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ABSTRACT

Number Theory, a branch of Pure Mathematics, is crucial in cryptographic 
algorithms. Many cryptographic systems depend heavily on some topics of 
Number Theory. One of these topics is the linear congruence. In cryptography, 
the concept of linear congruence is used to directly underpin public key 
cryptosystems during the process of ciphering and deciphering codes. Thus, 
linear congruence plays a very important role in cryptography. This paper aims 
to develop an alternative method and generalized solutions for solving linear 
congruence ax ≡ b (mod n). This study utilized expository-developmental 
research method. As a result, the alternative method considered two cases: (1) 
when (a,n) = 1 and (2) when (a,n) > 1. The basic idea of the method is to convert 
the given congruence ax ≡ b (mod n) to ax = b + kn for some k, reduce modulus n 
by interchanging a and n, simplify the new congruence and perform the process 
recursively until obtaining a congruence that is trivial to solve. The advantage 
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of this method over the existing approaches is that it can solve congruence even 
for large modulus n with much more efficiency. Generalized solution of linear 
congruence ax ≡ b (mod n) considering both cases was obtained in this study. 

Keywords – Number Theory, cryptography, expository-developmental 
research, Philippines

INTRODUCTION

In the global information economy, personal data have become the fuel, 
driving much of current online activity (United Nations, 2016). Day-by-day, 
large amount of data are transmitted, stored and collected across the globe 
enabled by massive improvements in computing and communication power. 
Protecting these data and privacy rights online is a significant and increasingly 
urgent challenge for policymakers. Thus, the use of cryptography has become 
popular and vital.

Linear congruence plays a very important role in cryptographic system. 
It is widely used in the encryption and decryption of codes in public key 
cryptosystems like the Rivest Shamir Adlemann (RSA) system (Ashioba & Yoro, 
2014; Gupta, Srivastava, & Singh, 2012). Because of this, numerous researchers 
and mathematics educators have been interested in studying and developing 
methods for solving linear congruence ax ≡ b (mod n). 

 A standard method of solving linear congruence involves the use of 
multiplicative inverse of a modulo n (Ore, 1988; Burton, 1989). Using this 
method, multiplying the linear congruence ax ≡ b(mod n) through by the 
factor a-1 gives x = ba-1 (mod n). However, finding multiplicative inverse for large 
number is quite difficult, thus using this method will also take time in finding the 
congruence classes (Koddoura, 2006). 

Another method used to solve linear congruence is an approach which 
translates the given congruence into Diophantine equation ax + by = c to solve 
linear congruence and solve using Extended Euclidean Algorithm. However, 
according to Gold (1995), using Diophantine equations in finding congruence 
classes for ax ≡ b (mod n) require at most log2(b) iterations, or in the case a<n, 
1+log2(a) iterations. 

Remodulization method, a novel solution for linear congruence was 
introduced by (Gold & Tucker, 1995), which characterizes the conditions under 
which solutions exists and then determines the solution space. This novel method 
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relates the solutions space of cx ≡ b (mod n) to the Euler function c rather than 
of b. This allows one to develop an alternative efficient approa ch to encryption 
and decryption of codes in public key cryptosystems. However, this method is 
not that efficient for large modulus n since characterizing the conditions under 
which solutions exists for large n is a cumbersome task.

An algebraic method for solving linear congruence was introduced in 2014. 
This method translates the linear congruence into a algebraic linear equation x = 
b+nq, where b is the residue, n is the modulus and q is any arbitrary integer. After 
translating into linear equation, the equation is then solved algebraically (Cuarto, 
2014; Cuarto 2015).

Although there are existing approaches developed, finding solutions to 
congruence still remain pedagogically difficult especially on the part of the 
students. This is because the methods make use of complex algorithms. Thus, 
in this paper, the researcher aimed to develop an alternative method for solving 
congruence class ax ≡ b (mod n) that does not use an exhaustive, gradual and 
incremental method which invites a definite risk of computation complexity. 

