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A B S T R A C T 

The multiphysics field is a branch of physics whose objective is to the couple at least two physical 

systems. Each is governed by its own principles of evolution or equilibrium such as balance laws or 

constitutive laws. Many engineering problems can only be described correctly by coupling fields of 

physics that have historically been developed and taught separately. These problems require on the 

one hand a good understanding of each physical domain, but above all an analysis of the coupling 

mechanisms of these physical domains, in order to propose a relevant model capable of solving the 

problem. A challenge in the multiphysics (mechatronics) field is the construction of coupled 

multiphysics models from experimental observations, as well as the analysis of their mathematical 

properties. The mathematical analysis of the coupled model must be able to show the well-posedness 

of the problem at the defined boundary and initial values. For this reason, we have identified several 

coupling methods: Newton, Gauss-Seidel, JNFK, and direct and explicit coupling. From these 

methods, it appears that the Newton method is suitable for the coupling of the different disciplines of 

Mechatronics. A summary table shows the comparative advantages of each method. 

 

© 2022 University of Al-Qadisiyah. All rights reserved. 

    

1. Introduction 

The compartmentalization of trades and physical disciplines, combined 

with the weakness of computer resources with the emergence of numerical 

calculation has led to the creation of specialized simulation tools. However, 

the phenomena studied often mix several disciplines. The need for 

Multiphysics simulations thus appeared very early on [20]. The field of 

Multiphysics is a branch of physics whose objective is to couple two or 

more physical systems, each governed by its own principles of evolution or 

equilibrium, such as balance laws or constitutive laws [1]. Many 

engineering problems can only be described correctly by coupling fields of 

physics that have historically been developed and taught separately [21]. 

This is called coupling. There are two traditional responses to this need. 

The first is to incorporate simplified models (which can be fed by reference 

calculations) from other physics disciplines into a specialized code. The 

second is the sequential execution of several codes exchanging information. 

Both approaches have in common the implementation of penalty levers to 

guarantee the conservatism of the physical response obtained by the 

modelling. The increase in computing capacity and the desire to improve 

the modelling associated with the complexity of the technologies studied 

are increasing the interest in Multiphysics simulations. These objectives are 

recurrent, but it is not at all certain that they will be achieved if attention is 

not paid to the way the coupling is carried out. Having separate simulations 

communicate may introduce limitations in stability, accuracy and 

robustness that are stronger than those of the components. In addition, the 

exchange of information may itself be more costly than the execution of the 

coupled codes. These challenges have led the scientific community to 

develop efficient and robust coupling techniques. This article is part of this 
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process. After defining the coupling system, we will present two families 

of associated coupling methods. We have deduced a method suitable for 

mechatronic systems. 

 

2. Some definitions of the concepts 

According to [2] coupling is an approach that can be used as a unifying 

basis for modeling the different domains of mechatronics.  We can therefore 

say that coupling is the unambiguous connection between two or more 

inputs of the same system. It is then for us to define a coupled system. 

According to [23] a system is a set of entities that interact and evolve over 

time. The entities can be continuous or discrete fields. Their evolution is 

governed by ODEs1 or PDEs2. He thus defines a coupled system as a 

system made up of several interacting subsystems. They can be 

differentiated by the model (conservation law, behavioral, etc.) or the 

numerical methods used. These subsystems interact through interfaces. 

Geometrically, an interface can correspond to a boundary or to a part or the 

whole spatial domain. As a sketch, we have fig. 1 below. 

 

 

 

 

 

 

 

 

 

Figure 1 - Arrangement of the subsystems [2] 

 

 

 

Figure 2 - Family of couplings [3] 

 

This figure shows us that the subsystems can be adjacent (fluid-structure, 

solid body dynamics), or overlap each other (overlapped). Partial overlaps 

are also possible (e.g. electromagnetic-mechanical). 

 In their paper entitled "Stabilization of staggered solution procedures for 

fluid-structure interaction analysis", [3] discussed the difficulty of stability 

in the coupling method. It is this difficulty that has challenged the 

researchers to the point of leading them to a solution to the problem, namely 

the different coupling algorithms. The latter are grouped into two families 

qualified respectively as weak coupling and strong coupling which we shall 

begin by presenting. Let us note that the type of coupling between two 

subsystems (each physical for example) can be qualified as "Strong" or 

"Weak" as shown in figure 2. Concerning the "strong coupling": there is a 

significant influence of the two subsystems on each other. For "weak 

coupling": only one subsystem has a significant influence on the other 

subsystem. The fundamental difference between these two families comes 

from the way of imposing equilibrium between the different physical 

systems, i.e. the action-reaction principle. It can also be compared in terms 

of their speed of convergence. This is measured by the coupling force. The 

coupling "strength" is determined by the equations of the mathematical 

model. The value of the coupling "strength" between the subsystems is 

given by a scaled writing of the model equations which allows some scaled 

numbers to appear. 

 

2.1 Weak coupling family 

 

This is the first type of coupling to be used in design offices. It is very 

present in industrial software. This type has the advantage of concentrating 

the calculation effort on the zones that require it. However, it is mainly 

reserved for cases where the local detail has little or no influence on the rest 

of the structure on a global scale. For this reason, a mathematical modeling 

of weak coupling will be presented in the following. Consider a dynamic 

system whose state is described by the vector u(t)={u_1 (t),u_2 (t)}and 

governed by the following differential system: 

 

 

{
u̇ = ℱ(u, t);

u(t = 0) = u0.
                                                                                        (1) 

 

The coupling between the two subsystems described by their respective 

entities u1(t) et u2(t)  or components ℱ1  𝑒𝑡 ℱ2  are both functions of 

u1(t) et u2(t)The coupling between the two subsystems, described by their 

respective entities or components, is said to be weak if only subsystem 1 

has a significant influence on the second one. 

 

ℱ1(u1, u2, t) ≈   ℱ1(u1, t).                                                                         (2) 

 

That is: 

 

{
u̇1

u̇2
} = {

ℱ1 (u1, t) 
ℱ2(u1, u2, t)

}                                                                                (3) 

 

 

In the weak coupling model, each of the partial differential equations is 

solved separately. In the weak coupling model, each of the partial 

differential equations is solved separately, which requires the transfer of the 

results of one partial differential equation to the other. In such a case, each 

system may involve a different mathematical type of variable (real or 

complex), different time constants or pulses, and different study areas. 

