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Abstract

The principal aim of this paper is to introduce the framework for a cooperative game theoretical approach
to risk analysis using network structure. Probabilistic risk analysis (PRA) is a common methodology for
evaluating risks associated with real-world network structure. Although there are numerous studies on
PRA from a physical engineering perspective, Hausken (2002) noted that human behavior is a significant
factor in estimating risk using PRA, and he integrated PRA and game theory. While his and related
works focused on non-cooperative game theory, in some situations, such as chemical plants, cooperative
structures are the norm. Therefore, we here provide a risk analysis method based on cooperative game
theory, and especially so-called Shapley values.
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1. Introduction

Probabilistic risk analysis (PRA) is a common
methodology for evaluating risks associated with
network structures (Bedford and Cooke, 2001). Al-
though there are numerous studies on PRA from a
physical engineering perspective, human behavior
has increasingly been noted as a significant factor
in estimating risks using PRA. Hausken (2002) ini-
tiated this latter approach, and integrated PRA and
game theory.

Roughly speaking, game theory is a mathemati-

cal theory of decision-making in situations involving
two or more relevant players, where decisions de-
pend on competitors’ behavior. Such situations are
referred to as game situations. Originating in von
Neumann and Morgenstern’sTheory of Games and
Economic Behavior (1944), game theory analyzes
conflicts of interest and cooperation among relevant
players, by formulating game situations as mathe-
matical models (e.g., Fudenberg and Tirole, 1991);
and therefore, game theoretical approaches typically
involve considerations of human behavior.

Game theory typically focuses on two types of
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games: cooperative and non-cooperative. In so-
cial sciences such as economics, non-cooperative
game theory is often employed in modern microeco-
nomics, for example in industrial organization the-
ory (Aumann and Hart, 1994c, Ch. 49), and has re-
cently gained increasing popularity in faculties of
economics and management. Cooperative game the-
ory, however, has not yet attained such widespread
use, and one reason may be that economists typically
think of market companies as competitors in a non-
cooperative game. In this paper, we wish to draw
attention to real-world situations in which relevant
players are cooperative in terms of risk considera-
tion.

We shall take as an example, a complex chemi-
cal plant, whose various segments represent relevant
players working for a single company. These seg-
ments may be numerous and varied, but all must co-
operate toward the common production ends of the
single plant and company. Some economists would
argue that even if relevant players are cooperative,
the cooperative game would be converted into a non-
cooperative game by the Nash program (Nash, 1951,
1953), and this is true in some areas, but not in all. In
the chemical plant described above, it is reasonable
and unproblematic to posit a sustained cooperative
game situation.

In light of the foregoing, though most previous
studies adopted a non-cooperative game theoretical
approach to risk analysis using network structure,
a cooperative game theoretical approach is consid-
ered more suitable to some real-world situations.
The principal aim of this paper, then, is to intro-
duce the framework for a cooperative game theoreti-
cal approach to risk analysis with network structure.
More precisely, we provide a method to allocate risk
among the various segments of a chemical plant with
a network structure, using so-called Shapley values,
solution concepts widely employed in cooperative
game theory.

The paper is organized as follows. First, we in-
troduce Shapley values through concrete examples
involving simple-structure graphs. Second, we con-
sider two chemical plant toy models: a petroleum
refining plant and a medicinal chemical manufactur-
ing plant. Finally, we discuss the proposed frame-

work and offer concluding remarks.

2. Shapley Values

Here we introduce Shapley values by means of two
simple examples. Throughout this section, we shall
denote segments using the lettersA, B, andC, and
consider each segment to represent a specific factory
operation.

Example 1 (Graph with a simple edge)
Here we consider a graph with a simple edge

(Figure 1), whose characteristic functions are as fol-
lows:

A B

Fig. 1. Graph with a simple edge.

In this example, we set so-called characteristic
functions as follows:

c(A) = 8, c(B) = 8,

c(AB) = 15.

The valuesc(A) andc(B) indicate the separate costs
involved when each segment is working indepen-
dently and experiences a loss, whilec(AB) shows
the total cost whenA andB are working in concert
and an accident occurs or plant production is im-
paired. The reason thatc(AB) < c(A)+ c(B) holds
is that segmentsA andB work cooperatively, so that
the total risk decreases. The primary aim of this pa-
per is to provide a framework wherein the respective
segments are involved in cost sharing.

Let us calculate the Shapley values for each seg-
ment. WhenB’s work is added to that ofA, the to-
tal cost is 15. Hence,B would claim that he only
pays 7(= 15−8) if an accident occurs. If we treat
their respective contributions as defrayment costs,
(A,B) = (8,7) may be allocated for risk. However,
this procedure does not take into account the coali-
tion order ofA andB; if only B is working initially,
and thenA adds to the line,A would claim that he
only pays 7(= 15− 8) if an accident occurs; and
if we treat their respective contributions in this case
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asdefrayment costs,(A,B) = (7.5,7.5) may be allo-
cated to risk. The Shapley values represent the aver-
age of each order’s contribution, given any segment
order, for the total segment set.