This study aimed to generalize solution of linear congruence ax ≡ b(mod n). 
Specifically, the study sought to: 

1. determine an alternative method for solving linear congruence ax ≡ 
b(mod n) for large modulus n considering case when (a,n) = 1 and when (a,n) > 1;

2. validate the developed alternative method using formal proof and 
illustrative examples.

The results of this study are deemed important for Mathematics students, 
instructors, computer programmers as well as future researchers. Using the 
developed alternative method, Mathematics students especially the beginners 
who are taking up Number Theory can easily solve problems on linear congruence 
since it uses the concept of algebraic principles which every Mathematics student 
is familiar with. Utilizing the algorithm presented in this paper will help them 
realize that Mathematics can be made simpler because the method does not make 
use of complex notations and operations which other algorithms do. Likewise, 
this would benefit Mathematics instructors and professors for this may serve as 
a reference material in teaching the concept of congruence in Number Theory. 
Similarly, the result of this study can help those in the field of cryptography 
because the concept of linear congruence is used in ciphering and deciphering 
codes for network security and others. This algorithm could also give programmers 
insights in developing a program based on this technique that can automatically 
solve problems on linear congruence. This study would also provide input for 
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future researchers who will conduct studies on development of other Number 
Theory-based cryptosystem.

FRAMEWORK

This paper was built on the following definitions, theorems and properties 
which will be used further in the development of this paper. These were taken 
from several readings of the works of Adams (2010), Burger (2006), Stein (2008), 
Benjamin and Brown (2009), Rose (2010), Rosen (2011) and Wall (2010).

Definition 1. A congruence is a linear equation involving congruent 
relations. Let n be a fixed positive number. Two integers a and b are said to be 
congruent modulo n, symbolized by a ≡ b(mod n) if n divides the difference a – b; 
that is, provided that a – b = kn for some integer k.

Congruences may be viewed as a generalized form of equality, in the 
sense that its behavior with respect to addition and multiplication is similar to 
ordinary equality (=). Some of the basic properties of equality that carry over to 
congruences appear in the following theorem.

Definition 2. A congruence class [a]n is the set of all integers that have the 
same remainder as a when divided by n. If a linear congruence ax ≡ b(mod n) has 
a particular solution, it has an infinite number of solutions. Thus, the complete 
congruence class solutions can be expressed as [x0]n where x0 is a particular 
solutions and n is the modulus.

Theorem 1. In modular arithmetic, if a and b are any integers and n is a 
positive integers, then the congruence ax  b (mod n) has a solution for x if and 
only if the greatest common divisor of a and n (denoted by gcd (a,n)) is a factor 
of b.

Theorem 2. The congruence ax  b (mod n), n ≠ 0, with gcd(a,n) = d|b, has 
d distinct solutions.

Theorem 3. If a  b(mod n) then b = a + nq for some integer q, and 
conversely.

Theorem 4. For any integers a and b, and positive integer n, a ≡ a (mod n). 
 Proof: n|(a − a) since 0 is divisible by any integer. Therefore, a ≡ a (mod n).
Theorem 5. For any integers a and b, and positive integer n, if a ≡ b (mod 

n), then b ≡ a (mod n).
Proof: If a ≡ b(mod n) then n|(b − a). Therefore, n|(−1)(b − a) or n|(a − b). 

Therefore, b ≡ a (mod n).
Theorem 6. For any integers a and b, and positive integer n, if a ≡ b (mod n) 

and b ≡ c (mod n) then a ≡ c (mod n).
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Proof: If a ≡ b (mod n) and b ≡ c (mod n), then n|(b−a) and n|(c−b). Using the 
linear combination theorem, n|(b − a + c − b) or n|(c − a). Thus, a ≡ c (mod n).

Theorem 7. If a ≡b (mod n), then b = a + nk for some integer k, and 
conversely.