 

2.2 Strong coupling family  

In the case where the influence of the local model extends beyond its 

definition domain, it is easy to understand that weak coupling methods will 

produce a more or less erroneous solution depending on the situation [4-5]. 

Therefore, the only way to build an exact coupled solution is to bring the 

information from the solution of the local problem to the global level. This 

is the principle of strong coupling methods. In this type of strong coupling, 

we have direct and iterative coupling methods. 

2.2.1 Direct coupling methods 
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These methods take their name from the fact that the coupling between two 

models is considered by means of a direct calculation, i.e., without using 

iterative processes. They can be classified into two main categories: 

structural reanalysis methods and static condensation structural reanalysis 

methods. The principle of structural reanalysis is to calculate the response 

of a structure after a (often localized) change from the principle of structural 

reanalysis is to calculate the response of a structure after a (often localized) 

modification from the knowledge of the response before modification. 

Most of the time, the procedure consists in evaluating the response of the 

initial system under different elementary stresses (e.g., m) representative of 

the modification made to the structure. This is then done by correcting the 

initial stiffness operator by a matrix of rank m. This correction can then be 

carried out in a non-intrusive manner with respect to the operator through 

the Sherman-Morrison and Woodbury formulae Woodbury formulae [8]. 

Let {Ui}i=1...m be a family of vectors constructed from the responses 

under elementary stresses. If U = [U1, ..., Um] then the response of the 

modified structure can be calculated in a non-intrusive way (i.e., without 

requiring the assembly and factorization of the modified system):   

 

(K + UUT )-1 = K-1 - K-1 U (UT K-1 U + I) -1 UT K-1                                   (4) 

 

Structural reanalysis methods are therefore based on an a posteriori 

modification of the solution, in contrast to static condensation methods. We 

take the example (Fig.3) of a structure occupying the domain Ω that is 

partitioned into a global part ΩG and a local part ΩL 

 

 

Figure 1 - Partition of the study area (Park and Felippa, 2000). 

 

It is assumed that a localized defect in ΩL is taken into account. Even if the 

solution in ΩG can be affected by the alteration of the model in the local 

area, the finite element representation of the model defined in ΩG always 

remains the same. If the model defined at ΩL were to evolve or be modified 

many times (for example during a parametric study), a complete 

recalculation of the whole structure would require a significant and 

unnecessary additional cost.  Static condensation sub structuring provides 

a solution to this problem by allowing the construction of a model 

representing the behavior of the structure in ΩG involving only the degrees 

of freedom of the interface Γ [6-7]. We consider here the case of a 

displacement connection under the assumption that the mechanical problem 

is formulated in primal variable. 

 

The global model KG UG + C UL = FG   can be condensed so that only the 

interface displacement has to be considered. The superscripts i indicate the 

internal degrees of freedom of the models, and the superscripts b indicate 

the degrees of freedom of the interface. 

 

 

 

 

 

 

The Schur complement of KG, noted can thus be used to substitute the 

global model in equation (5). This gives the following equation 6: 

 

 

In this case, static condensation is used as a decoupling method to connect 

a fixed global model to a detailed and possibly modifiable local model. 

Sometimes, this method is also used to provide an indelible finite element 

model in the form of a "black box" to protect an industrial secret for 

example. Indeed, the only knowledge of the Schur complement allows an 

exact consideration of the model, without having access to the details of the 

latter (geometry, loading cases). In the context of a generic and succinct 

presentation of the most used coupling methods to date, we refer here to 

static condensation. However, it should be noted that the process of sub 

structuring finite element models is more general and can also be used in 

dynamics and modal calculation. Also, nothing prohibits the joint use of 

static condensation with other coupling methods, as is the case in Hirai who 

combines static condensation with structural reanalysis [9]. 

 

2.2.2 Iterative coupling methods 

 

As we have just seen, direct coupling methods imply a certain level of 

interoperability of the solvers used by each of the coupled models. 

Interoperability of the solvers used by each of the coupled models. The 

other major family of coupling methods commonly used are the iterative 

methods. Successive resolutions are performed on the different parts of the 

model that are to be coupled. Among the common iterative coupling 

methods are those based on sub structuring [22]. As presented earlier, the 

structure can be partitioned into substructures. The idea is then to solve the 

interface problem, but this time in an iterative way (for example via a 

conjugate gradient method).  

The other major class of iterative coupling methods concerns the so-called 

Schwarz methods [8]. The alternating Schwarz method, historically the 

oldest, proposes to split the study domain into several domains. The 

problem is then solved alternately in each of the sub-domains. If we assume 

a division of the domain into two parts Ω1 and Ω2, then the solution of the 

problem according to the alternating Schwarz method will be done as 

follows (Equation 7): 
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Alternating Schwarz: 

This method thus assumes that the problem is solved on each sub-domain 

successively. With the advent of computers with distributed architecture, 

the parallel Schwarz method (Equation 8) appeared.  In this case, at each 

iteration, the problems per subdomain are solved in parallel, in order to take 

advantage of the potential of such computational means. 

 

 

 

 

Schwarz parallel 

 

 

 

In the case where we consider a division of the structure into two sub-

domains, these two methods are equivalent since the sequences of solutions 

thus formed are the same in Ω1 or Ω2. We also speak of a multiplicative 

Schwarz method for the alternate method and an additive Schwarz method 

for the parallel method. The rewriting of these methods in the form of a 

fixed point reveals a sum of operators defined on Ω1 and Ω2 respectively 

for the parallel method and a product for the alternate method.  

Finally, we will mention here the "finite element patch" type methods [17-

18], generally used for solving multiscale problems.  The idea is to consider 

the solution U as the sum of a global contribution UG and a local 

contribution UL provided by the patch so that U = UG + UL. As with the 

Schwarz methods, different strategies are then possible for the imposition 

of boundary conditions at each iteration. The main interest of such a method 

is to be able to calculate a local correction in a flexible way, i.e., to make 

the definition of the local patch independent of the characteristics of the 

global model. Contrary to direct methods, iterative methods require only 

weak interoperability between the different models (and thus solvers) used. 

