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Abstract 

In this paper, we consider a renewal risk model with constant interest force for an insurance portfolio. We discuss 
equations for the survival probability and its Laplace-Stieltjes transforms have been obtained. We provide recursive 
algorithm for the upper and lower bounds for the ruin/survival probability under interest force. Finally, we derive 
an exponential integral equation for the survival probability. Some special cases are also discussed. 
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1. Introduction 

The classical compound Poisson surplus process, it is 
often assumed that the surplus receives no interest over 
time. But the large portion of the surplus of the 
insurance companies comes from investment income. 
The impact of investment risk on the ruin probability 
and other issues of both theoretical interest and practical 
importance. In risk theory, there is considerable interest 
in the study of investment income. In this paper we use 
results given by Sundt and Tuegels (1995, 1997) and the 
ideas given in Jingmin et.al (2011) and Cai and Dickson 
(2002) to study the ruin problems for the Generalized 
Exponential distribution. We aim to find the bounds for 
the ultimate ruin probability by recursive technique. 
Yang (1999) considered a discrete time risk model with 
a constant interest force and a non-exponential upper 
bounds for ruin probabilities were obtained. Paulsen and 
Gjessing (1997) considered a diffusion perturbed 
classical model, a Lundberg type inequality was 
obtained by assuming a stochastic investment income. 
 

Recently there has been considerable interest in 
extending results from classical risk theory, to more 
flexible general models. A general model involves the 
assumption that the inter-claim times are independent 
and identically distributed, but not necessarily 
exponential. The resulting surplus process is referred to 
as a renewal risk process or so called Sparre Andersen 
model proposed by Sparre Andersen (1957). Analysis of 
Sparre Andersen process is more difficult than the 
classical model, but remarkable progress has been 
made . One of such class of distribution for the inter-
claim times is Erlang distribution. Various aspects of 
ruin in Erlangian risk models are studied in Dickson and 
Hipp (1998, 2001), Cheng and Tang (2003), Sun and 
Yang (2004) and Li and Garrido (2004a). Thampi et 
al.(2007) have considered another renewal risk process 
in which claims occur as Generalized exponential 
distribution.The most related reference on the ruin 
probability for renewal risk model corresponding to our 
case is Dong and Wang (2006) which delivered integro-
differential equation for the survival and ruin 
probabilities with negative risk sums. They obtained 
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exact expression and upper and lower bounds for the 
ruin probability. 
 
There exist a vast literature on the classical risk model 
with constant interest force. Compared to this there are a 
remarkably few papers on renewal risk model under 
interest force. One obvious reason is that the theory is 
much more complicated in the renewal risk model. We 
mention that there are papers which are devoted to the 
ruin probability of renewal risk model with interest 
force. We do not plan to cite here a complete list of 
references. Recently, Konstantinides et al. (2010) 
considered the ruin probability  with the constant 
interest force δ . They established an asymptotic 
expression for the ultimate ruin probability. Here we 
apply the methodology in Sundt and Tuegels (1995), 
Cai and Dickson (2002) and Dong and Wang (2006) to 
derive bounds for ruin/survival probabilities for a 
particular class of renewal risk model under interest 
force. The purpose of this paper is to derive some 
explicit expression for ruin/survival probabilities for a 
particular class of renewal risk process under interest 
force. We assume that the claims inter-arrival times 
have Generalized exponential distribution. We show 
that techniques that can be applied to produce explicit 
results for ruin probabilities in classical risk model 
under interest force can also be applied when inter-
claim times is Generalized exponential. We have 
obtained an integral equation satisfied by the 
ruin/survival probability under interest force. Also we 
derive a couple alternative expressions, an exponential 
integral equation for the survival probability and the 
other a second order differential equation satisfied by 
the Laplace-Stieltjes transform of the non-ruin 
probability. 

δψ (u)
> 0

 
The outline of the paper is summarized as follows. In 
section 2, we set out the mathematical preliminaries that 
help to describe the model in subsequent sections. In 
section 3, we apply the technique developed in Sundt 
and Tuegel (1995) to derive a differential equation for 
the survival probability in the special case when α . 
In section 4, we obtain bounds for the ruin probability 
by recurssive technique and find that the derivation is 
some what complicated in general, but less so when we 
assume α . An exponential integral equation for the 
survival probability is derived in section 5. 