In this example, the Shapley values ofA andB
are 7.5 = (8+ 7)/2 and 7.5 = (7+ 8)/2, respec-
tively. Note that we can illustrate the procedure by
using Table 1:

Table 1. Table for calculating the Shapley values of Example 1.

Coalition order A’s contr B’s contr
A → B 8 7 = 15−8
B → A 7 = 15−8 8

Shapley value 7.5 7.5
*contr – contribution

Example 2 (Tandem graph)
Here again we consider a graph with a simple

edge (Figure 2), whose characteristic functions are
as follows:

A B C

Fig. 2. Tandem graph.

c(A) = 8, c(B) = 8, c(C) = 8,

c(AB) = 15, c(BC) = 15, c(CA) = 16,

c(ABC) = 20.

The valuesc(AB) andc(BC) are both equal toc(AB)
in Example 1, since their structure is identical. On
the other hand, the relations

c(CA) = c(C)+ c(A),

c(CA) > c(AB),

c(CA) > c(BC)

are satisfied, because segmentsA andC do not di-
rectly connect. This means that cooperation between
A andB, andB andC, will reduce the segment cost
of each, but that cooperation betweenC andA will
not reduce the segment cost of either.

From Table 2, the Shapley values are

(A,B,C) =

(

41
3

,
38
3

,
41
3

)

.

Note that asB is directly connected toA andC, the
Shapley value ofB is less than that ofA andC.

Table 2. Table for calculating the Shapley values of Example 2.

Coalition A’s B’s C’s
order contr contr contr

A → B →C 8 7 5
A →C → B 8 4 8
B → A →C 7 8 5
B →C → A 5 8 7
C → A → B 8 4 8
C → B → A 5 7 8

Shapley value 41/3 38/3 41/3
*contr – contribution

To take an example, if the coalition order is
A → B → C, we can calculate each segment’s con-
tribution as follows:

v(A) = c(A) = 8,

v(B) = c(AB)− c(A) = 15−8 = 7,

v(C) = c(ABC)− c(AB) = 20−15= 5.

3. Chemical Plant Toy Models

Here we consider two chemical plant toy models,
one a petroleum refining plant, and the other a
medicinal chemical manufacturing plant. Roughly
speaking, in the former the primary process is crude
oil separation, and in the latter, the repetition of
chemical reactions. They are both characterized by a
structure typical of chemical plants, which involves
a process of either deriving or adding chemicals. Ex-
pressed mathematically, this is a tree structure; see
e.g., Lawler (2011, Sec. 5, Ch. 2) for mathematical
elaboration.
Model 1 (Petroleum refining plant model)

The process of petroleum refinement involves the
separation of crude oil into heavy oil, gas oil, heat-
ing oil, and gas. We can model this process as 3,
with reservoirs for crude oil (A), heavy oil (D), and
the remaining oil (B).
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A B CED
Fig. 3. Petroleum refining plant model.

We assume thatA and B are reservoirs for oil
mixtures, and the others (D, C, andE) are purified
products.

We may define the characteristic functions of this
model as follows:

c(A) = c(B) = 5,

c(C) = c(D) = c(E) = 3,

c(AB) = c(AC) = c(AE) = c(BD) = 8,

c(BC) = c(CD) = c(CE) = c(AD) = c(BE) = c(DE) = 6,

c(ACE) = 11,

c(ABC) = c(ABD) = c(ABE) = 10,

c(ACD) = c(ADE) = c(BCD) = c(BDE) = c(CDE) = 9,

c(BCE) = 8,

c(ABCD) = c(ABCE) = c(ACDE) = 12,

c(ABDE) = c(BCDE) = 11,

c(ABCDE) = 13.

A andB are involved in the production of two or
more products, andC, D, and E are primarily re-
sponsible for only one product. Hence, the char-
acteristic functions ofA andB are greater those of
the others. The characteristic functions of more than
two segments are governed by the following rule:
let andN be a set of segments and a segment,
respectively; then

(i) c( N) < c( )+ c(N) if there exists a seg-
mentM of the set such thatM connects to
N directly;

(ii) c( N) = c( ) + c(N) is satisfied unless
case the (i) holds.

For example, suppose that = AD andN = B, then
A (a member of ) connects toB directly. Thus,
this is an example of case (i); and asc(AD) = 6,
c(B) = 5, andc(ABD) = 10, then we have

10= c(ABD) < c(AD)+ c(B) = 10.

A further example: suppose that = ADE and
N = C, then there is no segment in such that the
segment connects toC directly. Thus, this is an ex-
ample of the case (ii); and asc(ADE) = 9, c(C) = 3,
andc(ACDE) = 12, then we have

12= c(ACDE) = c(ADE)+ c(C).

