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Abstract 

This paper proposes a novel hybrid algorithm based on quantum-behaved particle swarm optimization (QPSO) 
algorithm and Nelder-Mead (NM) simplex search method for continuous optimization problems, abbreviated as 
QPSO-NM. This hybrid algorithm is very easy to be implemented since it does not require continuity and 
differentiability of objective functions, and it also combines powerful global search ability of QPSO with precise 
local search of NM simplex method. In a suite of the first 10 test functions taken from CEC2005, QPSO-NM 
algorithm is compared with other four popular competitors and six special algorithms that are dedicated to solve 
CEC2005 test function suite. It is showed by the computational results that QPSO-NM outperforms other 
algorithms in terms of both convergence rate and solution accuracy. The proposed algorithm is extremely effective 
and efficient at locating optimal solutions for continues optimization. 

Keywords: Swarm optimization,Nelder -Mead simplex method,hybrid algorithm, continuous optimization 

 

1. Introduction  

Particle Swarm Optimization (PSO) is a swarm 
intelligence based algorithm which stems from the study 
of artificial lives and foraging behaviors of biological 
populations such as bird and fish schools [1,2]. In PSO, 
each particle represents a potential solution to the 
optimization problem, and flies around the search space 
with a certain speed which is continually updated 
according to flight experience of particle itself and that 
of others. It is also apparent, however, that PSO may 
easily be stuck in a local optimum [2]. To improve it, 
Sun et al. proposed a new PSO model in 2004, which 
was based on DELTA potential well and believed that 
particles had quantum behaviors. From this new model, 
a quantum-behaved particle swarm optimization 
(QPSO) algorithm was proposed [3]. In quantum 
spaces, particles are able to search in the whole feasible 
solution spaces. Therefore, the global search ability of 

QPSO may be much better than that of the standard 
PSO. Unlike PSO, QPSO has no velocity vector and 
fewer parameters to adjust, and it is much easier for 
implementations. But, QPSO still has the probability of 
being trapped in the local optimum, and it is not good at 
exploitation [4]. Nelder-Mead simplex method [5] is a 
simple direct search technique and it does not require 
any gradient information, so it was widely used in 
solving unconstrained function optimization [6]. This 
paper tries to integrate NM simplex method into QPSO, 
and proposes hybrid QPSO-NM algorithm so as to 
improve the local search ability of QPSO.  
The rest of this paper is organized as follows: Section 2 
gives some preliminaries on QPSO and NM simplex 
method. Section 3 describes the flowchart of the hybrid 
algorithm and Section 4 presents experimental results 
and analysis. Finally, major results of this paper are 
summarized in Section 5. 
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2. Preliminaries 

2.1. QPSO Algorithm 

QPSO is a variant of PSO which uses wave function 
),( tx   to describe the status of particles. By solving 

Schrodinger equation, the probability density function 
of particles appearing in a certain point in the space 
could be obtained. Then use Monte Carlo stochastic 
simulation, we may get position equation of particle i at 
t+1 th iteration, which is formulated as follows [2,3]. 
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)(tpi is called local attractor point of particle i; 

)(, tP ji and )(tG j  are jth dimension of pbest position 

of particle i and gbest position of the whole swarm 

respectively. )(, 1tu ji is a uniformly distributed 

random number over (0,1). )(, tL ji is calculated by the 

following formula.  

            |)()(|)( ,, tXtCtL jijji  2 ,            (3) 

where )(tC is the mbest position with coordinates being 
the following. 
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Thus, the position updating equation of particle i in 
QPSO is  
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In general, we call PSO using equation (5) to update 
particles’ positions a quantum-behaved particle swarm 

optimization (QPSO) algorithm.   in (5) is known as 

contraction – expansion (CE) coefficient, the only 
parameter to be tuned by the algorithm, which is used to 
control convergence rate. In [8], it is suggested that the 

value of   could linearly decrease from 1  to 0  

during the search process, and that this would be a 
simple but effective way.  So, computational formula of 
  is  

0 1 0( ) ( ) /T t T        ,                  (6) 

where 1  and 0  are initial and final values of   

respectively. Often we set 1 01, 0.5   . 

2.2. Nelder-Mead simplex method  

Nelder and Mead proposed a simplex search method, 
which is a local search algorithm designed for 
unconstrained optimization without using any gradient 
information [7]. For a function minimizing problem 
with D variables, NM method continuously updates 
“simplex” through iterations after comparing objective 
values at D+1 vertices followed by replacing the worst 
vertex with a new one that is generated by using four 
basic procedures: reflection, expansion, contraction and 
shrinkage. Through these procedures, the simplex can 
successfully improve itself and get closer to the 
optimum. 