= 2

= 2

The generalized exponential distribution has been 
introduced by Gupta and Kundu (1999). A random 
variable X has the generalized exponential distribution 
with parameters α  and  if it has distribution function   λ

-λx αF(x; α, λ) = (1-e ) , x > 0, α> 0, λ> 0.  

 with corresponding density function   
-λx α-1 -λxf(x;α,λ) = αλ(1-e ) e , x > 0, α> 0, λ> 0.  

 The generalized exponential distribution is denoted by 
. The GE distribution has many nice 

properties and it can be used as an alternative to Gamma 
and Weibull distributions in many situations(Gupta and 
Kundu(2001)) 

GE(α, λ)

2. Preliminaries 

We consider a risk process in which claim occur as a 
renewal process. Let  be a sequence of 
independent and identically distributed random 
variables, where  denotes the time until the first claim 

and, for i > , denotes the the time between the  

and  claim. We assume that  has a  
distribution with density function  

i i=1{T }∞

Ti

1 th(i -1)
thi iT GE (n, λ)

-λt n -1 -λtg(t) = nλ(1- e ) e , t > 0, λ> 0  
where  is a positive integer, and distribution function  n

-λt nG(t) = (1-e ) , t > 0, λ> 0.  
For most of this paper, we illustrate ideas by restricting 
our attention to the case in which n = . Of course, 
when n = , we have the classical risk model. 

2
1

 
Let  denotes the value of the reserve at time t . 

 is governed by  
δU (t)

δU (t)

δ δdU (t) =cdt + U (t)δdt -dX(t),  
that is   

           
t(δ)δ t δ(t-v)

δ t 0
U (t) = ue + cs - e dX(v).∫  (1) 

 where  and  is a premium that insurance 
company receives per unit time. In addition to the 
premium income, the insurance company also receives 
interest of its reserves with constant force δ  and  
denotes the accumulated amount of claims occurring in 
the time interval , that is  

δu = U (0) c

X(t)

(0, t]
N(t)

j
j=1

X(t) = X∑  

We assume that  is comprised of renewal 

claim number process  whose inter-claim 

times  have  distribution. The 
individual claim amounts  independent of 

 are positive, independent and identically 
distributed random variables with common cumulative 

t 0{X(t)} ≥

t 0{N(t)} ≥

1 2{T ,T . . .} GE(2, λ)

1 2X ,X . . .

t 0{N(t)} ≥
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distribution function F(  and mean 
. 

x) = P{X x}≤
m = E(X)
 
Finally,  

t(δ) δv δ t
t 0

t if δ = 0
s = e dv = e -1 if δ > 0

δ

⎧
⎪
⎨
⎪
⎩

∫  

For convenience we will drop the index δ , when the 
force of interest is zero. Then (1  is reduced to the 
usual risk process   

)

U (t) = u + ct - X(t).                                        (2) 
  
Now we define the time of ruin by  

δ δτ = inf{t: U (t) < 0}.  
Let  denote the probability that the company is 
ruined at sometime starting with initial reserve . So  

δψ (u)
u

          
 δ δ δ δt 0

ψ (u) = P{ U U (t) < 0} = P{τ < |U (0) = u}.
≥

∞

 We denote , the survival probability, 
that is, the probability that ruin never occurs.           

δ δφ (u) = 1-ψ (u)

 
Consider the risk reserve process U  

Let  and  be 

the moment generating function of . Consider the 
equation   

(t) = u + ct - X(t).

i i iY = cT -X , i = 1, 2, . . . sYi
ym (s) = E{e }

iY

scT -sXi i
ym (s) = E{e }E{e } = 1.                     (3) 

 Clearly . This equation may have a second 

root. If such a solutions to (3), s = 0  exist, then it is 
unique and positive. This equation is the defining 
equation for the adjustment coefficient.  

ym (0) = 1

 

3. Integral Equation for Survival Probability 

 
In this section, we derive an integral equation for . 

Suppose that the first claim occurs at time  and 
the amount of claim is , the surplus just after the 

payment of first claim is 

δφ (u)

1T = t

1X = x
(δ)δ t
t

ue +cs - x . By considering 
the time and amount of first claim, the conditional 
probability that the company will survive is 

(δ)δ t
δ t

φ (ue +cs - x) . Thus we have  
(δ)δT1

δ δ 1 δ 1t
φ (u) = E{φ (U(T ))} = E{φ (ue +cs -X )},

that is   

           
(δ)δ te +c s (δ)δ tt

δ δ t0 0
φ (u) = g (t) φ (ue +cs - x)dF(x)dt.

