
International Journal of Computational Intelligence Systems 
Vol. XX(Z); Month (Year), pp. xx–yy

DOI: 10.1080/XXXXXXXXXXXXXX; ISSN XXXX–XXXX online 
https://www.atlantis-press.com/journals/ijndc

Journal of Risk Analysis and Crisis Response 
Vol. 9(3); October (2019), pp. 128–133

DOI: https://doi.org/10.2991/jracr.k.191024.002; ISSN 2210-8491; eISSN 2210-8505 
https://www.atlantis-press.com/journals/jracr

Research Article

A Critique of Pandemic Catastrophe Modeling

Daniel J. Rozell*

Department of Technology and Society, 1432 Computer Science, Stony Brook University, Stony Brook, NY 11794-3760, USA

1.  INTRODUCTION 

Over the past three decades, catastrophe modeling has become 
an essential tool of the insurance industry for estimating poten-
tial financial losses from disasters such as earthquakes and hurri-
canes [1]. The basic premise of catastrophe modeling is to combine 
stochastic hazard models with asset models to assess financial 
risk exposure from large events. While the original intent was to 
assess systemic risk, the influence of catastrophe models eventually 
expanded into related practical tasks—setting rates, allocating cap-
ital reserves, selecting markets, etc.

Considering the substantial variation in the nature of hazards, one 
would also expect considerable variation in the utility of catastro-
phe models depending on the availability of data and science. That 
is, more common events should generally yield more reliable pro-
jections. This requires a skeptical eye when evaluating new models, 
yet catastrophe models have become widely adopted and viewed 
as established (and therefore implicitly reliable) technology. It is 
normal to want to replicate success in one area to new situations. 
But the temptation to apply existing catastrophe modeling tech-
niques to more uncertain events has gotten ahead of methodologi-
cal development. The result is inevitable disappointment.

A prime example is pandemic catastrophe modeling where the 
hazard is a pandemic-inducing pathogen that results in substan-
tial life and health insurance losses. While the insurance industry 
should be commended for tackling such an important topic, the 
uncertainties are daunting. The difficulty of quantitative pandemic 
risk assessment is summarized by Harvey Fineberg, the former 
president of the U.S. National Academy of Medicine, “Major flu 
pandemics arise on average only about three times every century, 
which means scientists can make relatively few direct observations 

in each lifetime and have a long time to think about each observa-
tion. That is a circumstance that is ripe for over-interpretation” [2].

Major limitations of hurricane catastrophe modeling—primarily in 
the form of hidden subjectivity—have already been well described 
[3]. Many of these limitations are generalizable to similar catastro-
phe models: flooding, earthquakes, etc., yet there is a new class of 
models with exceptional levels of uncertainty that require their 
own discussion. This critique explores the additional limitations 
unique to pandemic catastrophe modeling that further limit the 
value of these types of models for estimating financial exposure, 
disaster response, or social policymaking.

2.  LESSONS FROM EBOLA

While pandemic catastrophe modeling has appropriately focused 
on avian influenza—the most likely cause of a pandemic—the 
current state of pandemic risk assessment can be evaluated using 
another recent deadly outbreak—the Ebola virus disease epi-
demic that emerged in West Africa in late 2013 [4]. Much like 
avian influenza, Ebola virus disease has zoonotic origins, but in 
this case the primary natural reservoir is bats rather than birds. 
In addition to the much higher mortality rate, Ebola is much 
less transmissible than influenza. These combined factors tend 
to limit outbreaks and the pandemic potential of Ebola is much 
lower than influenza [5]. Despite its more modest growth charac-
teristics, Ebola outbreaks provide some insight into the current 
state of pandemic forecast modeling. During the Ebola outbreak, 
multiple epidemiological models (Table 1) that made short-range 
predictions in 2014 considerably overestimated its severity—
some by an order of magnitude.

Unless the World Health Organization (WHO) underreported 
cases (which would be a separate serious problem in itself), the 

A RT I C L E  I N F O
Article History

Received 12 August 2019
Accepted 30 August 2019

Keywords

Catastrophe modeling
pandemics
uncertainty
insurance
risk assessment

A B S T R AC T
Catastrophe modeling is a popular risk assessment tool for the insurance industry and has been applied to a variety of natural 
disaster events. More recently, catastrophe modeling techniques have been extended to events, such as pandemics, where the 
range of possible scenarios is less understood due to the complexity of the hazard and the dependence of event magnitude to 
human response. Some general limitations of catastrophe modeling are discussed in the context of pandemics—such as the 
failure to distinguish natural variability from incertitude and the difficulty of ensuring a representative model—along with 
recommendations for minimizing surprises.

