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A B S T R A C T 

Since the Flexible field effect transistor (F-FET) is the building block of any sophisticated electronic circuit, 

particularly in the area of wearable electronics and biomedical sensors, it has drawn a lot of attention 

recently. It is usually fabricated using stretchable semiconductors over polymeric substrates. This paper 

displays a brief overview of the current fabrication techniques of the F-FET, specifically in terms of  the 

type of substrates and nano semiconductor technologies. As for the applications, flexible devices such as 

graphene, carbon nanotubes and  nanoparticles seem to be a candidate for the  future flexible devices due to 

their excitant electronic and stretchable  characteristics. 
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1. Introduction  

 

 

1.1 F-FET structure 

 

Typically, F-FET consists of a source, drain, and gate. It constricts on an 

insulating substrate.  The source and drain are deposited on a semiconductor 

and connected to an external power supply through conductive electrodes, 

usually gold,  copper, or silver. The gate of the FET is usually fabricated 

either on the top or the bottom of the substrate, that’s why the FET structure 

called the top or bottom gate (Fig.  1 ). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 - FET structure; (a) with a bottom gate;  (b) with a top gate; 

(c) F-FET with a flexible substrate; (d) Electronics on a fexible 

substrate 

Basically, the charge carriers flow through the FET under the control of the 

applied gate voltage. The relationship between VGS and  IDS is: IDS= 
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c 
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µ(WC/2L) (VGS-VT)2 , where IDS is the current that is flowing from drain to 

source, C  is the insulator capacitance, VT is the threshold voltage, W  is the 

width of the channel, and L is its length Schneider et al. [1].  

1.2. Effect of bending on F-FET characteristics  

Based on reported articles [2, 3], bending an F-FET causes two potential 

effects on the F-FET properties. First, it affects the I-V characteristic. 

Second, it affects the electron mobility of the F-FET. As illustrated in Fig. 

2, the effect of bending is also depending on whether the bending is upward 

or downward. Remarkable differences have been seen in the electron 

mobility and the I-V curve between the downward bending (Fig. 2-a) and 

upward bending (Fig.  2-b). However, bending in the same direction leads 

to a very slightly changing in the F-FET properties. 

 

 

  

 

Figure 2- (a) Schematic of downward bending of  F-FET on PET 

substrate and corresponding I-V curve and electron mobility. (b) 

Schematic of upward bending of  F-FET on PET substrate and 

corresponding I-V curve and electron mobility [4].   

2. Types of flexible substrates 

The material of a substrate decides the mechanical properties such as 

the strain and bending angle of the fabricated device. This is why the first 

thing that one needs to think about is  substrate flexibility. The strain of a 

substrate is a function of its thickness, Young’s Modulus,  and the type of 

the deposited layers upon the substrate. The strain can be calculated by Yin 

et al. [5]: 

S=     
(𝒕𝑳+𝒕𝒔)(𝟏+

𝟐𝒕𝑳
𝒕𝒔

 +
𝒀𝑳× 𝒕𝑳

𝟐

𝒀𝒔×𝒕𝒔
𝟐 )

𝟐𝑹+(𝟏+
𝒕𝑳
𝒕𝒔

)(𝟏+
𝒀𝑳×𝒕𝑳
𝒀𝒔×𝒕𝒔

)
 

Where tL and tS are the thicknesses of the layer and the substrate 

respectively. While YS and YL are Young’s modulus of the substrate and 

the layer respectively and R is the radius after bending.  

It should be mentioned that the conductivity of the device is  dimension 

dependent, which could be changed with bending or stretching [5, 6].  

 

2.1. Polyethylene terephthalate (PET)substrate 

Basically, PET is a polyester family. Depending on the thickness, PET 

could be rigid or flexible. It is lightweight, low cost, thermally stable, and 

moisture resistant Bach et al. [7]. PET has Young modulus of 2800-3100 

MPa, dielectric constant of 60 Kv/mm, and a  melting point of around 250 
0C Faraj et al. [8]. It has been used in the design of flexible substrates for 

several applications such as flexible antennas [9, 10], biosensors[11, 12] 

wearable sensors Gao et al. [13], and flexible electronics [14-16]. Due to 

its nice optical properties (optical transmission of  85% ) and flexible under 

bending conditions MacDonald [17] , PET becomes a candidate for flexible 

displays. Optimal printed  thickness and spacing for electronic application 

and also the thermal operation of the PET substrate have been reported 

Riheen et al. [16], it was proved that the optimal spacing of inkjet printing 

for electronic application is around 20 µm and thermally durable at 120 0C. 

