate this limita
tion by identifying projects using a filtering criteria so that
we can identify projects with sufficient development activ
ity.
Internal validity: For RQ1 and RQ2we use ourselves, the

authors of the paper, as raters who conduct open and closed

coding on README files and bug reports. Our research is
susceptible to monomethod bias, as our categorization and
labeling may be influenced by the authors’ implicit expecta
tions and hypotheses about the study.
External validity: Our findings are not comprehensive.

We have not analyzed projects hosted outside GitHub and
private projects hosted on GitHub. We mitigate this limita
tion by analyzing 129 software projects that belong to 7 cat
egories. Also, as we have used open coding to determine cat
egories, our findings may not be identified by other raters.
We mitigate this limitation by conducting rater verification,
where we use a rater who is not the author of the paper.

7 Conclusion

The COVID19 pandemic has impacted people all over the
world causing thousands of deaths. Software practitioners
have joined the fight in combating the spread and mitigating
the dire consequences of COVID19. An understanding of
COVID19 software categories and software bugs can give
us clues on how the software engineering community can
help even further in combating COVID19.
We conduct an empirical study with 129 COVID19 soft

ware projects hosted on GitHub. We identify 7 categories of
software projects: aggregation, mining, statistical models, ed
ucation, volunteer management, user tracking, and medical
equipment. By applying open coding on 550 bug reports, we
identify 8 categories of bugs: algorithm, data, dependency,
documentation, performance, security, syntax, and UI. We
observe bug category frequency to vary with project cate
gories, e.g., for mining projects datarelated bugs is the most
frequently occurring category.
Our findings have implications for educators, practition

ers, and researchers. Educators can use our categorization
of COVID software projects and related bugs to educate stu
dents about the security and privacy implications of COVID
19 software. Privacy researchers can build tools that will
check if user tracking software related to COVID19 are
not leaking user data. Practitioners in the data science do
main can learn from our categorization of statistical model
ing bugs to understand limitations of constructed statistical
models and verify underlying assumptions that accompany
constructed statistical models. Based on our findings we also
advocate for better synergies between data scientists and pub
lic health experts so that statistical modeling bugs can bemiti
gated.We hope our paper will advance further research in the
domain of COVID19 software.

Acknowledgements

We thank the PASER group at Tennessee Technological University
for their useful feedback. We also thank Farzana Ahamed Bhuiyan
of Tennessee Technological University for her help as an additional
rater. The research was partially supported by the National Science
Foundation (NSF) award # 2026869.

An Empirical Study of Bugs in COVID19 Software Projects Rahman and Farhana 2021

References
abquirarte (2020). accessibility fixes. github.com/

cagov/covid19/issues/137. [Online; accessed 10
May2020].

Agrawal, A., Rahman, A., Krishna, R., Sobran, A., and Men
zies, T. (2018). We don’t need another hero?: The im
pact of ”heroes” on software development. In Proceed
ings of the 40th International Conference on Software En
gineering: Software Engineering in Practice, ICSESEIP
’18, pages 245–253, New York, NY, USA. ACM.

Alasdair Sandford (2020). Coronavirus: Half of humanity
now on lockdown as 90 countries call for confinement.
https://www.euronews.com/2020/04/02/. [Online;
accessed 17Apr2020].

Anderson, S., Allen, P., Peckham, S., and Goodwin, N.
(2008). Asking the right questions: scoping studies in the
commissioning of research on the organisation and deliv
ery of health services. Health research policy and systems,
6(1):7.

Apple (2020). Privacypreserving contact tracing. https://
www.apple.com/covid19/contacttracing. [Online;
accessed 25May2020].

Applifting (2020). pomuzeme.si. github.com/
Applifting/pomuzeme.si. [Online; accessed 09
May2020].

Attia, P. (2020). Comparing covid19 to past pandemics,
preparing for the future, and reasons for optimism. https:
//peterattiamd.com/ameshadalja/. [Online; ac
cessed 21May2020].

Begley, S. (2020a). Death rates should increase when icu’s
are overwhelmed. https://github.com/neherlab/
covid19_scenarios/issues/7. [Online; accessed 10
May2020].

Begley, S. (2020b). Influential covid19 model uses flawed
methods and shouldn’t guide u.s. policies, critics say.
https://www.statnews.com/2020/04/17/. [Online;
accessed 10May2020].

boogheta (2020). boogheta/coronaviruscountries. https:
//github.com/boogheta/coronavirus-countries.
[Online; accessed 09May2020].