3. QPSO-NM algorithm 

The local NM search method is integrated into the main 
QPSO, and critical steps of QPSO-NM algorithm are 
illustrated below:  
(1) Initialization of NM “simplex”. Since NM method 

uses D+1 vertices for D dimensional optimization 
problems, D randomly generated positions in the 
search range, together with the gbest position are 
used to form the initial NM “simplex”. 

(2) A parameter named local search period (L) is used 
to control the running of NM search method, that is 
to say, if the current number of iterations is a 
multiple of L, then the main algorithm will turn to 
the local search. 

(3) Max number of function evaluations for NM 
simplex method (L_MaxFEs) is used to determine 
the running time of the local search. 

Suppose f  is a function to be minimized, the 
pseudocode of QPSO-NM may be depicted as follows. 
Initialize position vectors of each particle and evaluate 
them 
Determine pbest and gbest positions 
Initializing NM  “simplex” 
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gen = 1  
While terminal condition is not met 

Compute mbest position C using (3) 
Compute the value of   using (5) 

For i=1:M 
For j = 1:D 

  = rand(0,1) 

pi,j =  * Pi,j + (1- )*Gj 

u = rand(0,1) 

If rand(0,1) < 0.5 
       Xi,j = pi,j +  *| Cj-Xi,j|*ln(1/u) 

Else 
Xi,j = pi,j -  *| Cj-

Xi,j|*ln(1/u) 
End  

End  
Evaluated the new position  
Update pbest of the i th positon 

End  
Update gbest postion  
If mod (gen,L) ==0 
   Conduct a local search using NM simplex 

search method and update FEs 
correspondingly  

   Find the best position after NM simplex search, 
denoted as NMbest。 And use it to update 
gbest accordingly. 

End  
gen = gen + 1 

End 

4. Computational results and analysis 

Now we use QPSO-NM algorithm to solve the first 10 
test functions from CEC2005 (see Table 1). The 
experiment is conducted on the 10-D problems with the 
terminal criterion Max_FEs setting to 1E+5.  The value 
of parameter L is set to 50, and that of L_MaxFEs is set 
to 500. To conduct fair comparisons between our hybrid 
QPSO-NM and other algorithms, the number of max 
function evaluations (Max_FEs) is used as a time 
measure, i.e. all algorithms will be terminated once FEs 
reaches to Max_FEs. And the best function error value 
is employed as evaluation criterion for each algorithm. 
The convergence curves of SPSO [9], CLPSO [10], 
QPSO [3], DMS-PSO [11] and QPSO-NM on each test 
function are plotted in Figure 1 . From Figure 1, it could 
be seen that convergence curves of QPSO-NM (the red 
solid lines) can approach the true optimal value faster 
than the rest algorithms on functions F1, F2, F3, F4, F6, 
F8 and F10. While for functions F5 and F9, DMS-PSO 

is better than QPSO-NM at first phase of the evolution, 
but the difference becomes very tiny at last. For 
function F7, the convergence speed of QPSO-NM is 
slower than SPSO at first, but eventually the former 
outperforms the latter in terms of the quality of 
solutions. It is shown by the final tendency of 
convergence curves that the red solid lines always 
locates in the lowest place, which means a higher 
solution accuracy of QPSO-NM than other competitors. 
All in all, QPSO-NM is superior to other four 
algorithms in terms of both convergence speed and 
solution accuracy. 

Table 1. The first 10 test functions from CEC2005 

Func No. Function name Bounds Minimum

F1 Shifted Sphere Function [-100,100] -450 
F2 Shifted Schwefel's Problem 1.2 [-100,100] -450 
F3 Shifted Rotated High Conditioned 

Elliptic Function 
[-100,100] -450 

F4 Shifted Schwefel's Problem 1.2 
with Noise in Fitness 

[-100,100] -450 

F5 Schwefel's  Problem 2.6 with 
Global Optimum on Bounds 

[-100,100] -310 

F6 Shifted Rosenbrock's  Function   [-100,100] 390 
F7 Shifted Rotated Griewank's  

Function without Bounds 
Initial bounds 
[0, 600] 

-180 

F8 Shifted Rotated Ackley's  Function
with Global Optimum on Bounds 

[-32,32] -140 

F9 Shifted Rastrigin's  Function [-5,5] -330 
F10 Shifted Rotated Rastrigin's  

Function 
[-5,5] -330 

The source code of these test functions is available on 
P.N.Suganthan’s  
website:http://www.ntu.edu.sg/home/EPNSugan/ 