∞

∫ ∫  

 The change of variable 
(δ)δ t
t

s = e +cs , we obtain   

( )
δ

λ/δ -1-λ/δ 2λ/δ -1-2λ/δ

u
u

δ
0

φ (u) =

2λ (c +δu) (c+δs) - (c +δu) (c+δs)

φ (s - x)dF(x)ds.

∞
×∫

∫

 

 (4) 
 Differentiating expression (1) with respect u  gives   

( )
δ

λ/δ -1-λ/δ 2λ/δ -1-2λ/δ

u
s

δ
0

(c+δu)φ (u) =

2λ (c+δu) (c+δs) λ - 2λ (c+δu) (c+δs)

φ (s - x)dF(x)ds.

∞

′

×∫
∫

 (5) 
 Differentiating expression (5) again with respect to u  
and rearrange the terms   

 
δ

λ/δ -1-λ/δ 2λ/δ
2 u

φ (u) =
2λ λ(c +δu) (c +δs) λ ( -1) - 2δ (c+δu)

δ(c +δu)

∞

′′

⎡
⎢⎣∫

s-1-2λ/δ
δ 20

u
δ

0

2λ λ(c+δs) ( -1) φ (s-x)dF(x)ds -
δ (c+δu)

φ (u-x)dF(x).

⎤
⎥⎦ ∫

∫
(6) 

 Inserting δφ (u)′  and  into (6) and making a 
couple of simplification we arrive at the integro-
differential equation   

δφ (u)

 
2

δ
u2 2

δ δ δ
0

(c+δu) φ (u) =

(c+δu)(3λ-δ)φ (u) - 2λ φ (u) + 2λ φ (u-x)dF(x).

′′

′ ∫
(7) 

 Integrating both sides of (7) with respect u  and after 
simplifications   

 

                 

 (8) 

2
δ

2 2
δ δ δ

u u2 2
δ δ

0 0

(c+δu) φ (u) =

(δc+δ u +3λδu +3λc)φ (u) +c φ (0) -(3λc+δc)φ (0)-

(3λδ+δ ) φ (v)dv -2λ φ (u-x)(1-F(x))dx,

′

′

∫ ∫
 which we rewrite as  

u2 2 2
δ δ

0
(c+δu) φ (u) - (δ +3λδ)uφ (u) + (3λδ+δ ) φ (v)dv′ ∫ δ  
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2
δ δ δ

u2
δ

0

= (δc+3λc) φ (u) + c φ (0) - (3λc+δc)φ (0)

- 2λ φ (u-x)(1-F(x))dx.

′

∫
(9) 

As limit u , the left hand side of the expression (9) 
tend to a constant  

→∞

δ
0

B(δ) = δ (δ+3λ) ψ (u)du,
∞

∫  

and the right hand side becomes  
2 2

δ δ(δ c+3λc) (1-φ (0)) + c φ (0) - 2λ m.′  
It is easily seen that , we obtain   B(0) = 0

2
δ

δ 2
B(δ) - (δc+3λc)(1-φ (0)) + 2λ m

φ (0) = .
c

′      (10) 

 Inserting (10) into (8), we get  
2

δ
2 2

δ
u u2 2

δ δ
0 0

(c+δu) φ (u) =

(δc+δ u+3λδu+3λc)φ (u) + 2λ m + B(δ) - (δc+3λc)

- (3λδ+δ ) φ (v)dv - 2λ φ (u-x) (1-F(x))dx.

′

∫ ∫
 

             (11) 
 Integrating this expression again with respect to u  
gives  

)(

u 2
δ δ2 0

u u2 2
δ δ δ

0 0
u v2 2

δ
0 0

1φ (u) = (3δc+3λc) φ (v) dv + (6λδ+4δ )
(c+δu)

vφ (v)dv -(3λδ+δ )u φ (v)dv + c φ (0) +

B(δ) - (δc+3λc) + 2λ m u -2λ φ (v-x) (1-F(x)) dxdv

⎡
⎢⎣

⎤
⎥⎦

∫

∫ ∫
∫ ∫
   (12) 

When δ ,  (12) reduces to   = 0
 

 (13) 