This makes them very good candidates for the development of non-

intrusive methods. 

 

2.2.3 Connections between different models 

 

Whatever the coupling method used, it is necessary to establish a 

connection between the different models involved. Two types of 

connection can be distinguished: Interface connections, which aim to 

establish relationships between the quantities of interest at the interface. In 

this category, we will find weak connection methods such as the "Mortar"  

method [10-12]. The principle is to impose the equality of quantities 

(displacement, effort) in the weak sense, i.e., through a duality relation. 

Such a connection can be used within strong coupling methods to lead to 

hybrid finite element methods.   

Another example is the Nitsch method [13-15] which allows a Dirichlet 

edge condition to be imposed in a weak form, by adding an extra work term 

in the vibrational formulation of the problem. Volume connections through 

an energy average. In this case, the connection area between the different 

models is no longer an interface but a covering area: this is the Harlequin 

method [16]. While a volume connection may offer more flexibility in 

defining the connection area, it is also much more intrusive than an 

interface connection method.   

This is because a volume energy connection involves the simultaneous 

consideration of the quantities defined in each of the models. An interface 

connection, on the other hand, only requires independent unidirectional 

exchanges between the different models. Despite all these efforts, it 

sometimes appears that multi-scale/multi-model calculation methods 

cannot be used in practice. Indeed, in an industrial context, most numerical 

simulations are performed using commercial software that has been 

developed and certified for predefined applications. Thus, it is not always 

convenient to use such software to implement a given multi-scale/multi-

model calculation. Moreover, the recent development of supercomputers 

now makes it possible to carry out very ambitious simulations. Current 

practices therefore increasingly consist in coupling different models rather 

than integrating all the required specificities into a single model. To 

overcome these difficulties, many authors have developed methods. This is 

what will be presented in the rest of this article. 

 

3. Stationary coupling methods 

Suppose we have two codes 𝑓1  and 𝑓2 working on the variables 𝑥2 € Rd2 

and 𝑥1 Rd1 . 𝑓1  gives us x1 knowing x2 , which we will note 𝑥1 = 𝑓1 (𝑥2) 

and vice versa, 𝑓2  gives us 𝑥2  as a function of 𝑥1 , i.e. 𝑥2 =  𝑓2 (𝑥1) . 

Carrying out the coupling, therefore, consists of looking for the global 

solution which verifies equation 9. 

 

 

 
 

Often the coupling will be formulated with a dependence of the functions 

𝑓𝑖 in 𝑥𝑖 : 

 

 

 
 

There may be two reasons for this. This may be a choice not to try to 

converge each of the codes precisely until the common solution is reached. 

This is close to an intricate solution method. It also happens that it makes 

no sense to converge a code on xi  without simultaneously updatingxj. By 

default, we will assume that the coupling is of the form (10). We will also 

sometimes rewrite the system in the following form: 

 

It is possible to a couple more than two equations with the techniques we 

present here. As the generalization is simple, to simplify the writings, we 

will limit ourselves to couplings between two disciplines. 

 

3.1 Gauss-seidel method 

 

a. Presentation of the method 

The Gauss-Seidel method (often referred to as the Picard method or 
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iterations in the literature), which implements a flexible coupling, is very 

common and easy to implement. It is applied to AX=B (linear) systems 

with the matrix A having to be diagonal dominant. In this method, it is 

simply a matter of iterating on the resolution of the codes until convergence. 

And one does not stop the iterations from precision. Nevertheless, given 

that the main concern is to see if the sequence of iterations converges and 

if so to what order. We will start by presenting the sequence of iterations, 

then we will find an equivalence with the fixed point equation and then we 

will check the convergence. Let us note with an exponent n the iteration 

index. From initial data (x1
(0)

 ,  x2
(0)

), we iterate by posing: 

 

 {
x1

(n+1)
=  f1(x1

(n)
, x2

(n)
)

x2
(n+1)

=  f2(x1
(n)

, x2
(n)

).
                     (12)   

 

ε1
(n+1)

= ‖x1
(n+1)

 −  x1
(n)

‖ et ε2
(n+2)

=  ‖x2
(n+1)

 −   x2
(n)

‖     

 

We generally stop when the increments become small enough. We use this 

criterion for want of a better one, and we see that it does not give any 

information on the distance to the solution. It is easy to see that the method 

if it converges, can only converge to a solution to the problem. However, 

convergence is not systematic. 

b. Equivalence with the fixed point 

The so-called "fixed point" algorithm is used to solve an equation of the 

type x = f(x). It consists in iterating as follows: 

 

             x(n+1) = f(x(n)).                                                                        (13) 

 

The Gauss-Seidel method can be seen as a fixed point by posing: 

 

  x(n) =  (
x1

(n)

x2
(n)

)   et  f(x(n)) = (
f1(x1,  x2)

f2(x1, x2)
).                                            (14) 

 

If one of our functions, say f1does not depend on the variable it is used to 

calculate, i.e. x1  (as is often the case), we notice that each iteration is 

equivalent to  x2
(n+1)

 = f2( f1(x2
(n)

) , x2
(n)

) . This is another way of getting 

back to the fixed point, which has the advantage of reducing the dimension 

of the space in which we work. The following discussion of the Gauss-

Seidel method uses this equivalence.  We will therefore be interested in the 

properties of the fixed point. 

 

c. General condition for convergence 

 Convergence condition: Let Ebe a complete metric space and f an 

application from E into E. If f is k contract i  (i. e.  ∀(a, b) ∈  E2 ,  d(f(a),

f(b)) kd(a, b) with k < 1,   d is the distance between two points of E.), 

then there exists a unique fixed point xsol of f and any sequence satisfying 

x(n+1) = f(x(n)) converges to  xsol. 

 

d. Practical conditions for convergence 

The last remark leads us to look at the neighborhood of the solution to 

determine whether the algorithm can converge. We use the Taylor-

Lagrange inequality for a function f in Rm in Rm of sufficient regularity. 