© 2019 The Authors. Published by Atlantis Press SARL. 
This is an open access article distributed under the CC BY-NC 4.0 license (http://creativecommons.org/licenses/by-nc/4.0/).

*Corresponding author. Email: Daniel.Rozell@stonybrook.edu

https://doi.org/10.2991/jracr.k.191024.002
https://www.atlantis-press.com/journals/jracr
http://creativecommons.org/licenses/by-nc/4.0/
Daniel.Rozell%40stonybrook.edu


	 D.J. Rozell / Journal of Risk Analysis and Crisis Response 9(3) 128–133	 129

general inaccuracy of these predictions suggests that the progres-
sion of an epidemic is still difficult to model. Pandemics move 
quickly and the early stages are sensitive to assumptions regarding 
public health interventions. Likewise, failure to understand all the 
transmission routes (e.g., sexual transmission of Ebola by recov-
ered patients) can make the end stages of a pandemic equally diffi-
cult to predict [10,11].

And it is not that the Ebola epidemic modeling was obviously too 
alarmist in overestimating the severity of the outbreak. For exam-
ple, in July 2014, a Liberian man infected with Ebola flew to Lagos, 
Nigeria. If that case had not been quickly detected and contained, 
the epidemic could have entered a metropolitan area of 21 million 
people. Had that happened, the WHO mortality projections most 
likely would have been grossly underestimated. The difficulty is that 
these model estimates are strongly dependent upon many smaller 
events within the larger epidemic. One potential solution is to move 
toward agent-based modeling—computer simulations that estimate 
the aggregated consequences of the independent behavior of many 
individuals [12]. However, this approach is still very resource inten-
sive, complex to build, and challenging to calibrate [13].

In addition, the translation of Ebola transmission risk studies 
performed in less-industrialized nations to more-industrialized 
nations presents a considerable challenge [14]. The response to the 
Ebola outbreak among the most industrialized nations was not uni-
form and there was even a noticeable difference in how scientists 
and public officials estimated risk. Because the transmissibility of 
Ebola is relatively low, medical experts recommended against the 
quarantine of U.S. medical workers returning from West Africa. 
However, the cost and effort of tracking and monitoring poten-
tial exposures led public officials to lean toward precautionary 
quarantines that varied from state-to-state. Estimating the human 
response is challenging and averaged data tell a very incomplete 
story. Any useful pandemic risk model would need to account for 
local and regional conditions that affect an outbreak’s progression.

The financial effects of a pandemic may be even more difficult 
to model. For example, the WHO’s estimate of the cost of con-
trolling the West African Ebola outbreak jumped from less than  
5 million USD$ in April 2014 to almost 1 billion USD$ in September  
2014 [4,15]—an increase by a factor of 200 within 6 months. This 
demonstrates how difficult it can be to estimate the cost of a poten-
tial outbreak when it is not known at what stage the outbreak will 
be discovered or contained. The secondary economic impacts of 
a pandemic would also be expected to change rapidly and would 
need to include a range of extraneous factors that would only 
increase the uncertainty.

One might assume that after all the analysis of the West Africa 
Ebola outbreak [16], at least Ebola would now be easier to model. 
Yet the ongoing Ebola outbreak in the Democratic Republic of 

Congo (DRC) has been extremely difficult to predict. Initial opin-
ion on the outbreak was cautious [17], but optimistic because the 
previous outbreak had made the world realize that Ebola was not 
just a self-limiting African disease, but had pandemic potential. 
Thus, the DRC’s prompt call for assistance and the faster WHO 
response—along with a new highly effective vaccine—all suggested 
rapid containment of the outbreak [18]. However, the outbreak has 
continued longer than expected due to multiple factors: persistent 
regional conflict [19], rampant disinformation [20], widespread 
use of inadequate health clinics [21], and even the limited availabil-
ity of diagnostic tests [22].