2

u u2 2 2
1

0 0

c φ (u) =

3λc φ(v)dv + c φ(0) + (2λ m-3λc)u - 2λ m φ(u-x) F (x)dx,∫ ∫
 with the integrated tail distribution of  is given by  F

x
1

0

1F (x) = [1-F(y)]dy.
m ∫  

and  
2

2 3λc-2λ mc φ (0) =
r

 where  is the positive 

solution of the equation (3).  

r

3.1  Laplace Transform 

 
 The appearance of convolution in (13) suggest that it is 
better to use Laplace transform to get an explicit 

expression for non-ruin probability when the interest 
force is zero. So we introduce  

-sv

0
φ̂(s) = e φ(v)dv,

∞

∫  

and  
-sy

0
f̂ (s) = e dF(y).

∞

∫  

Taking the Laplace transform of the integral equation 
(13), we obtain   

( )
2 2

2 2 2

c sφ(0) + 2λ m-3λcφ̂(s) = .
ˆc s -3λcs + 2λ 1-f (s)

                   (14)                     

 Such expressions can be easily inverted using 
mathematical software packages.  

 Recursive Calculation of Ruin Probabilities 

In this section, we derive bounds for the ruin probability 
in renewal risk model by recursive techniques. Exact 
solutions for the ruin probability  are difficult to 
find. We find the bounds for  by discretizing the 
integral equation (12) . For any h >  and  
we have  

δψ (u)

δφ (u)
0 k = 1, 2, . . .

- +(h ) (h )
δδ δφ (hk) φ (hk) φ (hk),≤ ≤  

with  
 

( )

+(h )
δ 2

2
1 3

k-1 k-1+ -(h ) (h )
1 2δ δ

j=1 j=0

k-1 2 +(h ) 2
3 δ 4δ

j=1

k -(h )
5 jδ

j=1

1φ (hk) =
h(c+δkh) -p h -p (2k-1)
2

p φ (jh)h -p kh φ (jh)h +

hp (2j-1) φ (jh) + c φ (0) + p kh -
2

p φ (k-j)h f (h)

⎧⎪
⎨
⎪⎩

⎫⎪
⎬
⎪⎭

∑ ∑

∑

∑

 

               

( )

-(h )
δ 2 2

2 5 1

k-1 k-1- +(h ) (h )
1 2δ δ

j=0 j=1

k 2 -(h ) 2
3 δ 4δ

j=1

1φ (hk) =
(c+δkh) + p kh + p f (h)

p φ (jh)h - p kh φ (jh)h +

hp (2j-1) φ (j-1)h + c φ (0) + p kh -
2

⎧⎪
⎨
⎪⎩
∑ ∑

∑
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( )
k-1 +(h )

5 jδ
j=1

p φ (k-j)h f (h) ,
⎫⎪
⎬
⎪⎭

∑ +1  

hk
k

h(k-1)
f (h)= (1-F(y))dy.∫  

 where , , , 

 and . 
1p = 3δc+3λc 2

2p = 3λδ + δ 2
3p = 6λδ + 4δ

2
4p = B(δ) - (δc+3λc) + 2λ m 2

5p = 2λ m
 
The algorithm implements lower and upper bounds 
successively. The two sided bounds for the survival 
probability is of theoretical importance, as it can hardly 
be used for direct numerical computations. For the 
interest free model, however, the algorithm give useful 
two sided bounds for . φ(u)
 
A slightly different method is used to obtain the bounds 
for the ruin probability in a Classical risk model with 
interest in which   

-λtG(t) = 1 - e , t 0, λ> 0.≥  
 For compound Poisson model with interest δ , there 
exist a unique positive solution, γ , such that   

-γx

γX λ0 +1
δ

1 λ e=
cE{e } δx1+

c

∞

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ dx.                        (15) 

 The solution to equation (15)  is called the adjustment 
coefficient for compound Poisson risk model modified 
by interest. The right hand side of equation (15) is 
simplified to   

            
λcγ λ - +1-γy δδ δ

λ0 +1
δ

λ e λ δ λ cγdy = e γ Γ - , ,
c c c δ δ

δy1+
c

⎛ ⎞
⎜ ⎟∞ ⎝ ⎠⎛ ⎞ ⎛ ⎞

⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠⎛ ⎞

⎜ ⎟
⎝ ⎠

∫

 

 where , ,  is the 

incomplete Gamma function.  

n-1 -y

x
Γ(n, x) = y e dy

∞

∫ n > 0 x 0≥

 
Theorem 4.1 Assume that the adjustment coefficient 

, exist, then   γ > 0

                                        (16) -γu γu
- δ +a e ψ (u) a e ,≤ ≤ -

for , where u 0≥
γx

x
x [0, x )- 0 γy

x

e F(y)dy
a = inf

e F(y)dy

∞

∈ ∞

∫
∫

 and 

γx

x
+ x [0, x )0 γy

x

e F(y)dy
a = sup

e F(y)dy

∞

∈ ∞

∫
∫

.  