We note Ja the Jacobian of at a. If there is a real M such that ‖Ja+h‖ ≤

M ∀t ∈ ]0,1[ then: 

 

   ‖f(a + h) −  f(a)‖ ≤   M ‖h‖ .                                                            (15) 

 

We note xsol  the fixed-point solution (we assume the existence and 

uniqueness of the solution here). It is assumed that there exists a real M 

such that   ‖Jx‖  ≤ M ∀x ∈ B (xsol , r).  B (xsol , r) is the ball of center 

xsol and radius r, any real. Then we have more generally: 

 

 ∀a,  b ∈ B(xsol,  r ),  ‖f(b) −  f(a)‖ ≤ M ‖b − a‖                             (16)     

 

Thus, if M < 1, this shows that f is contracting on B(xsol,  r )and that the 

algorithm converges if x(0)  ∈ B(xsol,  r )  from the above. It is therefore 

sufficient that ‖Jx‖  ≤ M < 1 around the solution. If we use the norm L2we 

can write the following sufficient condition (ρ(A) denotes the spectral 

radius of the matrix A, i.e. ρ(A) = maxi|λi| where the λi are the eigenvalues, 

possibly complex, of A). 

 

         ‖Jx‖2  = √(ρ(Jx
t  Jx)   ≤  M < 1                                                    (17) 

 

This equation is valid in the vicinity of the solution, and the initialization is 

chosen in this vicinity. As before, the norm of the Jacobian allows us to 

reduce the speed of convergence of the algorithm. We can look for a less 

demanding condition by using its properties:  ∀A, for any matrix norm we 

have: ρ(A) ≤ ‖A‖ . 

∀A, ∀ε there exists a matrix norm such that ρ(A) ≤ ‖A‖ ≤ ρ(A) + ε. Thus if 

we have, in the solution xsol, ρ(Jxsol
) < 1, for a certain norm we have ‖Jxsol

‖ 

≤ M < 1. By continuity of the norm, we then have with the same norm  ‖Jx‖ 

≤ M′ < 1 on a neighborhood of xsol . We thus have a sufficient condition of 

local convergence (thanks to the equivalence of norms in finite dimension. 

It suffices to show the convergence of the sequence for any norm), less 

demanding than the previous one since the first proposition of the lemma 

tells us that ρ(A) ≤ √ρ(At A)  ∀A. We will try to show that ρ(Jxsol
) < 1 is in 

fact a necessary condition for "good We will try to show that ρ( ) < 1 is in 

fact a necessary condition of "good behavior of the algorithm" in a sense 

that we will specify. We will then say, by abuse of language, that it is a 

necessary condition of we will then say, by abuse of language, that it is a 

necessary condition of convergence. 

 

e. Variant with relaxation 

A variant of the fixed-point method is to introduce a relaxation α > 0. This 

is called over-relaxation when α > 1. The iterations are then written. 

 

   𝑥(𝑛+1) = (1 - α) 𝑥(𝑛) + αf (𝑥(𝑛))                                                           (18) 

 

Let us see what this gives us about the criterion and the speed of 

convergence. We see that by posing g = (1 - α) Id + αf with Id identity 

matrix, we return to the classical fixed point with    𝑥(𝑛+1) = g(𝑥(𝑛)). The 

previous results therefore apply to g. Let us first consider the one-

dimensional case. 
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 One-dimensionnel case : 

We have 𝑔′ = (1-α)+α𝑓′. The fixed point converges at its maximum speed 

when the derivative of the function  is zero in the solution. This leads us to 

an optimal relaxation:  

α =
1

1− 𝑓′(𝑥𝑠𝑜𝑙)
. 

  

This value will generally be unknown since it is based on a property of (f) 

in the solution 𝑥𝑠𝑜𝑙 which is unknown a priori. We will therefore look more 

generally at the behaviour of the algorithm as a function of α.  The 

convergence criterion |𝑔′(𝑥𝑠𝑜𝑙) |< 1 gives us 𝑓′(𝑥𝑠𝑜𝑙) ∈ ]1 - 
2

𝛼
 ; 1[. The 

speed of convergence depends on the maximum value of  |𝑔′ | around the 

solution x. Compare 𝑔′ to 𝑓′.  𝑔′ - 𝑓′ = (1 - α)(1 - 𝑓′). Since 𝑓′ < 1, we 

have 𝑔′ > 𝑓′ α < 1. Now compare 𝑔′ à -𝑓′. 𝑔′+ 𝑓′ = (1 - α) + (α + 1) 𝑓′. 

Thus, 𝑔′(x) > -𝑓′(x) , α < 
1+ 𝑓′(x)

1− 𝑓′(x)
. Thus, we have: 

 

• If 𝑓′(𝑥𝑠𝑜𝑙) < -1, i.e. if the algorithm, without relaxation, does not 

converge with an oscillating behavior, a relaxation α ∈

 ]0,
2

1− 𝑓′(𝑥𝑠𝑜𝑙)
[ allows it to converge. The optimum is α = 

1

1− 𝑓′(𝑥𝑠𝑜𝑙)
 . 

 

• If 𝑓′(𝑥𝑠𝑜𝑙)  ∈ ] - 1, 0[, one can improve the speed of convergence with 

α ∈  ]
1 + 𝑓′(𝑥𝑠𝑜𝑙)

1− 𝑓′(𝑥𝑠𝑜𝑙)
 ,1[. The optimum is at α = 

1

1− 𝑓′(𝑥𝑠𝑜𝑙)
 . 

 

 

• If 𝑓′(𝑥𝑠𝑜𝑙)  ∈ 0, 1[, one can improve the speed of convergence with α 

∈  ]1,
1 + 𝑓′(𝑥𝑠𝑜𝑙)

1− 𝑓′(𝑥𝑠𝑜𝑙)
 [. This is called over-relaxation. The optimum is at  

α = 
1

1− 𝑓′(𝑥𝑠𝑜𝑙)
 . 

 

• If 𝑓′(𝑥𝑠𝑜𝑙)  > 1, i.e. if the algorithm, without relaxation, has a non-

convergent behavior without oscillation, it will keep this behavior ∀α 

> 0. 𝑓′(𝑥𝑠𝑜𝑙)  Since the value of α is not known a priori, the difficulty 

is to determine α. 