Butler, J. L. and Jaffe, S. (2020). Challenges and gratitude:
A diary study of software engineers working from home
during covid19 pandemic.

Catolino, G., Palomba, F., Zaidman, A., and Ferrucci, F.
(2019). Not all bugs are the same: Understanding, char
acterizing, and classifying bug types. Journal of Systems
and Software, 152:165 – 181.

CDC (2020). Cases, data, and surveillance.
https://www.cdc.gov/coronavirus/2019-ncov/
cases-updates/index.html. [Online; accessed
09May2020].

Chen, D., Xu, W., Lei, Z., Huang, Z., Liu, J., Gao, Z., and
Peng, L. (2020). Recurrence of positive sarscov2 rna in
covid19: A case report. International Journal of Infec
tious Diseases, 93:297 – 299.

Cohen, J. (1960). A coefficient of agreement for nomi
nal scales. Educational and Psychological Measurement,
20(1):37–46.

Corey, L., Mascola, J. R., Fauci, A. S., and Collins, F. S.
(2020). A strategic approach to covid19 vaccine r&d. Sci
ence.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C.
(2009). Introduction to algorithms. MIT press.

Crabtree, B. F. and Miller, W. L. (1999). Doing qualitative
research. sage publications.

Crowell Morning (2020). Mobile applications for covid
tracking & tracing – balancing the need for personal
information and privacy rights in the time of coro
navirus. https://www.crowell.com/NewsEvents/
AlertsNewsletters/all/. [Online; accessed 20May
2020].

De Clercq, E. (2006). Potential antivirals and antiviral strate
gies against sars coronavirus infections. Expert review of
antiinfective therapy, 4(2):291–302.

deepset ai (2020). deepsetai/covidqa. https://github.
com/deepset-ai/COVID-QA. [Online; accessed 09
May2020].

Dehning, J., Zierenberg, J., Spitzner, F. P., Wibral, M., Neto,
J. P., Wilczek, M., and Priesemann, V. (2020). Inferring
change points in the spread of covid19 reveals the effec
tiveness of interventions. Science.

elcronos (2020). elcronos/covid19. https://github.
com/elcronos/COVID-19. [Online; accessed 09May
2020].

Emery Berger (2021). Csrankings: Computer science
rankings. http://csrankings.org/#/index?all&us.
[Online; accessed 31February2021].

enigmampc (2020). Safetrace. github.com/enigmampc/
SafeTrace. [Online; accessed 09May2020].

Erin Duffin (2020). Impact of the coronavirus pan
demic on the global economy statistics & facts.
https://www.statista.com/topics/6139/
covid-19-impact-on-the-global-economy/.
[Online; accessed 08May2020].

EuroCrypt (2020a). Eurocrypt 2020 program. https://
eurocrypt.iacr.org/2020/program.php. [Online;
accessed 16May2020].

EuroCrypt (2020b). s212 panel discussion on contact trac
ing. https://youtu.be/Xt4P8E_Y-xc. [Online; ac
cessed 16May2020].

Evans, A. B., Blackwell, J., Dolan, P., Fahlén, J., Hoekman,
R., Lenneis, V., McNarry, G., Smith, M., and Wilcock, L.
(2020). Sport in the face of the covid19 pandemic: to
wards an agenda for research in the sociology of sport.

Farhana, E., Imtiaz, N., and Rahman, A. (2019). Synthesiz
ing program execution time discrepancies in julia used for
scientific software. In 2019 IEEE International Confer
ence on Software Maintenance and Evolution (ICSME),
pages 496–500.

Garcia, J., Feng, Y., Shen, J., Almanee, Sumaya Xia, Y.,
and Chen, Q. A. (2020). A comprehensive study of au
tonomous vehicle bugs. In Proceedings of the 42nd Inter
national Conference on Software Engineering, ICSE ’20.
to appear.

