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PROPORTIONAL-INTEGRAL (PID) CONTROLLER DESIGN USING
GENETIC ALGORITHM (GA)

The selection of the three coefficients of proportional-integral (PID) controllers (Ki, Kp, and Kd) is
basically a search problem in a three-dimensional space. This is so because points in the search
space correspond to different selections of a PID controller’s three parameters. By choosing
different points of parameter space, we can produce, for example, different step responses for a step
input. A PID controller can be determined by moving in this search space on trial-and-error basis.
The main problem in the selection of the three coefficients is that these coefficients do not readily
translate into the desired performance and robustness characteristics that the control system
designer has in mind. Several rules and methods using root locus and performance indices. The first
design uses the Integral of Time multiplied by Absolute Error (ITAE) performance index. Hence we
select the three PID coefficients (Ki, Kp, and Kd) to minimize the ITAE performance index, which
produces a good transient response to a step input.
Our paper uses the Genetic Algorithm (GA). In this method the selection of the three PID
coefficients depends on the minimization of the Mean Squared Error (MSE), which will produce an
excellent transient response to a step input.

: PID Controller, ITAE, and Genetic Algorithm GA.
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Many industrial processes are controlled using proportional-integral controllers. the popularity
of PID controllers can be attributed arty to their forename in a wide rang of operating conditions
and partly to their functional which allows engineers to operate them in simple , straightforward
manner . To implement such a controller, three parameters must be determined for the given
process: proportional gain, integral gain, and derivative gain.
The feedback control system shown in  will be our tested system that the laplace term
(Gp(s)) represent the plant transfer function, (Gc(s)) the controller transfer function and (H(s)) the
feedback transfer function. The input and output laplace term will be R(s) and Y(s) respectively. So
we can classify the controllers to four types [1][2]:

The P-controller is a pure gain (no dynamics) of value Kp (i.e. Gc(s) = Kp) thus we see that the
gain Kp that we have been varying to generate the desired response, that is , the system
characteristic equation is given by:

0)()(1

This controller is used in situations in which satisfactory transient and steady–state responses can be
obtained simply by setting a gain in the system, with no dynamic compensation required.

This controller increases the system by 1 and is used to improve the steady–state response. The
transfer function of the PI controller can be expressed as

)( (1)

The controller has a pole at the origin and at zero at Ki /Kp . since the pole is nearer to the origin
than is the zero , the controller is phase – lag , and the controller adds a negative angle to the
criterion of the root locus ,Hence this controller is used to improve the steady-state response of the
system , as stated earlier . The open–loop function can be expressed as

)()()()()()( (2)

And we see that are only two independent parameters to be determined in the design process. We
can arbitrarily set K=1 without affecting the generality of the design, the problem is then to
determine Kp and Ki to meet certain steady-state design criteria.

The transfer function of the PD controller is

)()( (3)

Thus the PD controller introduces a single zero at s = - Kp / Kd , and it is seen that this controller
adds a positive angle to the criterion of the root locus, therefore , the PD controller is a type of
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phase –lead controller and improves the system transient response . Since only a single zero is
introduced. The open–loop function can be expressed as:

)()()()()()( (4)

       The design of proportional–plus–integral-plus-derivative (PID) controller is introduced in this
section. The PID controller is probably the most commonly used controller in feedback control
system. With r(t) the controller input and y(t) the  output (according to ) , the PID controller
is defined as :

)()()( (5)

or
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A block diagram representation of this controller is given in , and the transfer function are
shown in  .Quite often it is not necessary to implement all three terms to meet the design
specification for a particular control system.

Let us consider a single – loop second –order system and determine its response step input a
closed – loop feedback control system is shown in The output is:

)()(
)(1

)()( 2 (6)

Utilizing the generalized, we may rewrite this equation as:

22

2

2
)( (7)

With a unit step input, we obtain

)2(
)((  (8)

For which the transient output, as obtained from the laplace transform:
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)sin(11)( (9)

Where 10,cos,1 12

Then transient response of second order system for various values of the damping ratio (ζ) is shown
in , the closed-loop roots approach the imaginary axis, and the response becomes
oscillatory. The response as a function of time is also shown in  for step input.
The laplace transform of the unit impulse, where R(s) =1, implies

22

2
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Which is T(s) = y(s) /R(s), the transfer function of the closed-loop system. The response for an
impulse function input is then

sin)( (11)

Which is simply the derivative of the response to a step input. The impulse response second–order
system for several values of the damping ratio. The designer is able to select several alternative
performance measures from the response of the system for either a step or impulse input [1][3][4].
Standard performance measures are usually defined in terms of the step response system as shown
in . The swiftness of the response is measured by the rise time  and the peak time . For
under damped system with an overshoot, the 0-100% rise time is a useful index. If the system is
over damped, then the peak time is not defined, and the 10 – 90 % rise time,  is normally used.
The similarity with which the actual response matches the step input is measured by the percent
overshoot and settling time . The percent overshoot, , is define as:

%100*.. (12)

for a unit step input , where    is the peak value of the time response , and  is value of the
response normally  is the magnitude of the input , but many system have a final value significantly
different from the desired input magnitude , for the system with a unit step represented by Eq ( 12 )
,we have  = 1.
The setting time, , is defined as the time required for the system to settle within a certain
percentage of the input amplitude, this band of ±    is shown in  for the second order
system with closed-loop damping constant , with a response described by Equ.(11) we seek to
determine the time, , for which the response remains within 2 % of the final value. This occurs

approximately when

02.0
or

4

Therefore we have
44 (13)
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Hence we will define the setting time as four time constants (that is ,  ) of the dominant
roots of the characteristic equation . The steady–state error of the system may be measured on the
step response of the system as shown in . The transient response of the system may be
described in terms of two factors:
1- The swiftness of response, as represented by the rise time and the peak time.
2- The closeness of the response to the desired response, as represented by the overshoot and
settling time.
As nature would have it, these are contradictory requirements, and a compromise must be obtained.
The explicit relation for  and  as a function of ζ is:

Therefore the percent overshoot is

or

22 .))/100((
.)/100( (14)

Increasing emphasis on the mathematical formulation and measurement of control performance
can be found in the recent references on automatic control. Modern theory assumes that systems
engineer can specify quantitatively the required system performance, then a performance index can
be calculated or measured and used to the system’s performance.
Whether the aim is to improve the design of a system or to design a control system performance
index must be chosen and measured. A system is considered an optimum control system when the
system parameter adjusted so that the index reaches an extremism value, commonly a minimum
value performance index, to be useful, must be a number that is always positive or zero, then best
system is defined as the system that minimizes this index.
A suitable performance index is the integral of the square of the error, ISE, which is defined as:

0

2 )( (15)

The upper limit T is a finite time chosen somewhat arbitrarily so that the integral approaches a

steady – state value. It is usually convenient to choose T as the setting time, Ts.

Another readily instrumented performance criterion is the integral of the knitted of the error IAE

which is written as

0

)( (16)

This index is particularly useful for computer studies.

To reduce the contribution of the large initial error to the value of the integral as well as to

emphasize errors occurring later in the response, the following index has been proposed:

21/1
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0

)( (17)

The performance index ITAE provides the best selectivity of the performance index that is, the
minimum value of the integral is readily discernible as the system parameters are varied.
Table(1) illustrates the optimum coefficients of the T(s) based on the ITAE criterion for a step input
[2][5].

A genetic algorithm (GA) is a search technique used in computing to find exact or approximate
solutions to optimization and search problems. Genetic algorithms are categorized as global search
heuristics. Genetic algorithms are a particular class of evolutionary algorithms (also known as
evolutionary computation) that use techniques inspired by evolutionary biology such as inheritance,
mutation, selection, and crossover (also called recombination).
Genetic algorithms are implemented as a computer simulation in which a population of abstract
representations (called chromosomes or the genotype of the genome) of candidate solutions (called
individuals, creatures, or phenotypes) to an optimization problem evolves toward better solutions.
Traditionally, solutions are represented in binary as strings of 0s and 1s, but other encodings are
also possible. The evolution usually starts from a population of randomly generated individuals and
happens in generations. In each generation, the fitness of every individual in the population is
evaluated, multiple individuals are stochastically selected from the current population (based on
their fitness), and modified (recombined and possibly randomly mutated) to form a new population.
The new population is then used in the next iteration of the algorithm. Commonly, the algorithm
terminates when either a maximum number of generations has been produced, or a satisfactory
fitness level has been reached for the population. If the algorithm has terminated due to a maximum
number of generations, a satisfactory solution may or may not have been reached.
Genetic algorithms find application in bioinformatics, phylogenetics, computational science,
engineering, economics, chemistry, manufacturing, mathematics, physics and other fields.
A typical genetic algorithm requires two things to be defined:
1- a genetic representation of the solution domain,
2- a fitness function to evaluate the solution domain.
A standard representation of the solution is as an array of bits. Arrays of other types and structures
can be used in essentially the same way. The main property that makes these genetic representations
convenient is that their parts are easily aligned due to their fixed size that facilitates simple
crossover operation. Variable length representations may also be used, but crossover
implementation is more complex in this case. Tree-like representations are explored in Genetic
programming and graph-form representations are explored in Evolutionary programming.