 
For each test function, the QPSO-NM is run 25 

times. The minimum (MIN), maximum (MAX), mean 
value (MEAN) and the standard deviation (STDEV) of 
the best function error values are presented in Table 2. 
From Table 2, it is found that the mean error values are 
zero when solving functions F1, F2, F4 and F9, 
indicating that QPSO-NM is very effective in 
optimizing the above functions. For the purpose of 
comparison, the mean of the best function error values 
of QPSO-NM together with SPSO,CLPSO,QPSO, 
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Fig. 1. Convergence curves of SPSO, CLPSO, QPSO, DMS-PSO and QPSO-NM on each test function. The abscissa is FEs, and the 
ordinate is log10(Error+ 1), where Error is the best function error value. 

DMS-PSO, FEA[12], Hybrid RCGA[13], PSO 
Variant[14],DE[15] ， ES [16] and RCMA[17], are 
listed in Table 3 and Table 4, where the mean error 
values of FEA, Hybrid RCGA,PSO Variant, DE, ES and 
RCMA are directly taken from corresponding 
literatures. 

Table 2. The MIN, MAX, MEAN and STDEV of the best 
function error values of QPSO-NM 

 F1 F2 F3 F4 F5 

MIN 0.00000E+00 0.00000E+00 1.59730E-11 0.00000E+00 1.36993E-10 

MAX 0.00000E+00 0.00000E+00 2.43565E-06 0.00000E+00 6.04978E-07 

MEAN 0.00000E+00 0.00000E+00 1.00389E-07 0.00000E+00 4.38655E-08 

STDEV 0.00000E+00 0.00000E+00 4.86528E-07 0.00000E+00 1.21641E-07 

 F6 F7 F8 F9 F10 

MIN 0.00000E+00 9.85728E-03 2.00002E+01 0.00000E+00 9.94959E-01 

MAX 2.76780E+00 1.08312E-01 2.01894E+01 0.00000E+00 8.95463E+00

MEAN 1.32368E+00 5.94651E-02 2.00561E+01 0.00000E+00 5.15519E+00

STDEV 7.45577E-01 2.84646E-02 4.86346E-02 0.00000E+00 1.82574E+00

Table 3. The comparison of the mean best function error 
values for functions F1-F5 

 F1 F2 F3 F4 F5 

SPSO 1.05387E+03 6.35766E+02 1.58418E+06 1.22268E+03 1.91479E+03 

CLPSO 0.00000E+00 3.68345E-13 6.94785E+04 4.09273E-13 5.21414E+02 

QPSO 0.00000E+00 1.02318E-12 1.47868E+05 1.87933E-09 3.24642E+02 

DMS-

PSO 

0.00000E+00 2.69515E-07 1.37347E+05 2.24495E-04 9.37320E-09 

FEA 7.89310E-09 9.15620E-01 6.45730E+05 1.34520E+02 3.51070E+02 

Hybrid 

RCGA 

8.34460E-09 8.20750E-09 5.70530E+02 8.31770E-09 8.93750E-09 

PSO 

Variant 

0.00000E+00 0.00000E+00 2.29034E+05 0.00000E+00 0.00000E+00 

DE  0.00000E+00 5.70000E-02 2.09000E+05 6.19000E-01 1.21796E+02 

ES  8.16020E-09 2.90000E-06 3.52170E+05 4.13570E+03 1.36820E+03 

RCMA  9.86950E-09 9.93600E-09 4.77086E+04 1.99669E-08 2.12417E-02 

QPSO-

NM 

0.00000E+00 0.00000E+00 1.00389E-07 0.00000E+00 4.38655E-08 
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The five functions in Table 3 are unimodal 
functions. F1, F2 and F3 have different condition 
numbers which make F3 to be harder than F2 and F2 to 
be harder than F1.  For F1, we could observe, from the 
results , that the mean best function error values of 
QPSO-NM, CLPSO,QPSO,DMS-PSO,PSO Variant and 
DE are all equal to zero, which indicates that this test 
function could be effectively optimized by these 
algorithm. For F2 and F4, QPSO-NM and PSO Variant 
achieve a better result. F3 is a very hard function to be 
optimized, and QPSO-NM obtains a significant better 
result than other algorithms of which the order of 
magnitude reaches to 10-7 clearly lower than its 
counterparts. F5 is Schwefel’s problem 2.6 with global 
optimum on bounds, for this function the performance 
of QPSO-NM is worse than that of PSO Variant, Hybrid 
RCGA and DMS-PSO. Based on the analysis above, we 
can conclude that QPSO-NM and DMS-PSO have 
better overall performances for functions F1-F5. 
Furthermore, QPSO-NM evidently surpasses PSO 
Variant when solving F3. Therefore, QPSO-NM is 
deemed to be the most competitive algorithm among 
these eleven algorithms.    
 