More than one-dimensional case: 

To improve the convergence of g we will try to minimize the spectral radius 

of its Jacobian at x, the solution to the problem. We have the following 

general property, which is easy to check, where σ(A) denotes the spectrum 

of A, i.e. the set of its eigenvalues: ∀A, ∀P polynomial P (σ(A)) = σ(P (A)). 

Thus, the previous analysis, done in one dimension, applies to each of the 

eigenvalues of the Jacobian of g. Let us denote 𝜆𝑖 its eigenvalues, and 𝜆𝑖 (α) 

those obtained with relaxation.  We have: 𝜆𝑖 (α) = 1 + α(𝜆𝑖 - 1). We seek to 

minimize  𝑚𝑎𝑥𝑖|𝜆𝑖 (𝛼)|. As before, 𝜆𝑖  > 1 ⇔ 𝜆𝑖 (α) > 1 ∀α > 0. Therefore, 

relaxation does not allow the algorithm to converge if ∃𝜆𝑖  > 1, and we, 

therefore, consider that 𝜆𝑖 < 1 ∀i. Thus, we have 𝜆 𝑖
′
(α) = (𝜆𝑖  - 1) < 0. All 

functions 𝜆𝑖 (α) have the same monotonicity and are all 1 in 0. Moreover, it 

is easy to verify that if 𝜆𝑖  ≠ 𝜆𝑗 then 𝜆𝑖 (α)≠ 𝜆𝑗 (α) ∀α ≠ 0. Let  𝜆𝐼 be the 

eigenvalue which realizes 𝑚𝑎𝑥𝑖| 𝜆𝑖 |. It is easy to see that as long as  𝜆𝐼 (α) 

realizes 𝑚𝑎𝑥𝑖|𝜆𝑖 (𝛼)|we can still decrease the spectral radius. And since, 

|𝜆𝑖 (𝛼)|  = |𝜆𝑗 (𝛼)|   ⟹   𝜆𝑖 (α) = - 𝜆𝑗 (α), we see that when ∃ i ≠

𝐼 𝑡𝑒𝑙 𝑞𝑢𝑒 𝜆𝑖  ≠  𝜆𝐼 𝑒𝑡 |  𝜆𝐼  (𝛼)| =  |𝜆𝑖 (𝛼)| . Since the monotonies are 

identical, we can no longer minimize both  |𝜆𝐼 (𝛼)|  and  |𝜆𝑖 (𝛼)| . The 

optimum is thus reached. We notice that, since we have 𝜆𝑖  (α) < 1 ∀α > 0, 

the convergence of the algorithm is guaranteed at the optimum. 

 

𝜆𝑖  (α)= -𝜆𝑗  (α) gives us: α = 
1

1− 
𝜆𝑖  +𝜆𝑗  

2

. Moreover, since the 𝜆𝑖  (α) cannot 

intersect, and 𝜆𝐼   corresponds to either the minimum or the maximum of 

the eigenvalues, the first 𝜆𝑖  ≠  𝜆𝐼  which realizes |  𝜆𝐼  (𝛼)|  =  |𝜆𝑖 (𝛼)|is 

either the maximum (if 𝜆𝐼  is the minimum) or the minimum of the 

eigenvalues. The optimal relaxation, which we have seen ensures 

convergence, is therefore: α = 
1

1− 
𝑚𝑎𝑥𝑖𝜆𝑖  + 𝑚𝑖𝑛𝑖𝜆𝑖 

2

. As in the one-dimensional 

case, the optimal relaxation we have identified requires knowledge of 

properties of  (f)  in the solution of the problem. It will therefore generally 

be necessary to use approximate methods. A very simple empirical 

procedure, which works whatever the dimension of the problem, often gives 

good results. It consists in dividing the relaxation by two each time the 

convergence criterion increases (be careful with its definition). It is 

possible, but not essential, to recalculate the iterations where the 

convergence criterion has increased. 

f. Jacobi iterations  

     The Jacobi method is similar to the Gauss-Seidel method. The difference 

is that the result of the previous calculation is not used to improve the result 

of the next calculation. This is equivalent to iterating as follows (n is the 

iteration number): 

 

    {
x1

(n+1)
= f1(x1

(n)
,  x2

(n)
)

x2
(n+1)

= f2(x1
(n)

,  x2
(n)

).
                                                                      (19)     

 

We can see that it is also a fixed-point method. The convergence is slower 

than for Gauss-Seidel, but the algorithm is parallelizable.  

The Gauss-Seidel method is generally preferred to the Jacobi method. 

Thus we can say that the Gauss-Seidel method is easy to implement and 

often converges. In particular, the convergence takes place whatever the 

initialization on the coupling is sufficiently weak. However, the method 

cannot converge if the couplings involved are too strong. Adding a 

relaxation can be a solution in this case, but the difficulty is then to 

parameterize it. Moreover, the linear convergence is all the faster that the 

functions studied are weakly coupled. 

 

3.2 Newton’s method 

a.  Presentation of the method 

This is another common method, which has many variants. In its original 

formalism, it is an intricate (and therefore firm) coupling method. Let us 

put the system to be solved as follows (F1 and F2 can be taken from the 

formulation (20) for example): 

 

F (x) = (
F1(x1,  x2)

F2(x1, x2)
) = 0, x = (x1,  x2) .                                                (20) 

 

It is recalled that, in general, xi and Fi(xi,  xj) are vectors of Rdi . Note that 

d= d1 + d2 the number of components of x and define the Jacobian Jx of the 

system at x as follows (the Fi are here and for the following the components 

of F, and thus 
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Jx=(

∂F1

∂x1
(x) ⋯

∂F1

∂xd
(x)

⋮ ⋱ ⋮
∂Fd

∂x1
(x) ⋯

∂Fd

∂xd
(x)

)                      (21) 

 

Like the Gauss-Seidel method, the Newton method is iterative. Let us note 

here again with an exponent n the iteration index. From an initial data x(0) 

we iterate as follows: We solve in δx the linear system: Jx(n) δx = −F(x(n). 