The fitness function is defined over the genetic representation and measures the quality of the
represented solution. The fitness function is always problem dependent. For instance, in the
knapsack problem we want to maximize the total value of objects that we can put in a knapsack of
some fixed capacity. A representation of a solution might be an array of bits, where each bit
represents a different object, and the value of the bit (0 or 1) represents whether or not the object is
in the knapsack. Not every such representation is valid, as the size of objects may exceed the
capacity of the knapsack. The fitness of the solution is the sum of values of all objects in the
knapsack if the representation is valid, or 0 otherwise. In some problems, it is hard or even
impossible to define the fitness expression; in these cases, interactive genetic algorithms are used.

Once we have the genetic representation and the fitness function defined, GA proceeds to initialize
a population of solutions randomly, then improve it through repetitive application of mutation,
crossover, inversion and selection operators [6][7][8].
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Initially many individual solutions are randomly generated to form an initial population. The
population size depends on the nature of the problem, but typically contains several hundreds or
thousands of possible solutions. Traditionally, the population is generated randomly, covering the
entire range of possible solutions (the search space). Occasionally, the solutions may be "seeded" in
areas where optimal solutions are likely to be found.

During each successive generation, a proportion of the existing population is selected to breed a
new generation. Individual solutions are selected through a fitness-based process, where fitter
solutions (as measured by a fitness function) are typically more likely to be selected. Certain
selection methods rate the fitness of each solution and preferentially select the best solutions. Other
methods rate only a random sample of the population, as this process may be very time-consuming.

Most functions are stochastic and designed so that a small proportion of less fit solutions are
selected. This helps keep the diversity of the population large, preventing premature convergence
on poor solutions. Popular and well-studied selection methods include roulette wheel selection and
tournament selection.

The next step is to generate a second generation population of solutions from those selected through
genetic operators: crossover (also called recombination), and/or mutation.

For each new solution to be produced, a pair of "parent" solutions is selected for breeding from the
pool selected previously. By producing a "child" solution using the above methods of crossover and
mutation, a new solution is created which typically shares many of the characteristics of its
"parents". New parents are selected for each child, and the process continues until a new population
of solutions of appropriate size is generated.

These processes ultimately result in the next generation population of chromosomes that is different
from the initial generation. Generally the average fitness will have increased by this procedure for
the population, since only the best organisms from the first generation are selected for breeding,
along with a small proportion of less fit solutions, for reasons already mentioned above.

This generational process is repeated until a termination condition has been reached. Common
terminating conditions are:

A solution is found that satisfies minimum criteria
Fixed number of generations reached
Allocated budget (computation time/money) reached
The highest ranking solution’s fitness is reaching or has reached a plateau such that

successive iterations no longer produce better results
Manual inspection
Combinations of the above

1. Choose initial population
2. Evaluate the fitness of each individual in the population
3. Repeat until termination: (time limit or sufficient fitness achieved)
i Select best-ranking individuals to reproduce
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ii Breed new generation through crossover and/or mutation (genetic operations) and give birth
to offspring
iii Evaluate the individual fitnesses of the offspring
iv Replace worst ranked part of population with offspring

Whenever the ITAE performance index gets stuck at a local minimum or the convergence rate is
relatively slow depending on the damping ratio value (  ), we start the genetic search by finding the
optimal PID coefficient  (  and )  with the best fitness i.e. the smallest (MSE) as the
survivor. In other words, the PID coefficient will be the GA chromosomes in which a fitness value
is assigned to each chromosome. The fitness value for the j-th chromosome is inversely
proportional to the mean squared error 2 , where ( 2 ) is given by

R

1k

2
jj

2
j )](y-(k)[d1  (18)

Where R is the window size over which the errors will be accumulated; d(k) is the original
response; y(k) is the estimated output associated with the j-th estimated chromosome. The survived
chromosome will be the optimized PID coefficient that gets us a minimum MSE (or optimal
solution).

In this section, The feedback control system shown in  will be tested with different
plants represented by the plant transfer function ( ). The optimum controller coefficients (
and ) for the controller transfer function ( ) will be obtained using ITAE criteria and Genetic
algorithm (GA). These optimum coefficients will obtained according to a step input and a required
settling time ( ) and percentage overshoot ( ).
Where:

2

(19)

and the closed-loop transfer function:

)(1
)(

)(
)()( (20)

Consider a temperature controller with a plant transfer function

2)1(
1)( (21)

We desire to obtain an optimum controller coefficients (  and ) using ITAE performance
and Genetic algorithm (GA) for a step input, settling time ( )of ( ) and a percentage overshoot
( ) of ( ).
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Using the plant and controller transfer functions (( ) and ( ) represented by equ.(21) and
equ.(19) respectively) we have the closed-loop transfer function according to equ.(20) :

)1()2()(
)()( 23

2

(22)

The optimum coefficients of the characteristic equation for ITAE are obtained from table (1) as

)15.275.1( 3223 (23)

We need to select in order to meet the settling time and percentage overshoot requirement. Since