Proof: The proof can be given by going along the same 
lines of the proof of (Theorem 5.4.1, Rolski et.al) with 
some obvious modifications. 
This is known as two sided Lundberg bounds for the 
ruin function . Furthermore, for all  δψ (u) u 0≥

-γu
δ +ψ (u) < a e  if  and  if 

. 
+ δa > ψ (0) -γu

- δa e < ψ (u)

- δa < ψ (0)
 
Note that,   

 

0
+ δ

γy x
0

F(y)dy γma = ψ (0),
m (γ) -1e F(y)dy

∞

∞
≥
∫
∫

=                    (17) 

 and analogously for - δa ψ (0)≤ . 
Let  have an exponential distribution with 

. In this case, an explicit formula for 
 is also available, namely   

X
-βxF(x) = 1 - e

δψ (u)

δ

λ cλ Γ , β(u + )
δ δψ (u) = .
λ cβδ Γ +1,
δ δ

⎛ ⎞
⎜ ⎟
⎝
⎛ ⎞
⎜ ⎟
⎝ ⎠

⎠                                 (18) 

We use Frobenius series method to derive this formula, 
which is considered to be the simplest method. 
 
Numerical examples are given to illustrate the 
application of explicit formula and its upper bounds in 
compound Poisson risk model with interest. For 
numerical illustration, we set c = ,  and β . 
For interest factor, we consider two different values for 

 and . The corresponding values of the 
adjustment coefficient 

1.1 λ = 2 = 3

δ = 0.05 0.10
γ  are 1.20879  and 1.23466  

respectively. We compare the upper bounds with exact 
values of ruin probabilities in classical risk model under 
interest force in Table 1 and 2. 

 
Table: 1 Ruin Probabilities when  δ = 0.05

 u  Exact Ruin   Upper Bounds   Ruin ( ) δ = 0
0 0.586092 0.586092 0.606061 
1 0.156639 0.174982 0.185891 
2 0.039133 0.052242 0.057017 
3 0.009184 0.015597 0.017488 
4 0.002034 0.004657 0.005364 
5 0.000427 0.001390 0.001645 

 

Published by Atlantis Press 
Copyright: the authors 

92



K.K. Thampi, M.J. Jacob
 

Table: 2  Ruin Probabilities when δ  = 0.10
 u  Exact Ruin   Upper Bounds   Ruin ( ) δ = 0
0 0.570308 0.570308 0.606061 
1 0.136032 0.165922 0.185891 
2 0.028915 0.048272 0.057017 
3 0.005560 0.014044 0.017488 
4 0.000979 0.004086 0.005364 
5 0.000160 0.001189 0.001645 

5.  Alternative Expressions for  δφ (u)

 
 In this section we derive a couple of alternative 
expressions for the non-ruin probability. 
 
After simplifications and rearrangement on (11),  we 
obtain the equation  

2

δ δ 2

2 2u u
δ δ2 20 0

3λ+δ 2λ m + B(δ) - (δc+3λc)φ (u) - φ (u) = -
(c+δu) (c+δu)

(3λδ+δ ) 2λφ (v)dv - φ (u-x)(1-F(x))dx.
(c+δu) (c+δu)

′

∫ ∫
        

  (19)  
 Let  

u 3λ+δ- d
c+δv0C (u) = e ,∫ v

 
which is simplified to  

3λ-1-
δδuC(u) = 1+ .

c
⎛ ⎞
⎜ ⎟
⎝ ⎠

 

Multiplying by C(  on both sides of (19), and 
integrate from 0 to , we get  

u)
u

( )