Fig. 3-a shows a photo image of the PET, while Fig. (3-b) is the AFM 

image of the PET, it shows that the mean square of the surface roughness, 

which is  about 13.5 nm [17]. 

 

 

 

Figure 3- (a) PET sheet (b) Surface morphology of  PET [17]. 

 

2.2 Polydimethyl siloxane (PDMS) substrate 

PDMS has been used as a flexible substrate due to its transparency, 

tailoring, chemical stability, and flexibility. In addition, it is easy to 

construct with the  desired thickness Qi et al. [18]. It has a Young modulus 

of 1.4 MPa  and dialectic strength of 27 kV/mm. These properties make 

b 

a 

b a 
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PDMS used  in microfluidics and electronics devices [18, 19]. Furthermore, 

PDMS is a biocompatible material, meaning similar to the human tissue, 

this makes it  favorable in the construction of biosensors Victor et al. [20]. 

Fig. 4 shows a photographic  image of a PDMS layer. 

 

 

 

 

 

 

 

 

 

 

Figure 4 - Flexible PDMS substrate. 

 

2.3. Polyimide substrate 

Polyimide is another interesting flexible polymeric material that has 

been used as a flexible substrate. In fact, multiple properties made 

Polyimide an excellent choice such as flexibility, light-weight, low cost, 

relatively high operating temperature (up to 400 0C) and moisture 

resistance, Young modulus of 4 GPa and  a dielectric constant of 3. It has 

been used as a flexible substrate in many applications, for example, solar 

Caballero et al. [21] cell, flexible printed circuits Wang et al. [22], 

biomedical probes and wearable devices[23, 24]. Fig. 5-a shows one of the 

applications of  polyimide in biomedical probes. Fig. (s-b) is the AFM 

image of the polyimide, it shows the surface roughness is 22.52 nm, which 

is accepted for many applications. 

 

 

Figure 5- (a) bio-medical probe with a flexible Polyimide substrate  

(b) AFM image of a polyimide sheet with 22.52 nm surface roughness 

[25, 26]. 

3. Type of flexible semiconductor materials for F-FET 

3.1. Carbone nanotube (CNT) 

CNT has been used for several applications due to its excellent 

electronic and mechanical characteristics. High electron mobility, (2-

6)×104 cm 2 /(V ×s), high stable current of 109 A/cm2, and high electrical 

conductivity (106 to 107 S/m ) Mora et al. [27] makes CNT a promising for 

the design of high- speed F-FET [28-31]. It has also been  used as a sensor, 

such as humidity and piezoelectric sensors [32-35]. Additionally, the  

CNT’s mechanical properties have been studied and Young's modulus was 

calculated to be on the order of 1TPa and tensile strength of CNT-polymer 

composite of 11-63 GPa Arash et al. [36]. These exceptional properties 

made it compatible with the applications of flexible devices Esawi et al. 

[37].  

CNTs can be deposited on a flexible substrate using spray coating. This 

method is the the simplest, low cost, and reliable method Abdelhalim et al. 

[38].  

 

3.2. 2D materials 

Graphene is a good example 2D material, a hexagonal structure (Fig. 

6), was invented by Geim and his group using mechanical exfoliation [39, 

40]. Since the invention of graphene, many research groups have worked 

on it to investigate its properties and potential applications. Basically, 

graphene has a lot of amazing electrical characteristic, example of high 

charge mobility (200 cm2/V×s) Bolotin et al. [41], excellent mechanical 

characteristic (Young modulus of 1 TPa), and nice thermal conductivity 

(3500W/mK to 5000W/mK) Hu et al. [42]. Therefore, graphene is  

nominated for future sensors and electronics [28, 43-49]. S. Park et al. has  

fabricated a F-FET that has 95 GHz cutoff  frequency Park et al. [50]. While 

F. Lui and his group constructed a F-FET with a large flexible area Liu et 

al. [51].  