The important lesson from this discussion of Ebola is that there 
is an extra layer of complexity inherent to pandemic modeling 
that is missing from most other natural disasters. The severity of 
damage from an earthquake is dependent on infrastructure built 
before the event, but the magnitude of the event itself is essentially 
independent of human activity. However, the magnitude of a pan-
demic is also dependent on the human response after the begin-
ning of the disaster. Political inaction or inadequate public health 
systems will not make an earthquake larger, but can allow a small 
local outbreak to spread into a pandemic. Likewise, changing indi-
vidual behaviors, such as increased social distancing or just more 
frequent hand-washing can substantially influence the progression 
of an infectious disease outbreak [23]. Because social conditions 
vary widely by region and can change unpredictably, a useful pan-
demic catastrophe model is much more difficult to construct than 
other natural hazard models. A realistic accounting of uncertainty 
in a pandemic risk model should show that our current incerti-
tude is so large as to preclude standard probabilistic quantitative 
decision-making.

3. � UNDERLYING PROBLEMS WITH  
CATASTROPHE MODELS

So, if we are asking too much of pandemic catastrophe model-
ing, what is wrong with the models and how do we fix them?  
The simple answer is that overconfidence in models is the under-
lying problem, but this overconfidence has some specific causes. 
The following outlines two of these problems and proposes 
mitigating actions.

3.1.  The Mistreatment of Uncertainty

It is difficult to specifically critique commercially available 
pandemic catastrophe models because they are proprietary. 
However, the documentation for several hurricane catastrophe 
models is available for public inspection as a requirement of the 
Florida Commission on Hurricane Loss Projection Methodology.  

Table 1 | Accuracy of Ebola virus disease predictions made in late 2014

Model Timeframe (weeks) Prediction Actual (WHO data)

Total cases in Liberia 10 9400–47,000 [6] <7000
Daily cases in Liberia 15 249–545 [7] <50
Reported cases in Liberia 12 20,471–94,143 [8] 7819
Total confirmed and probable cases   6 5740 in Guinea 1820 in Guinea

9890 in Liberia 4240 in Liberia
5000 in Sierra Leone [9] 4602 in Sierra Leone
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Given the basic similarities of catastrophe models, some general 
remarks can be made regarding their attempts to characterize 
uncertainty by aggregating scenarios through a large number of 
stochastic simulations. In these cases, the numbers of simulations 
or aggregation methods are not the issue, but the method of 
representing uncertainty.

There is no current consensus on the best way to represent uncer-
tainty or when to use one form over another [24]. Furthermore, 
there is no consensus on the number of forms of uncertainty. 
Uncertainty has been categorized across a broad spectrum that 
ranges from certainty to nescience (unresolvable ignorance) [25]. 
Bayesians [26,27] generally argue that there is only one type of 
uncertainty—a measure of belief irrespective of its source—and 
that probability is the best way to express it [28]. At the other 
extreme, complex uncertainty typologies have been created that 
distinguish it by location, nature, and level with multiple subtypes 
[29,30]. The utility of this level of detail is debatable when there is 
no method for treating each distinct form of uncertainty [31,32].

While uncertainty representation is an unsettled matter, distin-
guishing between incertitude (i.e., lack of knowledge) and natural 
variability does have known advantages over a single treatment 
methodology. For example, when an analyst has no knowledge of 
the value of a parameter within a bounded range, it is common to 
represent that interval using a uniform distribution (a frequently 
used “uninformed prior” in Bayesian inference). However, treating 
interval data as uniform distributions requires an equiprobability 
assumption—an idea that traces back to Bernoulli’s and Laplace’s 
‘principle of insufficient reason’ and more recently critiqued by 
Keynes under the name ‘principle of indifference’ [33]. Under this 
assumption, each possible value is considered to be equally likely 
and thus the interval can be represented by the interval’s mid-
point—the mean and median of a uniform distribution. While the 
uniform distribution approach is computationally expedient and 
easy to understand, it can also disguise uncertainty. One result of 
the Central Limit Theory is that any distribution with finite vari-
ance, such as a uniform distribution, will converge to a normal 
distribution approximation when repeatedly convolved [34]. As 
shown in Figure 1, adding two uniform distributions results in a 
triangle distribution that would appear to have more certainty than 
the original uniform distributions. As the number of distributions 
increases, the resulting normal approximation does spread, but the 

assumed central tendency is maintained. By comparison, the addi-
tion of two intervals of [0, 1] by interval arithmetic yields the even 
wider interval [0, 2]. Repeating the process yields ever wider and 
more uncertain intervals without an artifact of precision.