3λ-1-
δ

δ δ

3λ-2-
δ 2

3λ-1-u vδ2
δ

0 0

3λ-3-2 u vδ
δ2 0 0

δu1+ φ (u) - φ (0) =
c

1 δu1 + 1+ 2λ m-3λ c - δc + B(δ) -
3λ c+2δc c

δv(3λδ + δ ) 1+ φ (y)dy dv -
c

2λ δ v1+ φ (v-y)(1-F(y))dy dv.
cc

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎛ ⎞⎜ ⎟
⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟

⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

⎛ ⎞
⎜ ⎟
⎝ ⎠

∫ ∫

∫ ∫

 

 (20) 
 li , (20) becomes  mδ 0→

 
3λ 3λ- u - u
c c

3λ2 u v- v
c

12 0 0

2λme φ(u) = φ(0) + ( -1)(1-e ) -
3c

2λ m {e φ(v-x)dF (x))}dv.
c ∫ ∫

                (21) 

Therefore the multiplication of C (  with  leads 
to an exponentially diminishing survival probability 
function. 

u) δφ (u)

 
Theorem: 
The Laplace-Stieltjes transform of equation  
satisfies the following second order differential equation:  

δφ (u)

2 2 2 2 2
δˆ ˆδ s φ (s) - (2δcs - 3δ - 3δλ)sφ (s) + [c s -3cs(λ+δ) +δ′′ ′                 

  (22) 

2 2 2
δ δ

ˆ ˆ(δ+λ)(δ+2λ) - 2λ f(s)]φ (s) = (c s-δc-3λc)φ (0) + c φ (0),′δ

 where , -su
δ δ

0
φ̂ (s) = e φ (u)du

∞

∫ δ
dˆ ˆφ (s) = φ (s)
dsδ′ , 

2

δ δ2
dˆ ˆφ (s) = φ (s)
ds

′′  and δ δ u=0
dφ (0) = φ (u)|

du
′ . 

Proof: Consider the second order differential equation 
obtained in (7).  

2
δ

u2 2
δ δ δ

0

(c+δu) φ (u) =

(c+δu)(3λ-δ)φ (u) - 2λ φ (u) + 2λ φ (u-x)dF(x).

′′

′ ∫
 

Taking Laplace transform on both sides of the equation, 
we get  
   

2 2 2 2
s δ s δ s δ

2 2
δ δ s δ s δ

2 2
s δ s δ s δ

2
s δ

c s L {φ (u)}+2cδL {uφ (u)} + δ L {u φ (u)} -

c sφ (0) - c φ (0) =3λcL {φ (u)} +3 λδL {uφ (u)} -

cδL {φ (u)} - δ L {uφ (u)} - 2λ L {φ (u)} +

2λ L {φ (u-x)f(x)},

′′ ′′

′ ′ ′

′ ′

(23) 
 where . Then we have the following 
identities  

s δ δˆL (φ (u)) = φ (s)

s δ δ s δL (φ (u)) = -φ (0) + sL (φ (u)),′  

s δ s δ δˆL (uφ (s)) = -L (φ (u)) - sφ (s),′ ′  

s δ s δ s δ δˆL (uφ (s)) = -L (φ (u)) - s(L (φ (u)) + sφ (s)),′′ ′ ′  
2 2

s δ s δ δˆ ˆL (u φ (s)) = 2L (φ (u)) + 4sφ (s) + s φ (s).δ′′ ′ ′′  
(22) can be easily proved by inserting these identities in 
(23). The identities are proved by integration by parts. 
Remarks:  When , we get the same expression as 
in (23). That is   

δ = 0

2 2

2 2 2
(c s-3λc)φ(0) + c φ (0)φ̂(s) = .ˆc s - 3λcs + 2λ (1-f(s))

′
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 We can eliminate the term φ (0)′  by considering the 
maximum of the aggregate loss process associated with 
the surplus process when  and it follows that  δ = 0

2c φ (0) - 3λcφ(0) = -3λc + 2λ m.′ 2  
In conclusion, the results in this paper give bounds for 
the ruin/survival probability in a Sparre Andersen risk 
model with constant interest force. The technique that is 
applied to produce explicit results for the ruin 
probability in the classical risk model under interest 
force can also be applied when inter-claim times have 
Generalized exponential. In section 4, a recursive 
algorithm is derived to obtain the the bounds for . 
The algorithm yields both lower and upper bound 
successively. The bounds for the ruin probability in the 
compound Poisson model are given with numerical 
illustrations. A couple of alternative expressions for 

 are also derived. 

δφ (u)

δφ (u)
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