Proof: If a ≡ b (mod n) then by definition n|(b − a). Therefore, b − a = nk for 
some k. Thus b = a + nk. Conversely if b = a + nk, then b−a = nk and so n|(b−a) 
and hence a ≡ b (mod n), then b = a + nk. 

Theorem 8. If a ≡ b (mod n) then a and b leave the same remainder when 
divided by n.

Proof: Suppose a ≡ b (mod n). Then by Theorem 6, b = a + nk. If a leaves the 
remainder r when divided by n, we have a = nk + r with 0 ≤ r.

Theorem 9. If a ≡ b (mod n) and c ≡ d (mod n), then a + c ≡ b + d (mod n).
Proof: Using Theorem 6, b = a + nk1 and d = c + nk2. Then adding equalities, 

we get b + d = a + c + nk1 + nk2 = a + c + n(k1 + k2). This shows that a + c ≡ b + 
d (mod n) by Theorem 6.

Theorem 10. If a ≡ b (mod n) and c ≡ d (mod n), then ac ≡ bd (mod n).
Proof: Using Theorem 6, b = a + nk1 and d = c + nk2. By multiplying, we get 

bd = (a + nk1)(c + nk2) = ac + nak2 + nck1 + n2k1k2. Thus, bd = ac + n(ak2 + ck1 + 
nk1k2), and so ac ≡ bd (mod n), by Theorem 6.

Theorem 11. If a ≡ b (mod n), and c is a positive integer, then, ca ≡ cb (mod 
cn).

Proof: Since n|(b − a), we have cn|c(b − a) or cn|(cb − ca).

These definitions and theorems were used in establishing a formal 
mathematical proof of the alternative method for solving linear congruence 
specifically for large modulus n.

METHODOLOGY

The study is expository research in nature, thus, the resources found in the 
library and electronic resources was used in the conduct of the study. Expository 
research is a research that gives detailed solutions and exposes it using set of 
words that is understandable to the readers (Roxas & Reyes, 2013). This study 
will focus on the development of an alternative method for solving congruence 
classes for ax ≡ b (mod n). The method was subjected through a series of trials and 
computations before arriving at generalized solutions. This was validated through 
a formal proof and illustrative examples. 
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For a better understanding of the study, related concepts were discussed in 
the preliminaries. These concepts are definition, theorems and properties related 
to linear congruence.

Several articles and related studies from general references, books, journals 
and internet sources were reviewed and cited to establish a systematic and 
mathematical analysis of the topic. The presentation of every topic are systematic 
and illustrative in order for the students and general readers to comprehend easily 
what is being discussed. For the purpose of clarifying concepts in the research 
study, experts in the field and colleagues in the academe were consulted to be able 
to present the topic more clearly and understandable

RESULTS AND DISCUSSION

The subsequent sections are systematically structured as follows: first, the 
steps of the developed alternative method for solving linear congruence ax  
b (mod n) as well as its proof were presented, then some illustrative examples in 
cases when a and n have greatest common divisor equal to 1 and when a and n 
have greatest common divisor greater than 1 were also provided. A shorter version 
of the solutions using the alternative method is also given after each illustrative 
example to simplify the computations. Discussion on the development of linear 
congruence solver is also presented in the succeeding section. 

Alternative Method for Solving Linear Congruence ax b (mod n)
Linear congruence in the form ax b (mod n) can be expressed to a linear 

equation in the form x = b + nq, where b is a residue, n is the modulus and q is 
an arbitrary integer. From this, the idea of solving linear congruence ax b (mod 
n) algebraically emanated. The basic idea of the method is to express the given 
congruence to linear equation and reduce the modulus recursively until arriving 
at a congruence that is trivial to solve.