GitHub (2020a). Covid19 : Github topics. https://
github.com/topics/covid-19. [Online; accessed 07
May2020].

github.com/cagov/covid19/issues/137
github.com/cagov/covid19/issues/137
https://www.euronews.com/2020/04/02/
https://www.apple.com/covid19/contacttracing
https://www.apple.com/covid19/contacttracing
github.com/Applifting/pomuzeme.si
github.com/Applifting/pomuzeme.si
https://peterattiamd.com/ameshadalja/
https://peterattiamd.com/ameshadalja/
https://github.com/neherlab/covid19_scenarios/issues/7
https://github.com/neherlab/covid19_scenarios/issues/7
https://www.statnews.com/2020/04/17/
https://github.com/boogheta/coronavirus-countries
https://github.com/boogheta/coronavirus-countries
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/index.html
https://www.cdc.gov/coronavirus/2019-ncov/cases-updates/index.html
https://www.crowell.com/NewsEvents/AlertsNewsletters/all/
https://www.crowell.com/NewsEvents/AlertsNewsletters/all/
https://github.com/deepset-ai/COVID-QA
https://github.com/deepset-ai/COVID-QA
https://github.com/elcronos/COVID-19
https://github.com/elcronos/COVID-19
http://csrankings.org/#/index?all&us
github.com/enigmampc/SafeTrace
github.com/enigmampc/SafeTrace
https://www.statista.com/topics/6139/covid-19-impact-on-the-global-economy/
https://www.statista.com/topics/6139/covid-19-impact-on-the-global-economy/
https://eurocrypt.iacr.org/2020/program.php
https://eurocrypt.iacr.org/2020/program.php
https://youtu.be/Xt4P8E_Y-xc
https://github.com/topics/covid-19
https://github.com/topics/covid-19

An Empirical Study of Bugs in COVID19 Software Projects Rahman and Farhana 2021

GitHub (2020b). Language savant. https://github.com/
github/linguist. [Online; accessed 07May2020].

GitHub (2020c). Search : Covid19. https://github.
com/search?q=covid-19. [Online; accessed 07May
2020].

Greenberg, A. (2020). India’s covid19 contact tracing app
could leak patient locations. https://www.wired.com/
story/india-covid-19-contract-tracing-app/.
[Online; accessed 23May2020].

Helms, J., Kremer, S., Merdji, H., ClereJehl, R., Schenck,
M., Kummerlen, C., Collange, O., Boulay, C., Fafi
Kremer, S., Ohana, M., et al. (2020). Neurologic features
in severe sarscov2 infection. New England Journal of
Medicine.

helpwithcovid (2020). helpwithcovid/covid
volunteers. https://github.com/helpwithcovid/
covid-volunteers. [Online; accessed 09May2020].

Herzig, K., Just, S., and Zeller, A. (2013). It’s not a bug, it’s a
feature: How misclassification impacts bug prediction. In
Proceedings of the 2013 International Conference on Soft
ware Engineering, ICSE ’13, page 392–401. IEEE Press.

Hu, F. Z. and Qian, J. (2017). Landbased finance, fiscal
autonomy and land supply for affordable housing in ur
ban china: A prefecturelevel analysis. Land Use Policy,
69:454 – 460.

Huang, Y., Sun, M., and Sui, Y. (2020). How
digital contact tracing slowed covid19 in
east asia. https://hbr.org/2020/04/
how-digital-contact-tracing-slowed-covid-19.
[Online; accessed 09May2020].

IEEE (2010). Ieee standard classification for software
anomalies. IEEE Std 10442009 (Revision of IEEE Std
10441993), pages 1–23.

ImperialCollegeLondon (2020). Imperialcollegelon
don/covid19model. https://github.com/
ImperialCollegeLondon/covid19model. [Online;
accessed 09May2020].

Islam, M. J., Nguyen, G., Pan, R., and Rajan, H. (2019). A
comprehensive study on deep learning bug characteristics.
InProceedings of the 2019 27th ACM JointMeeting on Eu
ropean Software Engineering Conference and Symposium
on the Foundations of Software Engineering, ESEC/FSE
2019, page 510–520, New York, NY, USA. Association
for Computing Machinery.

ivan aksamentov (2020). Fix types and linting er
rors. https://github.com/neherlab/covid19_
scenarios/issues/101. [Online; accessed 10May
2020].

Janamanchi, B., Katsamakas, E., Raghupathi, W., and Gao,
W. (2009). The state and profile of open source software
projects in health and medical informatics. International
Journal of Medical Informatics, 78(7):457–472.

Jarynowski, A., WójtaKempa, M., Płatek, D., and Czopek,
K. (2020). Attempt to understand public health relevant
social dimensions of covid19 outbreak in poland. Avail
able at SSRN 3570609.