Table 4. The comparison of the mean best 
function error values for functions F6-F10 

   F6 F7 F8 F9 F10 

SPSO 9.27075E+07 3.19381E-01 2.03047E+01 1.75415E+01 3.15131E+01

CLPSO 2.40375E+00 1.41874E-01 2.03577E+01 9.15362E-01 6.68042E+00

QPSO 1.94224E+01 2.79719E-01 2.03674E+01 1.08812E+00 9.67376E+00

DMS-PSO 4.21388E+00 7.05375E-02 2.01527E+01 0.00000E+00 5.51815E+00

FEA 3.21610E+03 1.83840E+00 2.01430E+01 7.91790E-09 2.34010E+01

Hybrid 

RCGA 

8.87370E-09 1.17230E-02 2.03540E+01 1.15420E+00 4.97480E+00

PSO 

Variant 

1.55292E+01 1.71838E-01 2.03034E+01 2.78588E+00 1.85821E+01

DE  3.53800E+00 1.57751E+02 2.04440E+01 4.54000E-01 5.11460E+01

ES  7.49040E+01 1.18260E+00 2.03680E+01 4.48520E+01 1.03020E+02

RCMA  1.48962E+00 1.97139E-01 2.01923E+01 4.37855E-01 5.64289E+00

QPSO-NM 1.32368E+00 5.94651E-02 2.00561E+01 0.00000E+00 5.15519E+00

 
Functions F5-F10 are multimodal functions. QPSO-

NM achieves the best result for F8, and it (along with 
DMS-PSO) also performs the best when optimizing F9. 
For F6, F7 and F10, Hybrid RCGA is the best one 
followed by QPSO-NM: the differences between the 
above two algorithms are small for F7 and F10, while 
Hybrid RCGA obviously outperforms QPSO-NM for 

F6. We may carefully come to the conclusion that 
QPSO-NM and Hybrid RCGA can achieve better 
effects than other algorithms in solving functions F6-
F10. 

For each function, rank all algorithms according to 
their mean function error values from small to large, and 
calculate total and final ranks for each algorithm shown 
in Table 5. It can be clearly seen from Table 5 that the 
top four algorithms are QPSO-NM, DMS-PSO, Hybrid 
RCGA and PSO Variant, respectively. Furthermore, it is 
also found from Table 3 and Table 4 that: PSO Variant 
is very effective on unimodal functions F1-F5 but fails 
to solve multimodal functions F6-F10; Hybrid RCGA, 
however, can nicely minimize multimodal functions F6-
F10 but is inferior to QPSO-NM on unimodal functions 
F1-F5. This phenomenon may be explained by the “no 
free lunch” theorem [18], and it says “any elevated 
performance over one class of problems is offset by 
performance over another class,” indicating that there is 
no algorithms perform the best over any class of 
problems, i.e. each algorithm has its corresponding 
application range. However, QPSO-NM has an overall 
better performance on both unimodal and multimodal 
functions compared with PSO Variant and Hybrid 
RCGA, which could be explained by a finding in [19] 
stating “the hybrid of algorithms may be an effective 
measure to expand algorithms’ application range and 
improve their performances.” Thus, QPSO-NM is the 
most competitive algorithm in solving the first 10 test 
functions from CEC2005 with an expended application 
range achieved by a successful hybrid of QPSO and NM 
simplex method. 

Table 5. Ranks of all algorithms  

 F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 
Total 

ranks 

Final 

ranks 

SPSO 11 11 11 10 11 11 8 6 10 9 98 11 

CLPSO 1 3 4 3 9 4 4 8 6 5 47 5 

QPSO 1 4 6 4 7 8 7 9 7 6 59 7 

DMS-PSO 1 7 5 7 3 6 3 3 1 3 39 2 

FEA 7 10 10 9 8 10 10 2 3 8 77 9 

Hybrid 

RCGA 

9 5 2 5 2 1 1 7 8 1 41 3 

PSO Variant 1 1 8 1 1 7 5 5 9 7 45 4 

DE  1 9 7 8 6 5 11 11 5 10 73 8 

ES  8 8 9 11 10 9 9 10 11 11 96 10 

RCMA  10 6 3 6 5 3 6 4 4 4 51 6 

QPSO-NM 1 1 1 1 4 2 2 1 1 2 16 1 
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5.  Based on the PSO of enterprise credit risk 
assessment model of BP neural network 
research 

(1)B P neural network parameter Settings. For the 
number of input layer nodes, because the network is the 
enterprise credit risk assessment index of the input 
sample data, therefore, the number of input layer nodes 
by PCA transformation after the extraction of 
characteristic data, the number of decisions. Determine 
the number of input layer node model for 14. For the 
number of output layer nodes, as a result of enterprise 
credit risk assessment for yes or no only two kind of 
criterion, as a result, the output layer node number 1. 