Existing methods work well when the modulus n is not large. However, for 
large n, the methods become useless as the solution becomes more exhaustive. 
The advantage of the alternative method is that it can solve linear congruence 
ax  b (mod n) even for large n. The alternative method considered two cases: 
case 1: when (a,n) = 1 and case 2: when (a,n) > 1. The steps in solving linear 
congruence ax b (mod n) using the developed alternative method is as follows:
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CASE 1: When (a,n) = 1
Step 1. Check the solvability of the given linear congruence. 
Step 2. Convert the given linear congruence ax  b (mod n) into linear 

equation ax = b + nk. 
Step 3. Reduce the modulus n by interchanging a and n algebraically. 

Simplify and solve the new congruence nk -b (mod a). Perform this step 
recursively until obtaining a congruence that is trivial to solve.

Step 4. Substitute the values of a, b, n and k to the equation x0 =  to 
solve the given congruence.

CASE 2: When (a,n) > 1
Step 1. Check the solvability of the given linear congruence. 
Step 2. Convert the given linear congruence ax  b (mod n) into linear 

equation ax = b + nk. 
Step 3. Reduce the modulus n by interchanging a and n algebraically. 

Simplify and solve the new congruence nk -b (mod a). Perform this step 
recursively until obtaining a congruence that is trivial to solve.

Step 4. Substitute the values of a, b, n and k to the equation x0 =  to 
solve the given congruence. If x0 is a particular solution to the ax b (mod n), 
then the complete congruence class solution is given by:

x0, x0 +  , x0 +  , . . . , x0 +  where d = (a,n).

Proof of the Alternative Method for Solving Linear Congruence ax  b 
(mod n)

 This section provides validity of the developed alternative method for 
solving linear congruence ax  b (mod n) by showing the theorems as well as its 
proof.

Step 1. Check the solvability of the given linear congruence.
Theorem 1. In modular arithmetic, if a and b are any integers and n is a 

positive integer, then the congruence ax  b (mod n) has a solution for x if and 
only if d (the greatest common divisor of a and n) is a factor of b. 

Proof: Let b be an integer and d is (a,n). By theorem 3, ax = b + ny for 
some integer y. By Subtraction Property of Equality, ax – ny = b which is a linear 
Diophantine equation. If d divides b, then the Diophantine equation has solution, 
so the congruence has solutions.  
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Step 2. Convert the given linear congruence ax b (mod n) into linear equation 
ax = b + nk for some integer k.

Theorem 3. If a  b (mod n), then b = a + nk for some integer k, and 
conversely.

Proof: If a ≡ b mod n then by definition n|(b − a). Therefore, b − a = nk for 
some k. Thus b = a + nk. Conversely if b = a + nk, then b−a = nk and so n|(b−a) 
and hence a ≡ b mod n then b = a + nk.   

 
Step 3. Reduce the modulus n by interchanging a and n algebraically. Simplify 
and solve the new congruence nk  -b (mod a). Perform this step recursively 
until obtaining a congruence that is trivial to solve.

Proposition 1. Let a, b, n and x be positive integers, then ax  b (mod n) is 
congruent to nk  -b (mod a) for some integer k.

Proof. If ax  b (mod n), then by Theorem 3, ax = b + nk for some integer 
k. Thus, ax - b = nk, by Subtraction Property of Equality and nk = ax – b, by 
Symmetric Property of Equality. By Theorem 3, nk  -b (mod a).   

Step 5. Substitute the values of a, b, n and k to the equation x = (b + nk)/a to 
solve the given congruence.

Proposition 2. Let a, b, n and k be positive integers, then the solution to x 
 b (mod n) is given by x = (b + nk)/a. 

Proof. By Theorem 3, ax  b (mod n) is congruent to ax = b + nk for some 
integer k. By Division Property of Equality, x = (b + nk)/a.   

CASE 1: When (a,n) = 1
Illustrative Example 1

Solve the linear congruence 11x  42(mod 101).