And then we pose  x(n+1) =  x(n) + δx . We generally stop when ‖δx ‖ or 

‖F(x(n))‖ becomes small enough.   

As before, we see that the method can only converge to a solution of the 

problem.  

 

b. Study of the method 

The method is based on a Taylor expansion to order 1 around the solution   

xsol : F(xsol) = 0 ≈ F(x(n)) +  Jx(n)(xsol − x(n)).         (22) 

 

Assuming F is sufficiently regular, let us use the Taylor-Lagrange 

inequality to quantify the error. As before, let us note D2Fx  the linear 

application of Rd in L(Rd), such that (D2Fxab)k =∑
∂2Fk(x)

∂xi ∂xj
aibji,j  . If there 

is a real M such that: 

 

‖D2Fx(n)+t(xsol−x(n))‖ ≤ M ∀t ∈ ]0; 1[ 

 then: ‖−𝐹(𝑥(𝑛)) +  𝐽𝑥(𝑛)(𝑥𝑠𝑜𝑙 − 𝑥(𝑛))‖  ≤  
M‖xsol−x(n)‖

2

2
                   (23) 

 

Since F(𝑥𝑠𝑜𝑙) = 0. We introduce the vector 𝜂𝑛of norm less than 1, such that: 

 

  𝐹(𝑥(𝑛)) =   𝐽𝑥(𝑛)(𝑥𝑠𝑜𝑙 − 𝑥(𝑛)) +  𝜂𝑛  
M‖xsol−x(n)‖

2

2
.        (24) 

 

We can therefore write the norm of the error as follows, assuming the 

Jacobian is invertible: 

 

  ‖ℰ(𝑛+1)‖ =  ‖𝑥(𝑛+1) − 𝑥𝑠𝑜𝑙‖ = ‖𝑥(𝑛) − 𝐽
𝑥(𝑛)
−1 𝐹(𝑥(𝑛)) − 𝑥𝑠𝑜𝑙‖        (25) 

 

‖ℰ(𝑛+1)‖ = ‖𝑥(𝑛) − 𝐽
𝑥(𝑛)
−1 (  𝐽𝑥(𝑛)(𝑥𝑠𝑜𝑙 − 𝑥(𝑛)) +  𝜂𝑛  

M‖xsol−x(n)‖
2

2
) − 𝑥𝑠𝑜𝑙‖         

(26) 

 

‖ℰ(𝑛+1)‖ = ‖𝐽
𝑥(𝑛)
−1 𝜂𝑛‖

M‖ℰ(𝑛)‖
2

2
 ≤  ‖𝐽

𝑥(𝑛)
−1 ‖

M‖ℰ(𝑛)‖
2

2
 .          (27) 

 

Let  

K = max𝑚𝑎𝑥𝑥∈𝐵(𝑥𝑠𝑜𝑙,‖𝑥𝑠𝑜𝑙−𝑥(0)‖(
1

2
‖𝐽𝑥

−1‖‖D2Fx‖). 

 

𝐵(𝑥𝑠𝑜𝑙 , ‖𝑥𝑠𝑜𝑙 − 𝑥(0)‖  is the ball of center 𝑥𝑠𝑜𝑙  and radius ‖𝑥𝑠𝑜𝑙 − 𝑥(0)‖ 

convergence occurs if the following criterion is met: 

 

𝐾‖𝑥(0) − 𝑥𝑠𝑜𝑙‖< 1.                   (28) 

 

Furthermore, it can be shown by recurrence that we have: 

 

‖ℰ(𝑛)‖  ≤  
(𝐾‖𝑥(0)−𝑥𝑠𝑜𝑙‖)2𝑛

𝐾
.                                        (29) 

 

This shows us that we have a quadratic convergence, thus faster than the 

Gauss-Seidel one, if the initialization is good enough. 

Newton’s algorithm can only be defined correctly if we can define the 

Jacobian of F at all points. However, it happens that the phenomena we are 

studying introduce breaks in the slope. We are thinking of phase changes. 

In this case, the previous equations assure us that the convergence of the 

algorithm always takes place, for a sufficiently good initialization, whether 

we choose the partial derivatives on the right or on the left at the breaks in 

the slope. 

c. Variant with relaxation 

In the same way that we introduced a relaxation for Gauss-Seidel, it is 

possible to define one for Newton, which we will note α ∈]0; 1] and which 

occurs as follows (δx is always calculated in the same way):     

 

    x(n+1)=x(n)+αδx .                                                 (30) 

 It is easy to see that when α ≠ 1 one loses the quadratic convergence speed 

of Newton's algorithm. Relaxation cannot therefore be used to accelerate 

convergence, but it can allow convergence in certain situations where the 

initial algorithm would not have done so. The Jacobian is then mainly used 

to determine the direction in which the x(n)  and α determines the size of 

the "step" taken. In principle, we can see that we are approaching a gradient 

descent type of algorithm, used. Let us insist on the fact that α = 1 will 

always be optimal when approaching the solution for the Newton 

algorithm, which was not the case for Gauss-Seidel. When using a 

relaxation with Newton's algorithm, one must therefore have the possibility, 

at each iteration, to increase α. As with Gauss-Seidel, there is a simple 

empirical procedure for using relaxation with the Newton method. This 

involves adding an internal iteration level. Each Newton iteration starts 

with α = 1. This iteration is then recalculated by dividing the relaxation by 

two each time, as long as the resulting residual is not smaller than that of 

the previous iteration. 

d. Newton's algorithm does not correct 

 It is simply a Newtonian algorithm in which it is assumed that the solution 

of the system  Jx(n) δx = −F(x(n)) is not exact. Starting with an initial data 

x(0) we iterate as follows: We determine δx  which verifies: ‖Jx(n) δx +

F(x(n))‖ ≤ 𝜂(n)‖F(x(n))‖. And we pose x(n+1)    = x(n)+ α(n)δx. 𝜂(n) ∈ [0; 

1] fixes the required precision on the resolution of the linear system and 

α(n)> 0 corresponds to a relaxation as already introduced. As the resolution 

of the linear system is assumed to be inaccurate, the algorithm does not 

benefit from the quadratic convergence speed of the Newton and the 

introduction of the relaxation is less troublesome. 