Jin, Z., Zhao, Y., Sun, Y., Zhang, B., Wang, H., Wu, Y., Zhu,
Y., Zhu, C., Hu, T., Du, X., et al. (2020). Structural ba
sis for the inhibition of sarscov2 main protease by anti

neoplastic drug carmofur. Nature Structural & Molecular
Biology, pages 1–4.

John Hopkins University (2020). Corona Virus Resource
Center. https://coronavirus.jhu.edu/. [Online; ac
cessed 31May2020].

JoHof (2020). Johof/lungmask. https://github.com/
JoHof/lungmask. [Online; accessed 09May2020].

juanmnl (2020). covid19monitor. github.com/juanmnl/
covid19-monitor. [Online; accessed 09May2020].

Kissler, S. M., Tedijanto, C., Goldstein, E., Grad, Y. H., and
Lipsitch, M. (2020). Projecting the transmission dynamics
of sarscov2 through the postpandemic period. Science.

Koerth, M., Bronner, L., and Mithani, J. (2020). Why
it’s so freaking hard to make a good covid19
model. https://fivethirtyeight.com/features/
why-its-so-freaking-hard-to-make/. [Online;
accessed 22May2020].

Kraemer, M. U., Yang, C.H., Gutierrez, B., Wu, C.H.,
Klein, B., Pigott, D. M., du Plessis, L., Faria, N. R., Li,
R., Hanage, W. P., et al. (2020). The effect of human mo
bility and control measures on the covid19 epidemic in
china. Science, 368(6490):493–497.

Landis, J. R. and Koch, G. G. (1977). The measurement
of observer agreement for categorical data. Biometrics,
33(1):159–174.

landovsky (2020). Fix password reset procedure. https://
github.com/Applifting/pomuzeme.si/issues/99.
[Online; accessed 10May2020].

LinaresVásquez, M., Bavota, G., and EscobarVelasquez, C.
(2017). An empirical study on androidrelated vulnerabil
ities. In Proceedings of the 14th International Conference
on Mining Software Repositories, MSR ’17, pages 2–13,
Piscataway, NJ, USA. IEEE Press.

Ma, L., Zhang, F., Sun, J., Xue, M., Li, B., JuefeiXu, F., Xie,
C., Li, L., Liu, Y., Zhao, J., and Wang, Y. (2018). Deep
mutation: Mutation testing of deep learning systems. In
2018 IEEE 29th International Symposium on Software Re
liability Engineering (ISSRE), pages 100–111.

Ma, W., Chen, L., Zhang, X., Zhou, Y., and Xu, B. (2017).
How do developers fix crossproject correlated bugs? a
case study on the github scientific python ecosystem. In
Proceedings of the 39th International Conference on Soft
ware Engineering, ICSE ’17, page 381–392. IEEE Press.

makersfor life (2020). makersforlife/makair. https://
github.com/makers-for-life/makair. [Online; ac
cessed 09May2020].

Marivate, V. and Combrink, H. M. (2020). Use of available
data to inform the covid19 outbreak in south africa: A
case study. Data Science Journal, 19(1):1–7.

Marivate, V., Nsoesie, E., Bekele, E., and open COVID19
data working group, A. (2020). Coronavirus COVID19
(2019nCoV) Data Repository for Africa.

mdeous (2020). Missing code of conduct. https://github.
com/reach4help/reach4help/issues/135. [Online;
accessed 10May2020].

Mello, M. M. andWang, C. J. (2020). Ethics and governance
for digital disease surveillance. Science.