The practical implication of this phenomenon is that standard 
Bayesian and Monte Carlo techniques have an important limita-
tion. These approaches will yield valid results when the model 
inputs represent normally distributed natural variability. However, 
when the uncertainty due to lack of knowledge is large compared to 
the natural variability, the uncertainty in the model output will be 
under-represented. Unfortunately, this situation frequently occurs 
in rare natural disasters, such as pandemics.

In practice, uncertainty representation may be based on extraneous 
factors such as familiarity, academic tradition, or lack of knowl-
edge of alternatives. Catastrophe modelers have been warned in 
the past to avoid becoming enamored with extreme precision that 
may not have a basis in reality [35], but they need further guid-
ance. Fortunately, there has been considerable work in the area of 
intervalized probabilities [36,37], second-order Monte Carlo tech-
niques, and robust Bayesian or Bayesian sensitivity analysis [38,39] 
which allows for the recognition of incertitude within Bayesian 
inference [36]. Models that more explicitly account for incertitude 
can sometimes yield results that seem disappointingly vague, but 
an honest portrayal of uncertainty is always informative.

However, catastrophe model users typically come from the world 
of financial modeling where data are abundant and historical prices 
are precisely known. It is not surprising that they prefer data anal-
ysis methods that are not optimal for addressing scenarios with 
sparse data and large incertitude. Adopting new methods may be a 
difficult transition despite their utility.

3.2.  Failures of Imagination

In a workshop on the West Africa Ebola epidemic, virologist Daniel 
Bausch noted how prior relatively small outbreaks influenced 
expectations, “I think if you’d asked [Ebola virus experts] … a year 
and a half ago ‘Are we going to have 25,000 cases of Ebola in West 
Africa?,’ most of us would have not said that was a likelihood” [4]. 
It is common for modelers to claim that their models have been 

Figure 1 | Convolution of n uniform 
distributions with bounds [0, 1].
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“validated” because they can replicate past data. However, this 
is history matching, not validation [40,41]. Acknowledging this 
distinction creates less surprise if we encounter extreme events 
not previously experienced or we discover that a model contains 
non-stationary processes that invalidate a model for future use. 
In terms of pandemic catastrophe models, diseases can behave 
unpredictably due to evolving pathogens or changing demo-
graphic conditions. For example, the 2017 outbreak of plague in 
Madagascar—normally a relatively controllable bacterial disease—
was exacerbated by its spread to growing urban centers.

The user’s trust in any catastrophe model depends on assurances of 
validation (i.e., history matching) which may be acceptable in the 
case of relatively stable processes, such as earthquakes, but more 
tentative for pandemic catastrophe models that depend on non-
stationary processes [42]. After catastrophic events, modelers have 
an opportunity to check their model against actual losses, so it’s not 
surprising that catastrophe model outputs will change after these 
recalibrating updates. However, it can be rather difficult to detect 
changes in the probabilities of extreme events caused by non-sta-
tionary processes [43].

One practical output of a catastrophe model is an exceedance prob-
ability curve, which summarizes the annual probability of exceed-
ing particular losses—most importantly, a loss that would lead to 
the insolvency of an insurer. To generate these curves, catastrophe 
models will typically simulate many potential scenarios that include 
both historical data as well as scenarios that attempt to address lim-
itations in the representativeness of the historical data set. This is 
especially necessary for models that include known non-station-
ary processes such as sea level rise, changing building technology, 
increased coastal development, etc. However, the Ebola epidemic 
serves as an example of a previously unforeseen risk that would not 
be captured merely by modestly expanding the range of a catastro-
phe model’s simulations.

Another lesson from the Ebola epidemic is that the various out-
breaks within the larger epidemic had very different transmission 
dynamics depending on the level of cooperation and trust between 
the international public health workers, government officials, and 
affected communities. The impact of these social factors is critical 
to any risk assessment and difficult to characterize. Furthermore, 
new factors and previously unknown relationships in epidemic evo-
lution are emerging as large epidemiological data sets are analyzed 
[44]. It would seem that a truly representative catastrophe model of 
a real-world epidemic would tend towards substantial complexity. 
One thoughtfully constructed pandemic catastrophe model [45–47] 
considers a myriad of factors including: wild and domestic viral 
reservoirs; the virulence and transmissibility of potential pandemic 
pathogens; the age and density distribution of populations; seasonal 
impacts; social factors such as air travel, work commutes and travel 
restrictions; and the availability of quality health care, antiviral medi-
cations, and vaccines. Whether these are enough factors is debatable. 
Estimating the insurance losses from a hurricane is fairly well-known 
and straightforward by comparison, yet building construction and 
risk mitigation details frequently ignored in standard catastrophe 
models can have a substantial impact on risk exposure estimates 
[48]. Furthermore, the impact, timing, and magnitude of each factor 
must be estimated along with any correlation with other factors.