For the determination of the number of hidden layer 
nodes, this model adopts the method of variable number 
in hidden layer. Namely the start into the more hidden 
layer nodes, according to the empirical formula to 
determine the hidden node number is 6. As you progress 
through the training process, and gradually trim off 
doesn't work node in the network training. For each 
neuron, if in the process of training, the connection 
power is less than the weight of the absolute value of 
the numerical convergence factor, and then assign the 
weights of zero. If all of the neurons connection weights 
are zero, this god by nodes are removed. This paper 
using B P algorithm for neural network training, factor 
weight to 0. 001, mistakenly sent to receive the folding 
for child is 0. 00001. For the network weights, we using 
PSO algorithm to optimize .The weight is decided by 
the parameters of the particles of the network. [20] 
(2) the design of fitness function, the size of the fitness 
available under type said: 

 

 

The Yrj is the expected output node, Drj is a node of 
the actual output. 
 (3) the PSO parameters Settings 

Particle dimension: is determined by the network 
connection weights, namely by the input node output 
nodes and the number of hidden layer nodes. Suppose I, 
H, O, respectively of input layer, hidden layer and 
output layer neuron number, the dimension of each 
particle size D can be expressed as: D = (I3H) + 3 O (H) 
+ H + O. Therefore, this paper models the dimensions 
of the particle size for D = 109. 

the number of particles, on the basis of experience 
for general problem, particle number take 10 can obtain 

good effect. In order to achieve better training effect, in 
this paper, the particle number 15. 

Vmax: maximum speed, decided to particles in a 
loop of the largest mobile distance, usually set the width 
of the range of particle, this paper set the particle 
belongs to [25, 5], then the size of theVmax is 10. 

Learning factor: cl and c2 is usually equal to 2, but 
there are other values in the literature, but its range 
between 0 and 4. This article take the c l = c2 = 2. 

Stop condition: maximum cycle number and the 
minimum error. In this paper, the minimum error in the 
model set for a classification error, the largest 
circulation set for 2000. 
(4) initialization: randomly generated M a particle, the 
particle's position and velocity range control between 
the (0, 1), the dimensions of the particle's position and 
velocity vector is equal to D. Sets the pbest of each 
particle to the initial position, the best value for the 
gbest pbest. 
(5) the fitness evaluation: the population of each 
individual fitness evaluation. If is better than that of p 
best pbest is when in position. If all particles is superior 
in gbe st, gbe st is replaced. 
(6) the position and velocity update: update position and 
velocity of each particle. 
(7) Algorithm termination: if meet the precision 
requirement or the whole evolution has reached the 
maximum number of iterations (to 2000), an algorithm 
and record the current best individual in the whole 
group. Otherwise, go to step (5). 

In Matlab 2012 implemented in the model proposed 
in this paper. Based on credit risk evaluation index 
system, we adopt 15 projects related data as sample, 12 
of them as the training sample, 3) as a test sample, the 
data after normalization, to analyze the main points and 
processing, as the input data into a network, the network 
training and testing respectively. As you can see, in this 
paper, the constructed model prediction results and the 
actual value of the original data error is very small 

6.  Conclusions  

This paper studies the hybrid algorithm that integrates 
QPSO and Nelder -Mead (NM) simplex search method. 
QPSO has powerful global search abilities, but its local 
search abilities are not so good. Nelder-Mead simplex 
search method is a popular and simple direct search 
technique for unconstrained function optimization 
without using gradient information. In order to combine 
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powerful global search ability of QPSO with precise 
local search of NM simplex method, this paper studies 
the hybrid of the above two algorithms and proposes 
QPSO-NM. In a suite of the first 10 test functions taken 
from CEC2005, QPSO-NM algorithm is compared with 
other four popular competitors and six special 
algorithms that are dedicated to solve CEC2005 test 
function suite. It is showed by the computational results 
that QPSO-NM outperforms other algorithms in terms 
of both convergence rate and solution accuracy. The 
experimental results show that the proposed algorithm is 
extremely effective and efficient at locating optimal 
solutions for continues optimization. 
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