Step 1. Check the solvability of the given linear congruence. 
To check the solvability of the given congruence, we use Theorem 1 which is 

previously stated in the preliminaries.
 In modular arithmetic, if a and b are any integers and n is a positive integer, 

then the congruence ax  b (mod n) has a solution for x if and only if d (the greatest 
common divisor of a and n) is a factor of b. If d|b, then, it has d mutually incongruent 
solutions modulo n.
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Since the greatest common divisor of 11 and 101 is 1, which is a factor of 42, 
the linear congruence 11x  42(mod 101) has a unique solution.

Note: In case when a and n are relatively prime, the given congruence always 
has a unique solution since 1 divides any value of b. Thus, there is no need to check 
solvability condition.

Step 2. Convert the given linear congruence ax b (mod n) into linear equation 
ax = b + nk. 

The linear congruence 11x  42(mod 101) when converted to linear 
equation is given as : 11x = 42 + 101k.

Step 3. Reduce the modulus n by interchanging a and n algebraically. 
11x = 42 + 101k
11x – 42 = 101k
101k = -42 + 11x
101k = -42 (mod 11)

Step 4. Simplify and solve the new congruence nk -b (mod a). Perform step 3 
and 4 recursively until obtaining a congruence that is trivial to solve.

101k = -42 (mod 11)
 2k = 2 (mod 11)
Since this congruence can be easily solved now, there is no need to repeat 

step 3 and 4 process.
k = 1(mod 11)

Step 5. Substitute the values of a, b, n and k to the equation x = (b + nk)/a to 
solve the given congruence.

x = (b + nk)/a
x = [42 + 101(1)] / 11
x = (42 + 101) / 11
x = 143 / 11
x = 13

Thus, the congruence class solution of 11x  42(mod 101) is [13]101.
A shorter version of the solution of 11x  42(mod 101) is given below:
11x  42(mod 101)
  11x = 42 + 101k   Converting to linear equation
  101k = -42 (mod 11)  Interchanging a and n
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2k = 2 (mod 11)   Simplifying the congruence
k = 1(mod 11)   Solving the congruence in terms of k
  x = (b + nk)/a
x = [42 + 101(1)] / 11  Substituting values to the general solution
x = 13    Simplifying the equation
x = [13]101    The congruence class solution of 
 11x  42(mod 101).

Illustrative Example 2
Solve the linear congruence 35x  67(mod 509).

Step 1. Check the solvability of the given linear congruence.
Since a and n are relatively prime, the given congruence always has a unique 

solution since 1 divides any value of b. Thus, there is no need to check solvability 
condition.

Step 2. Convert the given linear congruence ax b (mod n) into linear equation 
ax = b + nk 

The linear congruence 35x  67(mod 509) when converted to linear 
equation is given as: 35x = 67 + 509k.

Step 3. Reduce the modulus n by interchanging a and n algebraically. 
35x = 67 + 509k  
35x – 67 = 509k
509k = -67 + 35x
509k = -67 (mod 35)

Step 4. Simplify and solve the new congruence nk  -b (mod a). Perform step 3 
and 4 recursively until obtaining a congruence that is trivial to solve.

509k = -67 (mod 35)
 19k = 3 (mod 35)
Since this congruence is still complex, there is a need to repeat step 3 and 4 

process.
19k = 3 (mod 35)
19k = 3 + 35k1
19k -3 = 35k1
 35q1 = -3 + 19q
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35k1 = -3 (mod 19)
16k1 = 16 (mod 19)
k1 = 1 (mod 19)
19k = 3 + 35k1
19k = 3 + 35(1)
19k = 3 + 35
19k = 38
k = 2

Step 5. Substitute the values of a, b, n and k to the equation x = (b + nk)/a to 
solve the given congruence.