22 .))/100((
.)/100( (24)

and

4 (25)

so we obtain  = 0.34 and = 19.552. The value of  will be substituted in equ.(23) to get the
characteristic equation:

)352.7474903.812216.34( 23 (26)

By matching equ.(26) with the characteristic equation (denominator) of equ.(22) we obtain

2 +  = 34.216,

1 + = 812.903, and

= 7474.352

So:  = 32.216, = 811.903, and = 7474.352

The overall transfer function according to ITAE criteria will be:

352.74749.812216.34
352.74749.811216.32

)(
)()( 23

2

(27)

 shows the original step response and  shows the ITAE step response according to the
transfer function obtained in equ.(27). The Mean Squared Error (MSE) according to ITAE
optimization equal to: 0.1005

The Mean Squared Error (MSE) between the original step response and the obtained one,
dedicated previously in equ.(18), is selected to be minimized by the use of GA in order to obtain
optimum PID coefficients that give minimum MSE. The specifications that were used in GA tuning
are:
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Number of generation =100.
Population size =20.
Crossover probability =0.8 (Simple crossover).
Mutation probability =0.05 (Uniform mutation).

 shows the GA step response. The obtained PID coefficients according to GA optimization
method are:  = 32.0283,  = 824.6774, and  = 7479.1691
That gives a minimum mean squared error equal to: 0.0347
The overall transfer function due to GA optimization is:

1691.74796774.82502683.34
1691.74796774.8240283.32

)(
)()( 23

2

 (28)

A cassette tape storage device has been designed for mass-storage. It is necessary to control
accurately the velocity of the tape. The speed control of the tape drive is represented by the system
shown in  and its ( ) is:

40040
10)( 2 (29)

The desired settling time ( ) is ( ) and a percentage overshoot ( ) is ( ).

Using the plant and controller transfer functions (( ) and ( ) represented by equ.(29) and
equ.(18) respectively) we have the closed-loop transfer function according to equ.(19) :

10)10400()1040(
101010
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)()( 23
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Repeating steps modeled in equ.(22), (23) and equ.(24) we fined that  = 0.358 and = 13.97. The
value of  will be substituted in equ.(22) to get the characteristic equation:

)397.2726595.419447.24( 23 (31)

By matching equ.(30) with the characteristic equation (denominator) of equ.(31) we obtain:
40 + 10  = 24.447,
400 + 10 = 419.595, and
10 = 2726.397
So:

 = -1.5553, = 1.972, and = 272.63
The overall transfer function according to ITAE criteria will be:

397.2726595.419447.24
397.272672.19553.15

)(
)()( 23

2

(32)

Fig.(9) shows the original step response and Fig.(10) shows the ITAE step response according to
the transfer function obtained in equ.(32). The Mean Squared Error (MSE) according to ITAE
optimization equal to: 0.3497
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The specifications that were used in GA tuning are:
Number of generation =100.
Population size =20.
Crossover probability =0.8 (Simple crossover).
Mutation probability =0.05 (Uniform mutation).
Fig.(11) shows the GA step response. The obtained PID coefficients according to GA optimization
method are:  = -1.0166,  = 1.8710, and  = 273.8123
That gives a minimum mean squared error equal to: 0.0849
The overall transfer function due to GA optimization is:

1232.2738707.41829.8338
1232.2738707.181662.10

)(
)()( 23

2

 (33)

Fig.(12) and Fig.(13) shows a comparison for the obtained step response (original, ITAE
and GA response) in the same figure for the first and second example respectively. One can see
from Fig.(12) that there is a similarity between the original response (the sold line) and both the
ITAE response (the dash-dot line) and the GA response (the dashed line).
Also we can observe that there is a great convergence between the original response (the sold line)
and GA response (the dashed line) rather than the ITAE response (the dash-dot line).
Finally we can conclude from this comparison that the GA optimization method is suitable in some
type of plants but in other types the ITAE optimization criteria may be more effective than the GA
method.
Generally GA optimization method is a very effective, flexible, tenuous and suitable for many
complex plants rather than other methods.
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The optimum coefficients of T(s) based on the ITAE criterion for a
step input.

6524334256

54233245

432234

3223

22

95.345.760.860.625.3

4.35.50.58.2

7.24.31.2

15.275.1

4.1

: Feedback control system with a controller, plant and feedback transfer
function.

∫ Ki

Kp

KD

r(t) y(t)+

_

( a )

+

R(s) Y(s)+

_

( b )

+

: PID Controller
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: Transient response of a second order system for various values of the
damping ratio (ζ)

: Transient response of a second order system as a function of
time
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: Step response of a control system.

: Feedback control system with a controller and a plant transfer
function.

: The original step response
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: The ITAE step response

: The GA response
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: The original step response

 The ITAE step response
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: A comparison for the three responses for the first example
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: A comparison for the three responses for the second example