Mitchell Hartman (2020). Covid19 job
less claims are now over 40 million. many

https://github.com/github/linguist
https://github.com/github/linguist
https://github.com/search?q=covid-19
https://github.com/search?q=covid-19
https://www.wired.com/story/india-covid-19-contract-tracing-app/
https://www.wired.com/story/india-covid-19-contract-tracing-app/
https://github.com/helpwithcovid/covid-volunteers
https://github.com/helpwithcovid/covid-volunteers
https://hbr.org/2020/04/how-digital-contact-tracing-slowed-covid-19
https://hbr.org/2020/04/how-digital-contact-tracing-slowed-covid-19
https://github.com/ImperialCollegeLondon/covid19model
https://github.com/ImperialCollegeLondon/covid19model
https://github.com/neherlab/covid19_scenarios/issues/101
https://github.com/neherlab/covid19_scenarios/issues/101
https://coronavirus.jhu.edu/
https://github.com/JoHof/lungmask
https://github.com/JoHof/lungmask
github.com/juanmnl/covid19-monitor
github.com/juanmnl/covid19-monitor
https://fivethirtyeight.com/features/why-its-so-freaking-hard-to-make/
https://fivethirtyeight.com/features/why-its-so-freaking-hard-to-make/
https://github.com/Applifting/pomuzeme.si/issues/99
https://github.com/Applifting/pomuzeme.si/issues/99
https://github.com/makers-for-life/makair
https://github.com/makers-for-life/makair
https://github.com/reach4help/reach4help/issues/135
https://github.com/reach4help/reach4help/issues/135

An Empirical Study of Bugs in COVID19 Software Projects Rahman and Farhana 2021

are still waiting for unemployment benefits.
https://www.marketplace.org/2020/05/28/
covid-19-jobless-claims-unemployment-benefits-waiting/.
[Online; accessed 31May2020].

Mockus, A., Fielding, R. T., and Herbsleb, J. D. (2002).
Two case studies of open source software development:
Apache and mozilla. ACM Trans. Softw. Eng. Methodol.,
11(3):309–346.

Munaiah, N., Kroh, S., Cabrey, C., and Nagappan, M. (2017).
Curating github for engineered software projects. Empiri
cal Software Engineering, pages 1–35.

Munn, Z., Peters, M. D., Stern, C., Tufanaru, C., McArthur,
A., and Aromataris, E. (2018). Systematic review or scop
ing review? guidance for authors when choosing between
a systematic or scoping review approach. BMC medical
research methodology, 18(1):143.

National Institute of Standard and Technology (2020).
Nist privacy framework. https://www.nist.gov/
privacy-framework. [Online; accessed 24May2020].

neherlab (2020). covid19_scenarios. github.com/
neherlab/covid19_scenarios. [Online; accessed 09
May2020].

nthopinion (2020). nthopinion/covid19. https://github.
com/nthopinion/covid19. [Online; accessed 09May
2020].

Oliveira, E., Leal, G., Valente, M. T., Morandini, M., Prik
ladnicki, R., Pompermaier, L., Chanin, R., Caldeira, C.,
Machado, L., and de Souza, C. (2020). Surveying the im
pacts of covid19 on the perceived productivity of brazil
ian software developers. In Proceedings of the 34th Brazil
ian Symposium on Software Engineering, SBES ’20, page
586–595, New York, NY, USA. Association for Comput
ing Machinery.

OpenMined (2020). covidalert. github.com/OpenMined/
covid-alert. [Online; accessed 09May2020].

Paul, R., Baltes, S., Gianisa, A., Torkar, R., Kovalenko, V.,
Marcos, K., Nicole, N., Yoo, S., Xavier, D., Tan, X., et al.
(2020). Pandemic programming. Empirical Software En
gineering, 25(6):4927–4961.

pavel ilin (2020). Temperature data not saved
in the backend. https://github.com/
COVID-19-electronic-health-system/
Corona-tracker/issues/351. [Online; accessed
10May2020].

Pei, K., Cao, Y., Yang, J., and Jana, S. (2017). Deepxplore:
Automated whitebox testing of deep learning systems. In
Proceedings of the 26th Symposium on Operating Systems
Principles, SOSP ’17, page 1–18, New York, NY, USA.
Association for Computing Machinery.

popsolutions (2020). popsolutions/openventilator. https:
//github.com/popsolutions/openventilator.
[Online; accessed 09May2020].

Prana, G. A., Treude, C., Thung, F., Atapattu, T., and Lo, D.
(2019). Categorizing the content of github readme files.
Empirical Softw. Engg., 24(3):1296–1327.

Pulido, C. M., VillarejoCarballido, B., RedondoSama, G.,
and Gómez, A. (2020). Covid19 infodemic: More
retweets for sciencebased information on coronavirus
than for false information. International Sociology, page

0268580920914755.
Rahman, A. and Farhana, E. (2020). Dataset for Pa
per COVID19EMSE. https://figshare.com/s/
7044678e1d7e7feb1efb. [Online; accessed 22January
2021].