 

3.3 JFNK , Jacobian-free Newton-Krylov, method 

a. Presentation of the method 

In particular, it is the basis of the MOOSE coupling platform [19]. The 
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JFNK is an implementation of Newton's method based on a Krylov method 

for solving linear systems, which is applied at each iteration of Newton to 

the system 𝐽𝑥(𝑛)δx = -F (x(n) ). Krylov's methods have the advantage of 

involving the system matrix only through matrix-vector products, which we 

are able to approximate by simple code calls. The JFNK method thus allows 

to define a sequential (codes are kept) but firm coupling technique. 

b. Principle of Krylov methods for solving Ax = b 

 Let mbe the dimension of the vector b. Krylov's methods consist in finding 

an approximation of the solution on a vector space Kn of reduced dimension 

n ≤ m, which is constructed as follows: Kn = Vect(r0; Ar0,..., An-1 r0), where 

r0 = b - Ax0, with x0 an initial estimate of the solution of the linear system. 

In our case x0 is usually taken to be zero and we simply have r0 = b. To 

simplify the writings, we will work in the following directly with the 

variable b. Note that (b, Ab, ..., An-1 b) does not necessarily form a family 

of free vectors, but that if this is not the case, the solution x can be generated 

by the family (b, Ab, ..., An-2 b).  

c. Use and interest of the JFNK method in the context of coupling 

In a problem involving a Jacobian, one can use the following Taylor 

expansion to approximate the matrix-vector product: 

 

  𝐽𝑢 𝜈 =
𝐹(𝑢+𝜀𝜈)− 𝐹(𝑢)

2𝜀
+ 𝑂(𝜀).                             (31) 

 

An evaluation of F corresponds to a call to the codes we couple. The method 

can therefore be used without the need to compute or store the Jacobian of 

our coupled problem but requires frequent calls to the codes. We thus need 

one call of the codes per GMRES iteration, in addition to the necessary call 

per Newton iteration. We see that our approximation of the product  𝐽𝑢 𝜈 

product introduces an error in O (𝜀). This error can be reduced by using a 

centered difference, but then we need two calls of the codes per iteration of 

GMRES. 

 

𝐽𝑢 𝜈 =
𝐹(𝑢+𝜀𝜈)− 𝐹(𝑢−𝜀𝜈)

2𝜀
+ 𝑂(𝜀2).                                    (32) 

 

Let us insist on the fact that the JFNK is only a way to implement Newton's 

algorithm by circumventing the difficulties linked to the construction of the 

Jacobian. Newton's algorithm by circumventing the difficulties associated 

with the construction of the Jacobian. The discussion about Newton's 

method applies here. The JFNK introduces new parameters which are the 

𝜀 used to calculate the product 𝐽𝜈  and the convergence criterion of the 

GMRES method. The former must be chosen small enough to make the 

Taylor expansion as fair as possible, but large enough to avoid numerical 

noise. The GMRES convergence criterion is a compromise between 

accuracy and calculation time. 

 

4. Transient coupling methods  

4.1. Method directly derived from stationary techniques 

In the previous methods, the time variable does not intervene. We can then 

ask ourselves how to achieve a coupling in kinetics. To explain it, let us 

start by giving a general form of the coupling, as we did previously: 

 

    {

∂x1

∂t
= G1 (x1 , x2 )

∂x2

∂t
= G2 (x1 , x2 )

          (33) 

 

Except for very special systems, after choosing a numerical scheme, we 

obtain resolutions of the type: 

 

    {
𝑥1(𝑡 + ∆𝑡) =  𝑥1(𝑡) +  ℎ1(𝑥2(𝑡 + ∆𝑡), ∆𝑡)

𝑥2(𝑡 + ∆𝑡) =  𝑥2(𝑡) +  ℎ2(𝑥1(𝑡 + ∆𝑡), ∆𝑡)
                (34)    

 

Where the hi are continuous functions such that lim
∆𝑡→0

ℎ𝑖 (𝑥, ∆𝑡) = 0 ∀𝑥. By 

posing:         

 

{
𝐹1 (𝑢1, 𝑢2) = 𝑢1 − 𝑥1(𝑡) − ℎ1(𝑢2, ∆𝑡)

𝐹2 (𝑢1, 𝑢2) = 𝑢2 − 𝑥2(𝑡) − ℎ2(𝑢1, ∆𝑡)
                       (35) 

 

We return to the form already studied: 

 

 {
𝐹1 (𝑢1, 𝑢2) = 0

𝐹2 (𝑢1, 𝑢2) = 0
 

 

The methods already seen are therefore directly applicable, but we have an 

additional parameter that allows us to influence the strength of the coupling 

thus defined at each timestep: the time step itself.  In particular, when using 

a Gauss-Seidel method, the convergence criterion (∃𝑀 < 1, ‖𝐽‖ ≤ 𝑀) is 

automatically verified for ∆t sufficiently small. Unfortunately, the time step 

necessary for Gauss-Seidel is sometimes too small to be exploitable 

(calculation of the transient too long), and we then turn to the other methods 

already presented. Let us note that there is a purely technical difficulty, but 

sometimes difficult to circumvent, for the implementation of evolving 

coupled schemes: the methods presented are iterative, it is thus necessary 

to be able to recalculate the same time step several times, without 

modifying the variables at the beginning of the time step (the 𝑥𝑖(𝑡)in our 

notation). However, the codes sometimes forget 𝑥𝑖(𝑡)  during the 

calculation of  𝑥𝑖(𝑡 + ∆𝑡). 

4.2. Explicit coupling 

To save calculation time when the couplings are weak, but also because of 

the technical difficulty we have just mentioned, it is often desired to 

calculate a transient coupled without iteration at each time step. To do this, 

we will look at how an error evolves during the calculation of a transient, 

whether or not the phenomenon being modelled arises from a coupling. Let 

us write a general form for an evolution problem: 

 

𝜕𝑥

𝜕𝑡
= 𝐹(𝑥). 