x = (b + nk)/a
x = [67 + 509(2)] / 35
x = (67 + 1018) / 35
x = 1085 / 35
x = 31

Thus, the congruence class solution of 35x  67(mod 509) is [31]509.
A shorter version of the solution of 35x  67(mod 509) is given below:
35x  67(mod 509) 
35x = 67 + 509k   Converting to linear equation
509k = -67 (mod 35)  Interchanging a and n
19k = 3 (mod 35)  Simplifying the congruence
19k = 3 + 35k1  Converting to linear equation
35k1 = -3 (mod 19)  Interchanging a and n
16k1 = 16 (mod 19)   Simplifying the congruence
k1 = 1 (mod 19)
19k = 3 + 35q1   Solving the congruence in terms of k
k = 2
x = (b + nk)/a
x = [67 + 509(2)] / 35  Substituting values to the general solution
x = 31    Simplifying the equation
x = [31]509 The solution of 35x  67(mod 509).
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CASE 2: When (a,n) >1 

Illustrative Example 1

Solve the linear congruence 14x  35(mod 301).

Step 1. Check the solvability of the given linear congruence.
To check the solvability of the given congruence, we use Theorem 1 which is 

previously stated in the preliminaries.
In modular arithmetic, if a and b are any integers and n is a positive integer, 

then the congruence ax  b (mod n) has a solution for x if and only if d (the greatest 
common divisor of a and n) is a factor of b. If d|b, then, it has d mutually incongruent 
solutions modulo n.

To find the greatest common divisor of a and n, use the Euclidean Algorithm.
GCD of 14 and 301
301 = 14*21 + 7
14 = 7*2 + 0
(14,301) = 7
Since the greatest common divisor of 14 and 301 is 7, which is a factor of 

35, the linear congruence 14x  35(mod 301) has exactly 7 congruence class 
solutions modulo n.

Step 2. Convert the given linear congruence ax b (mod n) into linear equation 
ax = b + nk. 

The linear congruence 14x  35(mod 301) when converted to linear 
equation is given as: 14x = 35 + 301k.

Step 3. Reduce the modulus n by interchanging a and n algebraically. 
14x = 35 + 301k
14x – 35 = 301k
301k = -35 + 14x
301k = -35 (mod 14)

Step 4. Simplify and solve the new congruence nk =-b (mod a). Perform step 3 
and 4 recursively until obtaining a congruence that is trivial to solve.

301k = -35 (mod 14)
7k = 7 (mod 2)
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Since this congruence can be easily solved now, there is no need to repeat 
step 3 and 4 process.

k = 1(mod 2)

Step 5. Substitute the values of a, b, n and k to the equation x = (b + nk)/a to 
solve the given congruence.

x = (b + nk)/a
x = [35 + 301(1)] / 14
x = (35 + 301) / 14
x = 336 / 11
x = 24

One congruence class solution of 14x  35(mod 301) is [24]101.
If x is a solution, then a complete congruence class solution is:
x, x + n/d, x + 2n/d, . . ., x + (d-1)n/d where d = (a, n).

Therefore, the complete congruence class solution to 14x  35(mod 
301) is [24]301, [67]301, [110]301, [153]301, [196]301, [239]301, and [282]301. 

A shorter version of the solution of 14x  35(mod 301) is presented below:
(14, 301) = 7  Finding the gcd
7 is a factor of 35  Checking solvability
14x = 35 + 301k   Converting to linear equation
301k = -35 (mod 14)  Interchanging a and n
7k = 7 (mod 2)   Simplifying the congruence
k = 1 (mod 2)   Solving the congruence in terms of k
x = (b + nk)/a
x = [35 + 301(1)] / 14  Substituting values to the general solution
x = 24    Simplifying the equation
x = [24]301    The congruence class solution of 
14x  35(mod 301).
The complete set of congruence class solutions are: [24]301, [67]301, [110]301, 

[153]301, [196]301, [239]301, and [282]301.
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Illustrative Example 2

Solve the linear congruence 48x  36(mod 138).