Rahman, A., Farhana, E., Parnin, C., andWilliams, L. (2020).
Gang of eight: A defect taxonomy for infrastructure as
code scripts. In Proceedings of the 42nd International
Conference on Software Engineering, ICSE ’20. to ap
pear.

Ray, B., Posnett, D., Filkov, V., and Devanbu, P. (2014).
A large scale study of programming languages and code
quality in github. In Proceedings of the 22Nd ACM SIG
SOFT International Symposium on Foundations of Soft
ware Engineering, FSE 2014, pages 155–165, New York,
NY, USA. ACM.

reustle (2020). Fix prefecture sorting. https://github.
com/reustle/covid19japan/issues/15. [Online; ac
cessed 05Mar2021].

Rourke, M., EcclestonTurner, M., Phelan, A., and Gostin, L.
(2020). Policy opportunities to enhance sharing for pan
demic research. Science, 368(6492):716–718.

Saldana, J. (2015). The coding manual for qualitative re
searchers. Sage.

SinghRajenM (2020). Rajasthan district names are
wrong. https://github.com/covid19india/
covid19india-react/issues/321. [Online; accessed
10May2020].

soroushchehresa (2020). soroushchehresa/awesome
coronavirus. github.com/soroushchehresa/
awesome-coronavirus. [Online; accessed 16May
2020].

Subratappt (2020). Cluster animation slowing down the
browser. it also takes much time. https://github.com/
covid19india/covid19india-react/issues/497.
[Online; accessed 10May2020].

Tamm, M. V. (2020). Covid19 in moscow: prognoses and
scenarios. FARMAKOEKONOMIKA. Modern Pharma
coeconomic and Pharmacoepidemiology, 13(1):43–51.

Thung, F., Wang, S., Lo, D., and Jiang, L. (2012). An empir
ical study of bugs in machine learning systems. In 2012
IEEE 23rd International Symposium on Software Reliabil
ity Engineering, pages 271–280.

Tian, Y., Pei, K., Jana, S., and Ray, B. (2018). Deeptest:
Automated testing of deepneuralnetworkdriven au
tonomous cars. In Proceedings of the 40th International
Conference on Software Engineering, ICSE ’18, page
303–314, New York, NY, USA. Association for Comput
ing Machinery.

Timoeller (2020). Cdc children scraper is outdated. https:
//github.com/deepset-ai/COVID-QA/issues/43.
[Online; accessed 10May2020].

Tom Simonite (2020). Software that reads ct lung scans
had been used primarily to detect cancer. now it’s
retooled to look for signs of pneumonia caused by
coronavirus. https://www.wired.com/story/
chinese-hospitals-deploy-ai-help-diagnose/.
[Online; accessed 08May2020].

vaclavpavlicek (2020). Missing postgis. https://github.

https://www.marketplace.org/2020/05/28/covid-19-jobless-claims-unemployment-benefits-waiting/
https://www.marketplace.org/2020/05/28/covid-19-jobless-claims-unemployment-benefits-waiting/
https://www.nist.gov/privacy-framework
https://www.nist.gov/privacy-framework
github.com/neherlab/covid19_scenarios
github.com/neherlab/covid19_scenarios
https://github.com/nthopinion/covid19
https://github.com/nthopinion/covid19
github.com/OpenMined/covid-alert
github.com/OpenMined/covid-alert
https://github.com/COVID-19-electronic-health-system/Corona-tracker/issues/351
https://github.com/COVID-19-electronic-health-system/Corona-tracker/issues/351
https://github.com/COVID-19-electronic-health-system/Corona-tracker/issues/351
https://github.com/popsolutions/openventilator
https://github.com/popsolutions/openventilator
https://figshare.com/s/7044678e1d7e7feb1efb
https://figshare.com/s/7044678e1d7e7feb1efb
https://github.com/reustle/covid19japan/issues/15
https://github.com/reustle/covid19japan/issues/15
https://github.com/covid19india/covid19india-react/issues/321
https://github.com/covid19india/covid19india-react/issues/321
github.com/soroushchehresa/awesome-coronavirus
github.com/soroushchehresa/awesome-coronavirus
https://github.com/covid19india/covid19india-react/issues/497
https://github.com/covid19india/covid19india-react/issues/497
https://github.com/deepset-ai/COVID-QA/issues/43
https://github.com/deepset-ai/COVID-QA/issues/43
https://www.wired.com/story/chinese-hospitals-deploy-ai-help-diagnose/
https://www.wired.com/story/chinese-hospitals-deploy-ai-help-diagnose/
https://github.com/Applifting/pomuzeme.si/issues/164

An Empirical Study of Bugs in COVID19 Software Projects Rahman and Farhana 2021

com/Applifting/pomuzeme.si/issues/164. [On
line; accessed 10Mar2021].