The Shapley value of this model is

(A,B,C,D,E) =

(

420
5

,
342
5

,
290
5

,
248
5

,
260
5

)

.

Note that we must calculate each segment’s contri-
bution for each coalition order when we generate the
Shapley values, and there are 5!= 120 orders.

Remark 1 The results represent each segment’s
marginal contribution to the plant’s production (de-
tailed in the final section). Therefore, when apply-
ing this method to chemical plants, we allocate re-
sponsibility to each segment according to its Shap-
ley value. Specifically, when an accident occurs in a
given plant, each segment covers the damage cost
according to this value. Also, in a risk manage-
ment context, the plant manager can allocate costs
for safety measures to each segment based on its re-
spective Shapley value.

Model 2 (Medicinal chemical manufacturing plant
model)

The process of manufacturing medicine involves
the repeated addition of chemical substances. We
can model this process as Figure 4.
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A

C

E

D

B

F

G

Fig. 4. Medicinal chemical manufacturing plant model.

The model may at first seem somewhat complex;
however, the process works in tandem, and by la-
beling the intersection points from left to right asα ,
β , andγ , we can represent this model as a tandem
graph (Figure 5).

A

C

E

D

B

F

G

˺

˻

˼

˺ ˻ ˼

Fig. 5. Medicinal chemical manufacturing plant model as a
tandem graph.

Therefore, we may treat the medicinal chemi-
cal manufacturing plant model in the same man-
ner as Example 2, discussed in the previous section.
More precisely, by specifying the value of the char-

acteristic functions,c(α), c(β ), c(γ), c(αβ ), c(βγ),
c(γα), and c(αβγ), we can calculate the Shapley
value for this model. For example, when we specify
the value of these functions in line with Example 2,
the Shapley value for the model is

(α ,β ,γ) =

(

41
3

,
38
3

,
41
3

)

,

which is, of course, the same result as in Example 2.

Remark 2 In the two examples above, we designed
the characteristic functions to satisfy the rule de-
scribed in Model 1. However, their specific values
were chosen for convenience; and, though we have
focused specifically on the construction of network
models in this study, we are also concerned with the
manner of specifying the value of such characteris-
tic functions, however this is a consideration for the
future.

4. Discussion and Concluding Remarks

We provided a cooperative game theoretical ap-
proach to risk analysis using network structure,
based on Shapley values. The approach would ap-
pear to have potential for solving risk allocation
problems, since, if the total risk is known, the Shap-
ley values help us determine each segment’s re-
spective contribution, and thereby allocate segmen-
tal risk according to these values.

In general, we may calculate Shapley values as
follows. Let N be the set of all segments. First, we
define a characteristic functionc : 2N → R, where
2N and R denote the sets of all subsets ofN and real
numbers, respectively; and the function has the fol-
lowing properties:

(i) c( /0) = 0,

(ii) c(S∪T ) 6 c(S)+ c(T ),

whereS andT are subsets ofN satisfyingS∩N = /0.
Note thatS ∩ T = /0 means that there no segment
belonging to both setsS andT . Then, segmenti’s
Shapley value is defined by

φi(c) := ∑
S⊂N\{i}

|S|!(n−|S|−1)!
n!

(c(S∪{i})− c(S)) ,
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where n is the total number of segments, and|S|
denotes the number of segments belonging to the
set S (i.e., |N| = n). In the equation,c(S ∪ {i})−
c(S) means that the marginal contribution ofi to S.
Hence, the Shapley value indicates a weighted aver-
age of the respective marginal contributions. In ad-
dition, a Shapley value has the following five prop-
erties:

(i) For anyi ∈ N, φi(c) 6 c(i) is satisfied.

(ii) ∑
i∈N

φi(c) = c(N).

(iii) If c(S∪ i) = c(S∪ j) holds for anyS ⊂ N satis-
fying i, j 6= S, thenφi(c) = φ j(c).

(iv) For anyS ⊂ N satisfying i 6= S, c(S ∪ {i}) =
c(S) is satisfied.

(v) For any characteristic functionsc1 and c2,
φi(c1 + c2) = φi(c1)+ φi(c2) is satisfied.

It has been well established that a Shapley value is
the only solution concept that satisfies the five prop-
erties above (Aumann and Hart, 1994c, Ch. 53).

We used the Shapley value as a solution concept
in our cooperative game models, but an alternative
solution concept, that of the nucleus, is also avail-
able for this purpose (Aumann and Hart, 1994a, Ch.
18). A Shapley value is defined based on each seg-
ment’s contribution when that segment cooperates
with others, while the nucleus concept is based on
a given segment’s dissatisfaction with its respective
coalitions. Since the approaches are so different, it
is difficult to generalize about their respective supe-
riority; this will likely be determined by the specific
context of the problem faced.

Although the framework introduced in this paper
is the first attempt of its kind for cooperative game
theory, it appears to offer a promising approach to
risk analysis, especially in the context of risk alloca-
tion.
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