Graphene can be grown directly of on a flexible substrate by plasma- 

enhanced chemical vapor deposition (PE-CVD) Lee et al. [52]. Whereas 

the simplest method for graphene deposition on the flexible substrate is by 

transfer method. In this method, a CVD graphene is grown on metal such 

as copper then a thin film of Poly(methyl methacrylate( PMMA) polymer, 

the e-beam resist, is deposited on graphene. Then the metal etched. The 

PMMA/Graphene layers is transferred to a flexible substrate. Finally, the 

PMMA is dissolved by a solvent Martins et al. [53].  

 

Figure 6- Scanning tunneling microscope (STM) image of a graphene 

sheet shows its hexagonal structure [54]. 

a 

b 
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3.3. Zinc oxide (ZnO) 

Recent studies of ZnO indicated a lot of interesting properties that make 

it durable for many applications. The wide bandgap of ~3.4 eV, and the 

Young modulus of 64-144 GPa, makes it applicable for flexible transistors 

and sensors [55, 56]. Furthermore, since doping ZnO was successfully 

doped, then both n-type and p-type semiconductors can be constructed. This 

led to the ability of fabrication not only transistors but also logic gates.  

On the other hand, the most common method for growing ZnO on a 

flexible substrate are the inkjet printing method Ko et al. [57], physical 

vapor deposition (PVD) Kumar et al. [58], and hydrothermal Baruah and 

Dutta [59].  

3.4. Organic semiconductors 

Originally, organic materials, which are hydro-carbonic materials, have 

been used as an insulator in the microfabrication process. However, the 

conductivity of the organic materials was successfully modified to be close 

to that of semiconductors and metals after exposure to bromine, iodine, or 

chlorine [48, 60]. This led to the invention of the conductive polymers. 

These polymers have interesting electrical, optical, as well as their plastic 

and flexible, properties. Several research groups [61-63] were used organic 

semiconductors in the design of F-FET as it is cheap and flexible. But  

bottle neck is that it is relatively slow carrier mobility that makes the F-FET 

slow. However, growing single-crystal organic semiconductor Li et al. [64] 

improved the electron mobility with an average of 5.2±2.1 cm2/Vs  

compared to 1.5 cm2/Vs  of the regular organic semiconductor. . This made 

it comparable to the conventional semiconductor transistors. Fig. 7 displays  

a  flexible organic transistors. 

 

 

Figure 7- Photographic image of organic transistors [65] 

4. Significant applications of flexible electronics 

Recently, the trend towards rubber electronics has become significant 

due to the presence of many applications and the emergence of modern 

technologies. For example, in the medical field, a group of rubber sensors 

has appeared, which are used in the field of optogenetics, through which 

brain signals are read. This technology is considered one of the promising 

technologies that will open the door wide towards a new generation of 

medical devices. 

Energy scavenging  is another application in the field of stretch 

electronics. This field includes the manufacture of stretchable RF antennas 

with its electronics in a flexible substrate. This antenna is called a patch 

antenna, which is a low- cost and simple structure. Such technology  can be 

used in wearable devices that are used to collect energy from the 

environment. This technique probably going to be the building block for  

future powerless portable devices. 

 

5. Conclusion  

The progress in the F-FET to date is a result of works in multiple 

directions. These directions can be categorized into materials of a flexible 

substrate and the  type of a semiconductor. As for the semiconductor 

materials most research groups are currently working on nano and organic 

semiconductors. In fact, the field of flexibility seems to be promising due 

to many potential applications particularly in medical instruments and 

healthcare. This paper has made an attempt to summarize the fabrication 

methods and materials that probably help upcoming research to enter this 

field. Nano flexible devices such graphene. , carbon nanotube and 

nanoparticles seem to be candidate for future electronics as they have 

remarkable properties particularly its electronic and mechanical properties. 
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