Van Bavel, J. J., Baicker, K., Boggio, P. S., Capraro, V., Ci
chocka, A., Cikara, M., Crockett, M. J., Crum, A. J., Dou
glas, K. M., Druckman, J. N., et al. (2020). Using social
and behavioural science to support covid19 pandemic re
sponse. Nature Human Behaviour, pages 1–12.

Vardi, M. Y. (2009). Conferences vs. journals in computing
research. Communications of the ACM, 52(5):5–5.

Wan, Z., Lo, D., Xia, X., and Cai, L. (2017). Bug characteris
tics in blockchain systems: A largescale empirical study.
In 2017 IEEE/ACM14th International Conference onMin
ing Software Repositories (MSR), pages 413–424.

Wang, C., Li, W., Drabek, D., Okba, N. M., van Haperen,
R., Osterhaus, A. D., van Kuppeveld, F. J., Haagmans,
B. L., Grosveld, F., and Bosch, B.J. (2020). A human
monoclonal antibody blocking sarscov2 infection. Na
ture Communications, 11(1):1–6.

WHO (2020). Global research on coronavirus disease

(covid19). https://www.who.int/emergencies/
diseases/novel-coronavirus-2019/
global-research-on-novel-coronavirus-2019-ncov.
[Online; accessed 09May2020].

Why Hunger (2020). Why hunger. https://whyhunger.
org/map.php. [Online; accessed 08May2020].

Will, C. M. (2020). ‘and breathe...’? the sociology of health
and illness in covid19 time. Sociology of Health & Illness.

Yang, C. Y. and Wang, J. (2020). A mathematical model for
the novel coronavirus epidemic in wuhan, china. Mathe
matical Biosciences and Engineering, 17(3):2708–2724.

zbraniecki (2020). Data has a gap between 2020311
and 2020324. https://github.com/covidatlas/
coronadatascraper/issues/375. [Online; accessed
10May2020].

Zhang, T., Chen, J., Luo, X., and Li, T. (2019). Bug reports
for desktop software and mobile apps in github: What’s
the difference? IEEE Software, 36(1):63–71.

https://github.com/Applifting/pomuzeme.si/issues/164
https://github.com/Applifting/pomuzeme.si/issues/164
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov
https://www.who.int/emergencies/diseases/novel-coronavirus-2019/global-research-on-novel-coronavirus-2019-ncov
https://whyhunger.org/map.php
https://whyhunger.org/map.php
https://github.com/covidatlas/coronadatascraper/issues/375
https://github.com/covidatlas/coronadatascraper/issues/375

	Introduction
	Related Work
	Methodology
	Methodology for RQ1: What categories of open source COVID-19 software projects exist?
	Dataset Collection
	Qualitative Analysis of README files
	Closed Coding
	Rater Verification

	Methodology for RQ2: What categories of bugs exist in open source COVID-19 software projects? How frequently do the identified bug categories appear? What is the resolution time for the identified bug categories?
	Methodology to Answer RQ3: How similar are the identified bug categories to that with previously studied software projects?

	Results
	Answer to RQ1: What categories of open source COVID-19 software projects exist?
	Summary of Dataset
	Categorization of COVID-19 Software Projects
	Frequency of the Identified Categories
	Rater Agreement

	Answer to RQ2: What categories of bugs exist in open source COVID-19 software projects? How frequently do the identified bug categories appear? What is the resolution time for the identified bug categories?
	Bug Categories of COVID-19 Projects
	Frequency of Identified Bug Categories
	Rater Agreement and Verification
	Resolution Time of Identified Bug Categories

	Answer to RQ3: How similar are the identified bug categories to that with previously studied software projects?

	Discussion
	Summary
	Implications
	Differences between COVID-19 Software Projects and Other Software Projects
	Differences in Bug Manifestation
	Difference in Bug Resolution Time
	Differences with Existing Healthcare-related Software Projects

	Threats to Validity
	Conclusion