In the end, we are left with the question of whether to pursue a more 
detailed pandemic catastrophe model that might be unusably complex 
or a simpler model that may be missing critical factors. There is a 

common, but often untested, assumption that complex problems call 
for complex solutions and that it is always better to use complex meth-
ods that make use of all available information [49]. However, there is a 
history of studies showing that very simple predictive models can often 
have better performance than complex models [50,51].

The question of best modeling approach has been explored in recent 
years in the epidemiological community in a series of infectious dis-
ease forecasting challenges [52]. For example, in 2015, the Research 
and Policy for Infectious Disease Dynamics (RAPIDD) Ebola fore-
casting challenge compared the predictive abilities of eight Ebola 
epidemiological models against a synthetic set of data over four sce-
narios at multiple points in an outbreak [53]. Models varied in com-
plexity and ranged from 2 to 27 input parameters. The results did 
not point toward an “ideal” level of complexity because one of the 
best individual performers was a two-parameter stochastic model, 
while the worst performer was a two-parameter logistic growth 
model. The overall best performer was a Bayesian average of all the 
models which suggests that using multiple independent models is 
the current best approach. However, the last challenge scenario of an 
uncontrolled Ebola outbreak with noisy data was poorly predicted 
by all models, so even multi-model averaging has its limitations.

In a similar forecasting challenge for influenza in the U.S. over 
seven flu seasons, almost three-quarters of the 22 models evalu-
ated made better seasonal predictions than the historical base-line 
model and the best performer was again a weighted combination 
of other models [54]. However, none of the models replicated the 
observed data more than 50% of the time and the challenge did 
not include an influenza pandemic—the models were optimized to 
predict seasonal flu.

Current epidemiological modeling for emerging infectious dis-
eases tends toward using relatively simple models that only require 
the estimation of a few parameters primarily due to the scarcity of 
data [55,56]. More complex tools for assessing the pandemic risk of 
influenza [57,58] have not been widely adopted—one reason being 
their substantial data requirements.

Ultimately, choosing the level of model detail is a professional judge-
ment in the art of modeling until the state of the art is improved. The 
current best solution to the problem of potentially non-representa-
tive data, processes or models is more attitudinal than technical. In 
the face of ignorance, the best approach is to use multiple competing 
models and constantly question their assumptions and results. In the 
case of epidemic modeling, real-time prediction remains a difficult 
challenge [59]. Furthermore, longer-term forecasting and predicting 
the emergence of new pathogens with pandemic potential will likely 
remain beyond our capabilities for the near future [60]. Given the 
dynamic nature of factors underlying epidemic progression, there 
may be limits on long-term predictability of infectious disease out-
breaks and new analytical methods may be needed [61].

4.  CONCLUSION

Catastrophe models can err in disaster forecasting for a variety 
of reasons. Here I have outlined one reason that is essentially an 
error of mathematical method and another based on an important 
psychological bias related to natural human optimism. However, 
there are others. For example, a pernicious cause of overconfidence 
in modeling is the human tendency toward excessive admiration of 
our own creations [62,63].
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Ultimately, savvy users may know what level of confidence to put in 
their models, but shortcomings in current practices in uncertainty 
quantification require that model interpretation remain an art as 
much as a science until more progress is made. Although the focus 
of this discussion was pandemic modeling, catastrophe models 
are tackling other complex hazards with strong sociological com-
ponents, such as cybersecurity and terrorism risks. Furthermore, 
standard catastrophe models are expanding into secondary areas 
such as business interruption losses [64]. Given the potential for 
overreach, catastrophe model users will need to practice shrewd 
professional judgment for some time to come.

Despite the critiques presented here, it is important to clarify that 
planning for disasters using data and quantitative methods remains 
an essential approach that can provide significant insight. While there 
is danger in putting too much confidence in a model’s results, failing 
to consider modeling at all presents the much larger danger of miss-
ing critical trends and vulnerabilities hidden within an overwhelm-
ing mountain of data. The only way forward is to keep improving 
the models while continuing to use them with a healthy skepticism.
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