 

It is assumed that a classical explicit scheme is used, which gives us: 

 

    x (t + ∆t) = x(t) + ∆t F (x(t)).                 (36) 

 

Let us note 𝑥𝑒 the exact solution of the problem and suppose that at the 
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beginning of the time step time step x(t) = 𝑥𝑒 (t) + 𝜀(t). We will also note 

𝜀′ the error introduced by the scheme itself (which is of order 1 in time) 

on the time step we are calculating:  

 

𝑥𝑒 (t) + ∆t F (𝑥𝑒 (t)) = 𝑥𝑒 (t + ∆t) + 𝜀′ (t + ∆t).             (37) 

 

With this we have : 

x(t + ∆t) = 𝑥𝑒 (t) + 𝜀(t) + ∆t F (𝑥𝑒 (t) + 𝜀(t)) = 𝑥𝑒 (t) + 𝜀(t) + ∆t (F(𝑥𝑒( t)) + 

F(𝑥𝑒( t) + 𝜀 (t)) - F(𝑥𝑒( t)))  = 𝑥𝑒 (t + ∆t) + 𝜀'(t + ∆t) + 𝜀 (t) + ∆t (F (𝑥𝑒( t) 

+ 𝜀 (t)) - F (𝑥𝑒( t)))      Eq (38) 

 

Thus we can write 𝜀(t + ∆t) = f(𝜀 (t)) with : 

 

f(u) = u + ∆t (F (𝑥𝑒( t) + u) - F (𝑥𝑒( t)) )+ 𝜀'(t + ∆t)                            (39) 

 

As we move forward in time, the error committed evolves almost as if we 

were doing fixed point iterations with the function f thus defined. However, 

the equivalence is not perfect since  𝑥𝑒  and  𝜀′   evolve with time. To 

understand what is going on, let us suppose that these quantities are 

constant (which amounts to saying that we verify the stability of a stationary 

state), and that we are in one dimension. In this case, convergence occurs if  

|𝑓′(𝑢)| < 1, 𝑠𝑜𝑖𝑡 𝑠𝑖 𝐹′(𝑢) 𝜖 ]
−2

∆𝑡
 , 0[ . The upper bound, F'(u) < 0, means 

that the system under study must itself be (statically) stable.  As for the 

lower bound, we notice that by decreasing the time step it can be arbitrarily 

small. Thus, with a sufficiently small-time step, the error committed by an 

explicit coupling scheme can remain bounded. Nevertheless, the error 

committed is in O(∆t). The explicit scheme is therefore accurate to first 

order in time. The formalism used is valid when we evolve a coupled 

problem in time, and we do not converge the coupling at each time step. 

Thus, the way in which the coupling is performed can reduce the 

accuracy of the solution to first order in time, even though 

the solvers themselves have better accuracy. This point is 

particularly important. By saving the work of thinking about 

the coupling scheme, one risks losing the benefit of all the 

work invested in the codes themselves. 
 

5. Synthesis 

The Gauss-Seidel method is very easy to implement and is the first method to be 

proposed in the genesis of coupling. This does not mean that the Newton algorithm is 

superior in all respects to the Gauss-Seidel algorithm. The main advantage of Newton's 

method is its quadratic rather than linear convergence speed. It is, therefore, to be 

preferred if a good coupling is desired. If one is simply interested in the solution of 

the coupled problem, the Gauss-Seidel algorithm is generally sufficient. The use of a 

relaxation, which can be determined empirically, is sufficient to make it very robust. 

Only those cases, which are actually quite rare, where the algorithm diverges without 

oscillating cannot be stabilized with a relaxation. Newton's algorithm, on the other 

hand, can be used theoretically on any case, but on condition that the initialization is 

good enough. Even if the use of a relaxation is likely to greatly improve its behavior, 

the Newton algorithm is sometimes less robust than the Gauss-Seidel algorithm, 

because it is more sensitive to noise. The comparative table summarizes our analysis 

by presenting the advantages and disadvantages of each method presented above. It 

shows that Newton's method is the most appropriate for the coupling of disciplines in 

a mechatronic system. 

 

 

Table1 - Table of methods with their advantages and disadvantages 

 

Methods Advantages Disadvantages 
Mechatronic 

systems 

Direct 

methods 

Suitable for medium 

and large sized 

systems. 

For large systems, 

it requires a lot of 

memory size. 

Not adequate 

because there is 

no stability. 

Gauss 

Seidel 

methods 

Suitable for linear 

systems and linear 

convergence. 

Choice of the 

stopping 

condition. 

Not adequate 

because 

mechatronic 

systems are 

linear. 

Newton's 

methods 

Appropriate for 

nonlinear systems and 

quadratically 

convergent. 

Choice of initial 

data. 
Adequate. 

JFNK 

method 

 

Suitable for nonlinear 

systems, More 

memorable, includes 

more parameters 

which makes 

calculations easier. 

Choice of initial 

data. 

Adequate but 

with too many 

parameters. 

Explicit 

pairing 

method 

 

Time saving. 

Reduced accuracy 

due to partitioned 

convergence. 

Not Adequate 

because poor 

precision 

emerges. 

 

6. Comparative table 

At the end of this coupling analysis, we have noticed that all systems, 

whatever the size, can be coupled by coupling methods. Depending on the 

problem to be solved we have to choose the adequate method. Direct 

methods if the system is of average size but also of large size while 

envisaging much memory size. Hence the interest in using iterative 

methods, especially Gauss Seidel and Jacobi. Nevertheless, they are used 

for linear systems. However, mechatronic systems are non-linear. This 

justifies the choice of Newton's method. Therefore, for non-linear systems, 

we have to use the Newtonian method while taking care to choose the initial 

data carefully.   

7. Conclusion 

At the end of this coupling analysis, we have noticed that all systems, 

whatever the size, can be coupled by coupling methods. Depending on the 

problem to be solved we have to choose the adequate method. That is to say 

direct methods if the system is of average size but also of large size while 

envisaging much memory size. Hence the interest in using iterative 

methods, especially Gauss Seidel and Jacobi. Nevertheless, they are used 

for linear systems. However, mechatronic systems are non-linear. This 

justifies the choice of Newton's method. Therefore, for non-linear systems, 

we have to use the Newtonian method while taking care to choose the initial 

data carefully.   
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