Step 1. Check the solvability of the given linear congruence.
To check the solvability of the given congruence, we use Theorem 1 which is 

previously stated in the preliminaries.
 In modular arithmetic, if a and b are any integers and n is a positive integer, 

then the congruence ax  b (mod n) has a solution for x if and only if d (the greatest 
common divisor of a and n) is a factor of b. If d|b, then, it has d mutually incongruent 
solutions modulo n.

To find the greatest common divisor of a and n, use the Euclidean Algorithm.
GCD of 48 and 138
138 = 48*2 + 42
48 = 42*1 + 6
42 = 6*7 + 0
(48, 138) = 6

Since the greatest common divisor of 48 and 138 is 6, which is a factor of 
36, the linear congruence 48x  36(mod 138) has exactly 6 congruence class 
solutions modulo n.

Step 2. Convert the given linear congruence ax b (mod n) into linear equation 
ax = b + nk. 

The linear congruence 48x  36(mod 138) when converted to linear 
equation is given as: 48x = 36 + 138k.

Step 3. Reduce the modulus n by interchanging a and n algebraically. 
48x = 36 + 138k
48x – 36 = 138k
138k = -36 + 48x
138k = -36 (mod 48)

Step 4. Simplify and solve the new congruence nk =-b (mod a). Perform step 3 
and 4 recursively until obtaining a congruence that is trivial to solve.

138k = -36 (mod 48)
42k = 12 (mod 8)
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7k = 2 (mod 8)
7k = 2 + 8k1
8k1 = -2 (mod 7)
k1 = 5 (mod 7)
7k = 2 + 8k1
7k = 2 + 8(5)
7k = 2 + 40
7k = 42
q = 6

Step 5. Substitute the values of a, b, n and k to the equation x = (b + nk)/a 
to solve the given congruence.

x = (b + nk)/a
x = [36 + 138(6)] / 48
x = (36 + 828) / 48
x = 864 / 48
x = 18

One congruence class solution of 48x  36(mod 138) is [18]138.
If x is a solution, then a complete congruence class solution is:
x, x + n/d, x + 2n/d, . . ., x + (d-1)n/d where d = (a, n).
Therefore, the complete congruence class solutions to 48x  36(mod 138) 

are [18]138, [41]138, [64]138, [87]138, [110]138, and [133]138. 

A shorter version of the solution of 48x  36 (mod 138) is presented below:
(48, 138) = 6  Finding the gcd
6 is a factor of 36  Checking solvability
48x = 36 + 138k   Converting to linear equation
138k = -36 (mod 48)  Interchanging a and n
42k = 12 (mod 8)   Simplifying the congruence
7k = 2 (mod 8)
k = 6 (mod 8)  Solving the congruence in terms of k
x = (b + nk)/a
x = [36 + 138(6)] / 48  Substituting values to the general solution
x = 18    Simplifying the equation
x = [18]138   The congruence class solution of 
48x  36 (mod 138).
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The complete set of congruence class solutions are: [18]138, [41]138, [64]138, 
[87]138, [110]138, and [133]138.

CONCLUSIONS

An easier alternative method for solving linear congruence ax b (mod n) 
considering two cases: (1) when (a,n) = 1 and (2) when (a,n) > 1 was developed. 
The basic idea of the method is to convert the given congruence ax ≡ b (mod 
n) to ax = b + kn for some k, reduce modulus n by interchanging a and n, 
simplify the new congruence and perform the process recursively until obtaining 
a congruence that is trivial to solve. The advantage of this method over the 
existing approaches is that it can solve congruence even for large modulus n with 
much more efficiency. Generalized solution of linear congruence ax ≡ b (mod n) 
considering both cases was obtained in this study. 

Future researchers can also conduct study on the development of easier 
alternative methods for solving other types of congruences such as linear 
congruence ax + by c (mod n), system of linear congruences, quadratic 
congruence and other non-linear congruences. 

This research was used as a mathematical basis for developing a computer 
program that automatically solves linear congruence problems in a step by step 
fashion which is currently being used in teaching and learning the concept of 
linear congruence in Number Theory classes. 
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